Схемы включения и компенсации термопар

Схемы включения и компенсации термопар

Как известно, термопара содержит два спая, поэтому для правильного и точного измерения температуры на одном (первом) из спаев, необходимо поддерживать другой (второй) спай при известной постоянной температуре, чтобы измеренная ЭДС оказывалась явной функцией температуры только первого спая — главного рабочего спая.

Так, с целью поддержания в термоизмерительном контуре условий, при которых паразитное влияние ЭДС второго («холодного спая») было бы исключено, необходимо как-то компенсировать в любой рабочий момент времени напряжение на нем. Как это сделать? Как привести схему к такому состоянию, чтобы измеряемое напряжение термопары менялось бы только в зависимости от изменений температуры первого спая, независимо от текущей температуры второго?

С целью достижения правильных условий, можно прибегнуть к незамысловатой хитрости: поместить второй спай (места присоединения проводов первого спая с измерительным прибором) в емкость с ледяной водой — в заполненную водой ванночку, в которой еще плавает лед. Таким образом получим на втором спае фактически постоянную температуру таяния льда.

Каждый электрик должен знать:  Устройство твердотельного лазера

После чего останется, отслеживая результирующее напряжение на термопаре, вычислять температуру первого (рабочего) спая, ибо второй спай будет находится в неизменном состоянии, напряжение на нем будет константой. Цель в итоге будет достигнута, влияние «холодного спая» окажется скомпенсировано. Но если так делать, то получится громоздко и не удобно.

Чаще термопары применяются все же в мобильных портативных устройствах, в переносных лабораторных приборах, поэтому нежен другой вариант, ванночка с ледяной водой разумеется нам не подходит.

И такой иной способ есть — метод компенсации напряжения от изменяющейся температуры «холодного спая»: присоединить последовательно к измерительному контуру источник дополнительного напряжения, ЭДС которого будет иметь противоположное направление и по величине будет всегда точно равна ЭДС «холодного спая».

Каждый электрик должен знать:  Формулы и уравнения рядов

В случае, если ЭДС «холодного спая» непрерывно отслеживается путем измерения его температуры иным способом нежели термопара, — тогда равную компенсирующую ЭДС можно непрерывно тут же прикладывать, сводя суммарное напряжение паразитного участка цепи к нулю.

Но чем же можно непрерывно измерять температуру «холодного спая», чтобы получать непрерывные значения напряжений для автоматической компенсации?

Для этого подойдет термистор или термометр сопротивления, соединенный с типовой электроникой, которая и будет автоматически формировать компенсирующее напряжение необходимой величины. И хотя «холодный спай» не обязательно может быть буквально холодным, его температура, как правило, не такая уж экстремальная, какая может быть у рабочего спая, поэтому обычно подходит даже термистор.

Доступны специальные электронные компенсирующие модули «температуры таяния льда» для термопар, задача которых в том и состоит, чтобы подавать точное противоположное напряжение в измерительную цепь.

Значение компенсирующего напряжения от такого модуля поддерживается на таком значении, чтобы точно компенсировать температуру точек присоединения проводников термопары к модулю.

Каждый электрик должен знать:  Электромагнитные реле РПЛ - устройство, принцип действия, технические характеристики

Температура точек присоединения (на терминале) измеряется термистором или термометром сопротивления, и точно необходимое напряжение автоматически прикладывается последовательно в цепь.

Неискушенному читателю может показаться, что слишком много нагромождений ради просто точного использования термопары. Может быть целесообразнее, да и проще, сразу пользоваться термометром сопротивления или тем же термистором? Нет, не проще и не целесообразнее.

Термисторы и термометры сопротивления не так механически прочны как термопары, да и безопасный рабочий температурный диапазон у них не велик. Дело в том, что термопары обладают рядом преимуществ, два из которых основные: очень широкий температурный диапазон (от −250 °C до +2500 °C) и высокое быстродействие, которое недостижимо на сегодняшний день ни термисторами, ни термометрами сопротивления, ни датчиками иных типов аналогичной ценовой категории.

Добавить комментарий