Схемы включения однофазных тиристорных преобразователей


СОДЕРЖАНИЕ:

Схемы любительских частотных преобразователей

Одна из первых схем преобразователя для питания трехфазного двигателя была опубликована в журнале «Радио» №11 1999г. Разработчик схемы М. Мухин в то время был учеником 10 класса и занимался в радиокружке.

Преобразователь предназначался для питания миниатюрного трехфазного двигателя ДИД-5ТА, который использовался в станке для сверления печатных плат. При этом следует отметить, что рабочая частота этого двигателя 400Гц, а напряжение питания 27В. Кроме того, средняя точка двигателя (при соединении обмоток «звездой») выведена наружу, что позволило предельно упростить схему: понадобилось всего три выходных сигнала, а на каждую фазу потребовался всего один выходной ключ. Схема генератора показана на рисунке 1.

Как видно из схемы преобразователь состоит из трех частей: генератора-формирователя импульсов трехфазной последовательности на микросхемах DD1…DD3, трех ключей на составных транзисторах (VT1…VT6) и собственно электродвигателя M1.

На рисунке 2 показаны временные диаграммы импульсов, сформированных генератором-формирователем. Задающий генератор выполнен на микросхеме DD1. С помощью резистора R2 можно установить требуемую частоту вращения двигателя, а также изменять ее в некоторых пределах. Более подробную информацию о схеме можно узнать в указанном выше журнале. Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами.

Рисунок 2. Временные диаграммы импульсов генератора.

На базе рассмотренного контроллера А. Дубровским из г. Новополоцка Витебской обл. была разработана конструкция частотно-регулируемого привода для двигателя с питанием от сети переменного тока напряжением 220В. Схема устройства была опубликована в журнале «Радио» 2001г. №4.

В этой схеме, практически без изменений, используется только что рассмотренный контроллер по схеме М. Мухина. Выходные сигналы с элементов DD3.2, DD3.3 и DD3.4 используются для управления выходными ключами A1, A2, и A3, к которым подключается электродвигатель. На схеме полностью показан ключ A1, остальные идентичны. Полностью схема устройства показана на рисунке 3.

Подключение двигателя к выходу трехфазного инвертора

Для ознакомления с подключением двигателя к выходным ключам стоит рассмотреть упрощенную схему, приведенную на рисунке 4.

На рисунке показан электродвигатель M, управляемый ключами V1…V6. Полупроводниковые элементы для упрощения схемы показаны в виде механических контактов. Питание электродвигателя осуществляется постоянным напряжением Ud получаемым от выпрямителя (на рисунке не показан). При этом, ключи V1, V3, V5 называются верхними, а ключи V2, V4, V6 нижними.

Совершенно очевидно, что открытие одновременно верхних и нижних ключей, а именно парами V1&V6, V3&V6, V5&V2 совершенно недопустимо: произойдет короткое замыкание. Поэтому, для нормальной работы такой ключевой схемы, обязательно, чтобы к моменту открытия нижнего ключа верхний ключ уже был закрыт. С этой целью контроллеры управления формируют паузу, часто называемую «мертвой зоной».

Величина этой паузы такова, чтобы обеспечить гарантированное закрытие силовых транзисторов. Если эта пауза будет недостаточна, то возможно кратковременное открытие верхнего и нижнего ключа одновременно. Это вызывает нагрев выходных транзисторов, часто приводящий к выходу их из строя. Такую ситуацию называют сквозными токами.

Вернемся к схеме, показанной на рисунке 3. В данном случае верхними ключами являются транзисторы 1VT3, а нижними 1VT6. Нетрудно заметить, что нижние ключи гальванически связаны с управляющим устройством и межу собой. Поэтому управляющий сигнал с выхода 3 элемента DD3.2 через резисторы 1R1 и 1R3 подаются непосредственно на базу составного транзистора 1VT4…1VT5. Этот составной транзистор есть не что иное, как драйвер нижнего ключа. В точности также от элементов DD3, DD4 управляются составные транзисторы драйверов нижнего ключа каналов A2 и A3. Питание всех трех каналов осуществляется от одного и того же выпрямителя на диодном мосте VD2.

Верхние же ключи гальванической связи с общим проводом и управляющим устройством не имеют, поэтому для управления ими кроме драйвера на составном транзисторе 1VT1…1VT2 пришлось в каждый канал установить дополнительный оптрон 1U1. Выходной транзистор оптрона в этой схеме также выполняет функцию дополнительного инвертора: когда на выходе 3 элемента DD3.2 высокий уровень открыт транзистор верхнего ключа 1VT3.

Для питания каждого драйвера верхнего ключа используется отдельный выпрямитель 1VD1, 1C1. Каждый выпрямитель питается от индивидуальной обмотки трансформатора, что можно рассматривать как недостаток схемы.

Конденсатор 1C2 обеспечивает задержку переключения ключей около 100 микросекунд, столько же дает оптрон 1U1, тем самым формируется вышеупомянутая «мертвая зона».

Достаточно ли только регулирования частоты?

С понижением частоты питающего переменного напряжения падает индуктивное сопротивление обмоток двигателя (достаточно вспомнить формулу индуктивного сопротивления), что приводит к увеличению тока через обмотки, и, как следствие, к перегреву обмоток. Также происходит насыщение магнитопровода статора. Чтобы избежать этих негативных последствий, при уменьшении частоты приходится снижать и эффективное значение напряжения на обмотках двигателя.

Одним из способов решения проблемы в любительских частотниках предлагалось это самое эффективное значение регулировать при помощи ЛАТРа, подвижный контакт которого имел механическую связь с переменным резистором регулятора частоты. Такой способ был рекомендован в статье С. Калугина «Доработка регулятора частоты вращения трехфазных асинхронных двигателей». Журнал «Радио» 2002, №3, стр.31.

В любительских условиях механический узел получался в изготовлении сложным, а главное ненадежным. Более простой и надежный способ использования автотрансформатора был предложен Э. Мурадханяном из Еревана в журнале «Радио» №12 2004. Схема этого устройства показана на рисунках 5 и 6.

Напряжение сети 220В подается на автотрансформатор T1, а с его подвижного контакта на выпрямительный мост VD1 с фильтром C1, L1, C2. На выходе фильтра получается изменяемое постоянное напряжение Uрег, используемое собственно для питания двигателя.

Напряжение Uрег через резистор R1 также подается на задающий генератор DA1, выполненный на микросхеме КР1006ВИ1 (импортный вариант NE555). В результате такого подключения обычный генератор прямоугольных импульсов превращается в ГУН (генератор, управляемый напряжением). Поэтому, при увеличении напряжения Uрег увеличивается и частота генератора DA1, что приводит к увеличению частоты вращения двигателя. При снижении напряжения Uрег пропорционально уменьшается и частота задающего генератора, что позволяет избежать перегрев обмоток и перенасыщение магнитопровода статора.

В той же журнальной статье автор предлагает вариант задающего генератора, который позволяет избавиться от использования автотрансформатора. Схема генератора показана на рисунке 7.

Генератор выполнен на втором триггере микросхемы DD3, на схеме обозначен как DD3.2. Частота задается конденсатором C1, регулировка частоты осуществляется переменным резистором R2. Вместе с регулировкой частоты изменяется и длительность импульса на выходе генератора: при понижении частоты длительность уменьшается, поэтому напряжение на обмотках двигателя падает. Такой принцип управления называется широтно импульсной модуляцией (ШИМ).

В рассматриваемой любительской схеме мощность двигателя невелика, питание двигателя производится прямоугольными импульсами, поэтому ШИМ достаточно примитивна. В реальных промышленных частотных преобразователях большой мощности ШИМ предназначена для формирования на выходе напряжений практически синусоидальной формы, как показано на рисунке 8, и для реализации работы с различными нагрузками: при постоянном моменте, при постоянной мощности и при вентиляторной нагрузке.

Рисунок 8. Форма выходного напряжения одной фазы трехфазного инвертора с ШИМ.

Силовая часть схемы

Современные фирменные частотники имеют на выходе мощные транзисторы структуры MOSFET или IGBT, специально предназначенные для работы в преобразователях частоты. В ряде случаев эти транзисторы объединены в модули, что в целом улучшает показатели всей конструкции. Управление этими транзисторами производится с помощью специализированных микросхем-драйверов. В некоторых моделях драйверы выпускаются встроенными в транзисторные модули.

Наиболее распространены в настоящее время микросхемы и транзисторы фирмы International Rectifier. В описываемой схеме вполне возможно применить драйверы IR2130 или IR2132. В одном корпусе такой микросхемы содержится сразу шесть драйверов: три для нижнего ключа и три для верхнего, что позволяет легко собрать трехфазный мостовой выходной каскад. Кроме основной функции эти драйверы содержат также несколько дополнительных, например защита от перегрузок и коротких замыканий. Более подробную информацию об этих драйверах можно узнать из технических описаний Data Sheet на соответствующие микросхемы.

При всех достоинствах единственный недостаток этих микросхем их высокая цена, поэтому автор конструкции пошел другим, более простым, дешевым, и в то же время работоспособным путем: специализированные микросхемы-драйверы заменены микросхемами интегрального таймера КР1006ВИ1 (NE555).

Выходные ключи на интегральных таймерах

Если вернуться к рисунку 6, то можно заметить, что схема имеет для каждой из трех фаз выходные сигналы, обозначенные как «Н» и «В». Наличие этих сигналов позволяет раздельно управлять верхними и нижними ключами. Такое разделение позволяет формировать паузу между переключением верхних и нижних ключей при помощи блока управления, а не самими ключами, как было показано в схеме на рисунке 3.

Схема выходных ключей с применением микросхем КР1006ВИ1 (NE555) показана на рисунке 9. Естественно, что для трехфазного преобразователя понадобится три экземпляра таких ключей.

В качестве драйверов верхних (VT1) и нижних (VT2) ключей используются микросхемы КР1006ВИ1, включенные по схеме триггеров Шмидта. С их помощью возможно получить импульсный ток затвора не менее 200мА, что позволяет получить достаточно надежное и быстрое управление выходными транзисторами.

Микросхемы нижних ключей DA2 имеют гальваническую связь с источником питания +12В и, соответственно, с блоком управления, поэтому их питание осуществляется от этого источника. Микросхемы верхних ключей можно запитать так же, как было показано на рисунке 3 с использованием дополнительных выпрямителей и отдельных обмоток на трансформаторе. Но в данной схеме применяется иной, так называемый, «бустрепный» метод питания, смысл которого в следующем. Микросхема DA1 получает питание от электролитического конденсатора C1, заряд которого происходит по цепи: +12В, VD1, C1, открытый транзистор VT2 (через электроды сток – исток), «общий».

Другими словами заряд конденсатора C1 происходит в то время, когда открыт транзистор нижнего ключа. В этот момент минусовой вывод конденсатора С1 оказывается практически накоротко соединен с общим проводом (сопротивление открытого участка «сток – исток» у мощных полевых транзисторов составляет тысячные доли Ома!), что и обеспечивает возможность его заряда.

При закрытом транзисторе VT2 также закроется и диод VD1, заряд конденсатора C1 прекратится до следующего открытия транзистора VT2. Но заряд конденсатора C1 достаточен для питания микросхемы DA1 на время, пока закрыт транзистор VT2. Естественно, что в этот момент транзистор верхнего ключа находится в закрытом состоянии. Данная схема силовых ключей оказалась настолько хороша, что без изменений применяется и в других любительских конструкциях.

В данной статье рассмотрены лишь самые простые схемы любительских трехфазных инверторов на микросхемах малой и средней степени интеграции, с которых все начиналось, и где можно даже по схеме рассмотреть все «изнутри». Более современные конструкции выполнены с применением микроконтроллеров, чаще всего серии PIC, схемы которых также неоднократно публиковались в журналах «Радио».

Микроконтроллерные блоки управления по схеме более просты, чем на микросхемах средней степени интеграции, имеют такие нужные функции, как плавный пуск двигателя, защита от перегрузок и коротких замыканий и некоторые другие. В этих блоках все реализовано за счет управляющих программ или как их принято называть «прошивок». Именно от этих программ и зависит насколько хорошо или плохо будет работать блок управления трехфазного инвертора.

Достаточно простые схемы контроллеров трехфазного инвертора опубликованы в журнале «Радио» 2008 №12. Статья называется «Задающий генератор для трехфазного инвертора». Автор статьи А. Долгий является также автором цикла статей о микроконтроллерах и многих других конструкций. В статье приведены две простых схемы на микроконтроллерах PIC12F629 и PIC16F628.

Частота вращения в обеих схемах изменяется ступенчато с помощью однополюсных переключателей, что вполне достаточно во многих практических случаях. Там же дается ссылка где можно скачать готовые «прошивки», и, более того, специальную программу, с помощью которой можно изменять параметры «прошивок» по своему усмотрению. Возможна также работа генераторов режиме «демо». В этом режиме частота генератора уменьшена в 32 раза, что позволяет визуально с помощью светодиодов наблюдать работу генераторов. Также даются рекомендации по подключению силовой части.

Но, если не хочется заниматься программированием микроконтроллера фирма Motorola выпустила специализированный интеллектуальный контроллер MC3PHAC, предназначенный для систем управления 3-фазным двигателем. На его базе возможно создание недорогих систем регулируемого трехфазного привода, содержащего все необходимые функции для управления и защиты. Подобные микроконтроллеры находят все более широкое применение в различной бытовой технике, например, в посудомоечных машинах или холодильниках.

В комплекте с контроллером MC3PHAC возможно использование готовых силовых модулей, например IRAMS10UP60A разработанных фирмой International Rectifier. Модули содержат шесть силовых ключей и схему управления. Более подробно с этими элементами можно в их документации Data Sheet, которую достаточно просто найти в интернете.

Преобразователи на тиристорах

В мощных преобразовательных устройствах для преобразования высоких питающих напряжений применяют инверторы на тиристорах, обладающих двумя устойчивыми состояниями. Тиристоры выпускаются на напряжения до нескольких киловольт и токи до сотен ампер при прямом падении напряжения в единицы вольт. Поэтому преобразователи на тиристорах обеспечивают большие мощности с высоким КПД.

Тиристорные инверторы, в которых коммутация осуществляется специальными устройствами и нагрузка которых не содержит других источников энергии переменного тока, называются автономными. Частота коммутации автономного инвертора определяется частотой работы системы управления тиристорами.

Автономные тиристорные инверторы предназначены для преобразования постоянного напряжения в переменное промышленной частоты. Они подразделяются на инверторы тока и напряжения. В инверторах тока осуществляется преобразование тока, а форма напряжения зависит от нагрузки. Для поддержания постоянства потребляемого от источника тока они подключаются к источнику инвертируемого постоянного напряжения через дроссель /, с большой индуктивностью, который включается в последовательную ветвь инвертора.

Инверторы напряжения подключаются непосредственно к источнику преобразуемого напряжения. При этом на выходе инвертора напряжения параллельно источнику включается конденсатор С. Коммутацию тока в тиристорных инверторах выполняют реактивные элементы — конденсаторы и дроссели.

Тиристоры в инверторе работают в ключевом режиме. Включение их осуществляется устройством управления, представляющим собой генератор импульсов — автогенератор, мультивибратор, блокинг-генератор. Причем управляющие импульсы поступают на управляющие электроды тиристоров в противофазе. Для выключения тиристора необходимо уменьшить его анодный ток до значения, меньшего тока удержания, а к промежутку анод — катод приложить отрицательное обратное напряжение на время, достаточное для восстановления управляемости тиристора (т. е. запирающих его свойств). Это достигается применением в инверторе коммутирующего конденсатора, который обеспечивает подачу на анод отрицательного напряжения относительно катода.

По способу подключения коммутирующего конденсатора Ск к нагрузке схемы тиристорных инверторов разделяют на параллельные, последовательные и последовательно-параллельные [1211.

На рис. 16.15 приведена схема двухтактного параллельного тиристорного инвертора, который состоит из тиристоров К?! и У$2, схемы управления СУ, коммутирующего конденсатора Ск, дросселя Ь и диодов УО и К/)2. Первичная обмотка трансформатора ТУ имеет вывод от средней точки 0 и двух точек 1 и 2, к которым подключаются диоды УЭ и УВ2.

В первый полупериод под действием управляющего импульса открыт тиристор ИУь а тиристор УЯ2 закрыт. При этом ток от источника питания будет протекать через верхнюю половину первичной обмотки трансформатора ТУ, тиристор КУь

Рис. 16.15. Схема преобразователя напряжения на тиристорах

дроссель Этот ток индуктирует в нижней половине обмотки трансформатора 7УЭДС, равную ЭДС в верхней половине обмотки, но противоположную по знаку, т. е. минус будет у средней точки обмотки, а плюс — на нижнем ее конце. Поэтому к конденсатору Ск оказывается приложенным напряжение двух последовательно соединенных напряжений: от источника питания и0 и с нижней половины первичной обмотки трансформатора, тоже примерно равное и. В результате конденсатор Ск заряжается до удвоенного значения напряжения источника питания, т. е. до ис = 2 і/. Такое же напряжение будет и на аноде тиристора РЗ*

Во время второго полупериода управляющий импульс открывает тиристор КЗ* Тиристор КЗ) еще продолжает проводить ток. Но через открывшийся тиристор К32 коммутирующий конденсатор Ск подключается параллельно КЗ). С конденсатора Ск к тиристору К?! прикладывается обратное напряжение, равное почти 2и. И тиристор КЗ) запирается разрядным током конденсатора Ск. Через открывшийся тиристор КЗ) протекает ток /т, равный сумме тока і’с перезаряда конденсатора Ск, и тока /V первичной обмотки У». Конденсатор Ск перезаряжается до напряжения, почти равного 2?/о, но с обратной полярностью. Преобразуемое напряжение и0 прикладывается к первичной обмотке м?», и ток в этой обмотке имеет направление, противоположное току, протекавшему в обмотке во время предыдущего импульса. При этом во вторичной обмотке м>2 формируется вторая (отрицательная) полуволна переменного напряжения.

При подаче следующего запускающего импульса на тиристор К?! схема возвращается в исходное состояние, и процесс повторяется.

В результате поочередного включения и выключения тиристоров в полуобмотках трансформатора ТУ происходит периодическое изменение токов и во вторичной обмотке наводится переменный ток, который далее выпрямляется выпрямительной схемой ВС и через фильтр Ф поступает в нагрузку. Таким образом, на выходе преобразователя создается постоянный ток при заданном напряжении. Дроссель Др ограничивает ток источника питания в те очень короткие промежутки времени, когда оба тиристора открыты одновременно.

Диоды УИ 1 и Уй2 предназначены для пропускания кисточни-купитания ?/ореактивноймощности,накопленнойвиндуктивно-сти нагрузки и реактивных коммутационных элементах, в те моменты коммутации, когда один из тиристоров закрыт, а второй не проводит разрядный ток индуктивности Ь.

Мостовая схема двухтактного тиристорного преобразователя приведена на рис. 16.16. В первый полупериод управляющего напряжения положительные импульсы поступают одновременно на тиристоры УЯ и КХ*. Тиристоры открываются, и через них прорекает ток в первичную обмотку трансформатора ТУ. В это же время конденсатор С заряжается до напряжения источника и.

Рис. 16.16. Мостовая схема двухтактного тиристорного преобразователя

Во время второго полупериода управляющего напряжения положительные импульсы поступают на тиристоры У$2 и ИХз, и они открываются. Но в этот же момент положительный потенциал с конденсатора С поступает на катод тиристора КХь и он закрывается. А на анод ИУ4 поступает отрицательный потенциал с конденсатора С, и КХ* тоже закрывается.

Затем пары тиристоров включаются поочередно. При этом через первичную обмотку трансформатора ТУ будут проходить импульсы тока противоположных направлений, которые будут индуктировать переменный ток во вторичной обмотке трансформатора. В дальнейшем этот переменный ток выпрямляется выпрямительной схемой, сглаживается фильтром и подается в нагрузку.

Многофазные схемы тристорных преобразователей. Нулевая и мостовая схема. Мех характеристика привода с тиристорными преобразователями для дпт незовисимого возбуждения

В нулевых схемах (рис.а) нагрузка (якорь двигателя) подключается к нулевой точке вторичной обмотки трансформатора. Тиристоры включены в каждую фазу и могут быть объединены своими катодами (катодная группа) или анодами (анодная группа). Для сглаживания пульсаций переменного тока последовательно с нагрузкой включён реактор; в нулевой схеме используется одна полуволна переменного напряжения в каждой фазе.

Рис. Нулевая (а) и мостовая (б) схемы.

Мостовая схема (рис.б) может быть получена при последовательном соединении двух нулевых схем. В мостовых схемах используются обе полуволны переменного напряжения, число тиристоров здесь вдвое больше, чем в нулевых схемах.

Среднее значение выпрямленного напряжения для нулевой схемы определяется соотношением

где — среднее значение выпрямленного напряжения при х.х. выпрямителя и полностью открытых тиристорах; U — действующее значение переменного фазного напряжения, т — число фаз выпрямителя.

Х1, RT — соответственно приведенные к вторичной обмотке индуктивное сопротивление рассеивания обмоток фазы трансформатора и их активное сопротивление.

RR — активное сопротивление сглаживающего реактора системы управления выпрямителя.

Уравнение электромеханической характеристики двигателя независимого возбуждения имеет вид:

где — суммарное сопротивление якорной цепи.

Механические характеристики, соответствующие данному выражению имеют вид

Рис. Механические характеристики управления

Жёсткость механических характеристик тиристорного привода меньше жёсткости естественной характеристики двигателя за счёт большего активного сопротивления якорной цепи.

При различных углах включения наклон их остаётся постоянным.

При конечных значениях индуктивности сглаживающего фильтра (реактора) и малых нагрузках наступает режим прерывистых токов, при котором имеется резкий подъём характеристик. Явление прерывистых токов обусловлено тем, что с уменьшением нагрузки снижается количество энергии, запасённой в индуктивности L, и наступает момент, когда создаваемая ею ЭДС самоиндукции оказывается недостаточной для поддержания токов при отрицательных напряжениях на анодах тиристоров. Это приводит к увеличению выпрямленного напряжения UU , а следовательно, к возрастанию угловой скорости при х.х.

Для реверсирования двигателя можно изменить полярность на выводах якоря при неизменном направлении тока в ОВ.

Такое изменение осуществляется с помощью реверсора.

Рис. Схема реверсирования двигателя с помощью

реверсора в якорной цепи.

Такая аппаратура для реверсоров оказывается достаточно громоздкой из-за большого IЯ .Реверсирование же обмоткой возбуждения также имеет недостатки, т.к. ОВ имеет большую индуктивность и процесс реверсирования затягивается.

Реверсирование двигателя часто осуществляют применением схем реверсивных управляемых выпрямителей, в которых используется второй комплект тиристоров.

Рис. Схема электропривода с реверсивным

тиристорным преобразователем (3 — фазная нулевая).

При работе машины в двигательном режиме один из управляемых выпрямителей, например, В1, открыт, другой В2- закрыт. Для осуществления реверса выпрямитель В1 закрывается, а В2 начинает работать в режиме выпрямления.

КПД тиристорного выпрямителя определяется прямым падением напряжения на нём, которое для одного тиристора составляет 1¸ 1.2 В, поэтому общее КПД составляет » 0.9 ¸ 0.92.

СИФУ

Регулирование напряжения тиристорных преобразователей, применяемых для автоматизированного ЭП в подавляющем большинстве случаев осуществляется за счёт изменения угла открывания тиристоров a .С этой целью каждый тиристорный преобразователь снабжается системой управления, которая обеспечивает формирование управляющих импульсов, а также сдвиг этих импульсов по фазе относительно анодного напряжения тиристоров. Такие системы называются импульсно — фазовыми.

СИФУ могут быть много и одноканальными. В многоканальных СИФУ управляющие импульсы формируются для каждого тиристора (или группы тиристоров при последовательном или параллельном соединении) отдельно, в своём канале. Так, для трёхфазной нулевой схемы выпрямления потребуется три канала формирования и сдвига управляющих импульсов, а для трёхфазной мостовой — шесть каналов.

В одноканальных системах управления формирование импульсов происходит в одном канале, а затем уже импульсы распределяются по тиристорам специальными распределителями.

В одноканальных системах управления значительно легче получить симметрию управляющих импульсов, но система усложняется за счёт применения специальных распределителей.

Преимущество получили многоканальные СИФУ.

По типу фазосдвигающего устройства различают несколько разновидностей СИФУ: со статическим фазовращающим мостом, с полуволновым магнитным усилителем с “вертикальным” управлением и т.д.

Наибольшее применение в тиристорных преобразователях ЭП нашли СИФУ с “вертикальным” управлением.

Принцип “вертикального” управления состоит в том, что на входе формирователя импульсов производится сравнение переменного (опорного) и регулируемого постоянного напряжения. Последнее является напряжением управления UУ . В момент равенства этих двух напряжений формируется управляющий импульс. Изменяя значение постоянного напряжения, можно получить сдвиг управляющего импульса по фазе относительно анодного напряжения.

Структурная схема СИФУ, работающего по принципу “вертикального” управления, имеет вид

Рис. Структурная схема СИФУ с “вертикальным”

Управляющее напряжение Uу поступает на вход фазосдвигающего устройства (ФСУ), в котором сравнивается с опорным напряжением, вырабатываемым генератором опорного напряжения (ГОН), которое (как мы увидим ниже) перемещается по вертикали. При равенстве напряжений на выходе нуль — органа (НО) появляется сигнал, который проходит через блок усиления и формирования импульсов (УФ) и поступает на управляющий электрод тиристора.

Принцип “вертикального” управления можно понять из рис., приведенного для случая, когда опорное напряжение представляет собой линейно — изменяющееся во времени (пилообразное) напряжение.

Рис. Графики, поясняющие принцип вертикального

На рис. кроме графиков опорного напряжения Uоп и напряжения управления Uу показано сплошной линией кривая анодного напряжения Uа соответствующего тиристора и кривые напряжения двух других фаз Uв и Uс при трёхфазной схеме выпрямления показаны штриховыми линиями.

Управляющий импульс формируется в момент равенства спорного напряжения и напряжения управления.

Если напряжение управления Uу1 , то импульс будет сформирован и подан на тиристор в момент времени, соответствующий т.1. при этом угол открывания тиристора будет равен a1 . При Uу2 импульс будет сформирован в момент времени, соответствующий т.2, при a =a2 .

Кривая опорного напряжения должна быть расположена по отношению к анодному напряжению тиристора Uа,в,с так, чтобы при определённом напряжении управления обеспечить заданный угол управления a, а значит и требуемое среднее выпрямленное напряжение преобразователя.

В рассмотренном случае опорное напряжение синхронизировано с напряжением сети, поэтому такие системы называются синхронными.

Дата добавления: 2015-01-29 ; просмотров: 118 ; Нарушение авторских прав

ИССЛЕДОВАНИЕ ОДНОФАЗНОГО ТИРИСТОРНОГО РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Цель работы:

1. Изучить принципы построения и работы тиристорных регуляторов напряжения (ТРН).

2. Изучить регулировочные характеристики ТРН.

3. Экспериментально исследовать работу ТРН на активную и активно-индуктивную нагрузку на универсальном лабораторном стенде «Основы электропривода и преобразовательной техники».

Краткие теоретические сведения [2].

Силовая схема одной фазы такого преобразователя содержит полупроводниковый коммутатор, который может быть выполнен в виде двух встречно — параллельно включенных тиристоров (рис.7.1, а) или транзисторов. В таких преобразователях применяют фазовый, фазоступенчатый, широтно — импульсный на пониженной частоте и другие методы регулирования переменного напряжения.

Рассмотрим фазовый метод регулирования переменного напряжения.

Фазовые методы регулирования базируются на управлении действующим значением переменного напряжения на нагрузке путем изменения длительности открытого состояния ключа полупроводникового коммутатора в течение каждого полупериода напряжения питающей сети.

Отметим, что фазовое регулирование возможно с отстающим углом управления α, с опережающим углом управления α или с тем и другим (двустороннее фазовое регулирование). Фазовое регулирование преобразователей переменного напряжения аналогично принципу фазового регулирования управляемых выпрямителей. Отличие заключается в схемах соединения тиристоров их силовых схем, вследствие чего участки синусоид переменного напряжения, составляющие кривую выходного напряжения в управляемых выпрямителях, являются однополярными, а в регуляторах переменного напряжения − двухполярными и симметричными относительно оси абсцисс. Системы импульсно−фазового управления регуляторов переменного напряжения и управляемых выпрямителей абсолютно идентичны.

Тиристорный регулятор напряжения (ТРН) имеет по два встречно–параллельно включенных тиристора в цепи с питающим напряжением и нагрузкой. Однако вместо двух встречно–параллельно включенных тиристоров возможно применение симметричных тиристоров, симмисторов, обладающих способностью проводить ток как при положительном, так и отрицательном значении напряжения питающей сети переменного тока.

В ТРН нашло применение фазовое регулирование переменного напряжения с отстающим углом управления (регулирования) α.

На рис. 7.1, аг приведены схема и временные диаграммы однофазного ТРН при активной нагрузке, а на рисунке 7.2, аг приведены схема и временные диаграммы однофазного ТРН при активно – индуктивной нагрузке.

При активном характере нагрузки запирание тиристоров, проводивших до этого ток, осуществляется за счет изменения полярности переменного напряжения питающей сети по окончании каждого полупериода, т.е. после достижения точек на временной оси ωt=π, 2π, 3π, … (естественная коммутация).

При активно-индуктивном характере нагрузки индуктивность Lнг замедляет нарастание тока iнг при отпирании тиристоров и препятствует его уменьшению при снижении напряжения u, (см. рис. 7.2, г). Ток iнг продолжает протекать через нагрузку и соответствующий тиристор и после перехода напряжения питания через нуль, достигая нулевого значения спустя интервал δ в пределах очередной полуволны напряжения u. Интервал проводимости тиристоров увеличивается на угол δ, т.е. ψ=π-α+δ. За счет увеличения интервала проводимости тиристоров в кривой uнг, так же как и в управляемых выпрямителях, появляются дополнительные участки напряжения u (см. рис. 7.2, б), отсутствующие при чисто активном характере нагрузки. Интервал паузы в кривой выходного напряжения сокращается до значения (α–δ). Указанное приводит к изменению и формы кривой напряжения на тиристоре (см. рис.7.2, в).

Регулировочная характеристика ТРН представляет собой зависимость действующего напряжения нагрузки Uнг от угла α, т.е. Uнг =f(α) при постоянном напряжении питающей сети (U=UN=const) и постоянном токе нагрузки (Iнг=const).

При чисто активном характере нагрузки зависимость Uнг =f(α) находят из соотношения

В относительных единицах

где U − действующее значение переменного напряжения на входе ТРН.

Вид регулировочной характеристики приведен на рис. 7.3.

Отметим, что выражение регулировочной характеристики (7.1) справедливо для фазового регулирования как с отстающим, так и с опережающим углом регулирования α.

Угол регулирования, при котором действующее значение выходного напряжения равно нулю, называется по аналогии с управляемыми выпрямителями углом запирания αзап.

Из выражения (7.1) нетрудно установить, что для фазового регулирования как с отстающим, так и с опережающим углом регулирования угол запирания αзап=180 о .

Рис. 7.1. Схема и временные Рис.7.2. Схема и временные

диаграммы ТРН при активной диаграммы ТРН при активно- нагрузке индуктивной нагрузке

u − напряжение питающей сети;

uнг − напряжение нагрузки; uв − напряжение на тиристоре силовой схемы;

α − угол управления;

Ψ − длительность открытого состояния тиристора;

δ − длительность проводящего состояния тиристора после смены знака напряжения питающей сети

Регулировочную характеристику для двустороннего фазового регулирования можно получить из выражения:

Из выражения (7.2) следует, что при двустороннем фазовом регулировании αзап=90 о .

Рис.7.3. Регулировочная характеристика однофазного ТРН при активной нагрузке

Рис.7.4. Внешние характеристики однофазного ТРН при активной нагрузке

Внешняя характеристика ТРНпредставляет собой зависимость напряжения Uнг от тока Iнг, т.е. Uнг=f(Iнг) при постоянном напряжении питающей сети, (U1=UN=const) и постоянном угле регулирования (α=const) (рис. 7.4).

где Uнг 0 – действующее значение напряжения на выходе ТРН при холостом ходе нагрузке, т.е. при Iнг=0:

U – падение напряжения на элементах ТРН при токе Iнг≠0:

Rэ – эквивалентное активное сопротивление схемы;

Rс.п — сопротивление соединительных проводов;

Rв.д— динамическое сопротивление вентиля.

Коэффициент мощности ТРН χ дает оценку эффективности потребления мощности от питающей сети и представляет собой отношение активной мощности, потребляемой ТРН от питающей сети по первой (основной) гармоники, P(1), к полной мощности S, потребляемой ТРН от питающей сети, т.е.

где kиск – коэффициент искажения формы кривой тока, потребляемого от питающей сети;

Параметр φ характеризует угол сдвига первой гармоники потребляемого тока от кривой напряжения питающей сети.

Перемножив cosφ и kиск, получим

Отметим, что и для двустороннего фазового регулирования коэффициент мощности также определяется по формуле (7.8). При этом коэффициент сдвига равен единице, а коэффициент искажения соответствует выражению (7.8).

Нетрудно видеть, что в одиночных преобразователях переменного напряжения независимо от используемого метода фазового регулирования коэффициент мощности равен относительному значению напряжения нагрузки, т.е. χ= Uнг/U , и связан с ним линейной зависимостью (рис. 7.5).

Рис. 7.5. Зависимость коэффициента мощности ТРН от относительного напряжения на нагрузке для одиночного преобразователя

Для увеличения коэффициента мощности можно рекомендовать, когда это возможно, питание одной нагрузки от группы преобразователей, питающихся от одной и той же сети переменного тока. Примером такого случая может служить работа группы преобразователей переменного напряжения на нагревательные сопротивления электропечей.

Повышение коэффициента мощности объясняется тем, что токи основных и высших гармоник, создаваемых в питающей сети отдельными преобразователями, суммируются геометрически. Благодаря этому фазовый сдвиг суммарной основной гармоники по отношению к напряжению питающей сети, а также суммарные амплитуды высших гармонических получаются меньшими, чем при одном преобразователе, работающем на полную мощность.

Коэффициент мощности будет существенно улучшен, если для управления отдельных преобразователей, составляющих одну группу, применять комбинацию рассмотренных выше способов фазового регулирования.

В лабораторной работе коэффициент мощности определяется отношением активной мощности P, потребляемой ТРН, к полной мощности S:

Коэффициент полезного действия однофазного ТРНопределяется отношением мощности, потребляемой нагрузкой, к мощности, потребляемой ТРН из питающей сети

где ΔРв – потери в вентилях.

где Iв.ср— среднее значение тока, протекающего через вентиль на интервале одного полупериода;

ΔUв.пр –прямое падение напряжения на открытом вентиле;

Iв.дз – действующее значение тока, протекающего через вентиль;

Rв.д— динамическое сопротивление вентиля.

Порядок выполнения работы:

1. Изучить краткие теоретические сведения о ТРН.

2. Теоретически рассчитать и построить регулировочные характеристики

для однофазного ТРН при активной нагрузки.

3. Теоретически рассчитать и построить внешние характеристики

для однофазного ТРН при активной нагрузки.

4. Исследовать работу однофазного ТРН на активную нагрузку.

5. Сравнить экспериментально снятые регулировочные и внешние характеристики по п. 4 и п. 5 с теоретически построенными по п.2 и п.3 и сделать выводы.

1.1. ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ – УПРАВЛЯЕМЫЙ ПРЕОБРАЗОВАТЕЛЬ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ

Регулировать значение подводимого к двигателю напряжения можно за счет включения в цепь статора дополнительных элементов (резисторов, дросселей насыщения) или с помощью тиристорных регуляторов напряжения (ТРН). Использование ТРН по сравнению с другими способами регулирования напряжения дает ряд преимуществ: электроприводам:

· повышает коэффициент полезного действия (КПД);

· осуществляет бесступенчатое регулирование;

· уменьшает массо-габаритные показатели.

Существует большое разнообразие схем (рис. 1.1) включения силовых вентилей (тиристоров, диодов), позволяющих осуществить бесконтактную коммутацию статорных цепей, асинхронных двигателей и регулировать уровень подводимого напряжения [62]. В приведенных схемах статорные обмотки соединены как в звезду, так и треугольник.

Тиристорные регуляторы напряжения выполняют по симметричным и несимметричным схемам. В симметричных схемах (рис. 1.1 а, б, г, д) коммутирующий элемент состоит из двух встречно-параллельных тиристоров в каждой фазе, при этом управляющие импульсы подаются на тот тиристор, к аноду которого в данный момент времени приложен положительный потенциал сетевого напряжения. В несимметричных схемах (см. рис. 1.1, в) в каждой фазе коммутирующий элемент представлен встречно-

параллельно включенными тиристором и диодом. Наличие диода в коммутирующем элементе упрощает схему управления ТРН, повышает надежность, но несколько снижает диапазон регулирования выходного напряжения.

Во всех приведенных схемах регулирование выходного напряжения достигается за счёт изменения угла сдвига отпирающих импульсов тиристоров с помощью системы импульсно-фазового управления (СИФУ).

Задача точного определения напряжения, подводимого к статору двигателя при фазовом управлении, достаточно сложна, так как её решение связано с учётом взаимосвязанных электромагнитных процессов, происходящих в цепях ротора и статора. Поэтому точное математическое описание электромагнитных процессов используется при углубленных исследованиях электропривода с ТРН. Для приближенных инженерных расчетов асинхронный двигатель может быть представлен в виде трехфазной активно-индуктивной нагрузки, параметры которой определяются из схемы замещения двигателя, Т-образной (рис.1.2, а) и Г-образной (рис. 1.2, б).

Работу ТРН на активно-индуктивную нагрузку удобно рассмотреть для случая симметричной схемы. Если симметричная активно-индуктивная нагрузка включена в звезду по нулевой схеме, то ток в каждой фазе не зависит от тока других фаз.

В схеме включения одной фазы (рис.1.3, а) в каждый момент времени значение действующего напряжения сети уравновешивается падением напряжения на вентилях и на элементах RL-цепи:

где – падение напряжения на вентиле; i – ток нагрузки; – соответственно, активное сопротивление и индуктивность двигателя; – амплитуда фазного напряжения.

При закрытых тиристорах падение напряжения на вентиле равно:

При открытом тиристоре, например, VS1 в предположении, что вентили идеальные (прямое сопротивление равно 0), в положительный полупериод напряжение сети можно записать:

Решение уравнения (1.3) относительно тока нагрузки (i) имеет две составляющие: принужденную (iпр) и свободную (icв):

Принужденная составляющая определяется фазным напряжением и сопротивле-нием нагрузки:

где – полное сопротивление цепи нагрузки (двигателя); – угол сдвига между током и напряжением.

Свободная составляющая тока определяется электромагнитной постоянной времени цепи нагрузки ( ):

где tвкл – момент включения тиристора.

Показатель функции в выражении (1.6) можно представить в виде:

где α = ω tвкл – угол открывания тиристора.

Подставляя в выражение (1.4) значение свободной составляющей тока из выражения (1.6) и принужденной из выражения (1.5) получим:

Значение коэффициента A можно найти из условия, что в момент срабатывания тиристора (w t = a) ток в нагрузке скачком измениться не может (i = 0):

Окончательно уравнение для тока и напряжения нагрузки будет иметь вид:

U = Um×sin(w×t) при a £ w×t £ a + l;

I = 0 или U = 0 при a + l – p — l / tg = 0. (1.11)

Зависимость l от a и j может быть найдена с помощью ЭВМ.

Аналогичные выражения можно получить при анализе процессов в нагрузке при открывании тиристора VS2 (avs2 = p + avs1).

Графики изменения токов и напряжений при коммутации RL-нагрузки показаны на рис.1.3, б. Графики построены для случая, когда угол отпирания тиристора VS1 превышает угол сдвига (j) между током и напряжением. Угол a = j является минимальным углом открывания тиристоров. Действительно, если a p. При этом на некоторых отрезках времени оба тиристора должны проводить ток одновременно, что невозможно, так как падение напряжения на проводящем вентиле создает обратную полярность напряжения на закрытом вентиле.

Максимальный угол отпирания тиристоров для рассматриваемой схемы (см. рис.1.1, а) a = p. При изменении угла регулирования в пределах j £ a £ p к нагрузке приложено несинусоидальное напряжение, и протекает прерывистый ток. Гармонический состав токов и напряжений на нагрузке зависит от схемы включения ТРН.

Характеристики ТРН рассматриваются, в виде семейства характеристик Uтрн=f(a,j) [63]. Обычно выходное напряжение ТРН представляют только его первой

гармоникой, так как другие гармоники (высшие нечётные) оказывают незначительное влияние на момент двигателя.

Для управляемого электропривода целесообразно построить семейство характеристик управления:

при фиксированных значениях угла нагрузки j = const [62]. На рис.1.4. приведены регулировочные характеристики ТРН для двух вариантов схем построения преобразователя: симметричной (см. рис.1.1, б) и несимметричной (см. рис.1.1, в).

Система импульсно-фазового управления принципиально не отличается от СИФУ тиристорного преобразователя постоянного тока. Обычно она строится по вертикальному принципу, при этом на неё накладываются требования по ширине отпирающих импульсов. С учетом того, что значения угла нагрузки для асинхронных двигателей

на ходятся в пределах от jmin

90°, ширина отпирающих импульсов должна быть больше:

Одноканальная асинхронная СИФУ, используемая в промышленных тиристорных регуляторах напряжения типа тиристорные станции управления (ТСУ) СИФУ – аналогово-цифровые с вертикальным принципом управления (рис. 1.5), состоит из пяти основных узлов: аналогово-цифрового преобразователя, генератора, счетчика, дешифратора и шести схем «ИЛИ». По каждому синхроимпульсу «Синх.» в соответствии с сигналом управления аналогово-цифровой преобразователь вырабатывает импульс, который устанавливает счётчик в нулевое состояние, при этом запускается генератор, и счётчик начинает подсчитывать импульсы, вырабатываемые генератором. В соответствии с содержанием счётчика выдаётся сигнал с соответствующего выхода дешифратора (длительность 60º).

При равенстве пяти содержимого счетчика на шестом выходе дешифратора появляется сигнал, блокирующий работу генератора. Генератор будет находиться в заторможенном состоянии до появления следующего импульса с аналогово-цифрового преобразователя.

Схемы «ИЛИ» производят попарно логическое суммирование выходных импульсов дешифратора, обеспечивая расширение выходных отпирающих импульсов (+А, -А, +В, -В, +С, -С) до 120º.

Аналогово-импульсный преобразователь выполнен на элементах А1, А2, D1, интегрирующей цепи С1R13 и дифференцирующей цепи C2R15. Преобразователь за период напряжения сети вырабатывает один кратковременный импульс, сдвинутый от синхроимпульса на время (угол), соответствующее значениям сигнала управления и сигнала обратной связи. Усилитель А2 выполняет функцию компаратора. Генератор выполнен на элементе D6 (микросхема К155АГ3), счётчик D5 (микросхема К155ИЕ5) своим входом соединён с выходом генератора, а выходом – с дешифратором D7 (микросхемой К155ИД4).

В зависимости от входной информации с соответствующего выхода дешифратора выдается сигнал нулевого уровня.

По переднему фронту каждого синхроимпульса «Синх.» дифференцирующей цепочкой С7R5 вырабатывается импульс, по которому элементы D1.3, D1.4 кратковременно открываются, и происходит разряд конденсатора интегрирующей цепи C1R13. По окончании этого импульса через R13 начинается заряд конденсатора С1.

Потенциал на инверсном входе усилителя А2 является опорным сигналом и соответствует значению напряжения сигнала управления, поступающего на вход СИФУ (U’упр = Uупр – Uос). Когда потенциал пилообразного напряжения на конденсаторе С1 (на прямом входе усилителя А2) начнёт превышать потенциал входа 4 этого усилителя, на выходе компаратора появляется сигнал положительной полярности, а с выхода дифференцирующей цепи C2R15 выдаётся кратковременный импульс единичного уровня, по которому счётчик D5 сбрасывается в нулевое состояние (конденсатор С1 продолжает заряжаться до прихода следующего синхроимпульса).

При сбросе счётчика D5 в нулевое состояние на шестом выходе дешифратора D7 устанавливается единичный уровень. Этот сигнал подаётся на вход заторможенного генератора D6 через элементы D2.1, D2.2. При этом обеспечиваются условия для самозапуска генератора, и он начинает генерировать кратковременные импульсы нулевого уровня.

Эти импульсы подсчитываются счётчиком D5, по выходной информации которого на соответствующем выходе дешифратора D7 появляется сигнал нулевого уровня. Для большей надёжности запуска генератора через элемент D2.3 подаётся импульс с дифференцирующей цепочки C2R15. Когда генератор выработает пять импульсов, сигналом с шестого выхода дешифратора, он затормаживается. По переднему фронту очередного синхроимпульса счётчик D5 сбрасывается в нулевое состояние, на выходе 6 элемента D7 устанавливается сигнал единичного уровня, и генератор начинает выработку очередной серии импульсов. Длительность импульсов определяется цепочкой C3R16, а период – цепочкой С6R19.

Каждому уровню сигнала управления соответствует определённое значение напряжения на выходе усилителя А1, а следовательно, и фаза выходного сигнала компаратора А2. Таким образом, с изменением уровня сигнала управления изменяется фаза выходных импульсов. Диапазон регулирования угла открытия тиристоров от 0º до 240º. Ключи «Работа» и «Торможение» обеспечивают подключение входа усилителя А1 к источнику управляющего сигнала или к источнику, определяющему интенсивность торможения.

Учебное пособие: Тиристорные преобразователи частоты: назначение, типы, структурная схема. Коротко о частотно-регулируемом приводе

Читайте также:

  1. I. Этиологическая характеристика
  2. II. Общая характеристика искусства Древнего Египта, периодизация
  3. II. Системы, развитие которых можно представить с помощью Универсальной Схемы Эволюции
  4. III, IV и VI пары черепных нервов. Функциональная характеристика нервов (их ядра, области, образование, топография, ветви, области иннервации).
  5. А Общая характеристика класса Turbellaria.
  6. А) Общая характеристика
  7. А) характеристика стационарного обслуживания
  8. Абсорберы, применяемые для очистки выбросов. Их характеристика и область применения.
  9. АВТОМАТИЗИРОВАННОЕ УПРАВЛЕНИЕ ЭЛЕКТРОПРИВОДА-МИ КОНВЕЙЕРОВ
  10. Автотрансформаторы, схемы включения обмоток, энергетическая эффективность.

Тиристорные преобразователи частоты: назначение, типы, структурная схема.

Коротко о частотно-регулируемом приводе

Современный частотно регулируемый электропривод состоит из асинхронного или синхронного электрического двигателя и преобразователя частоты (см. рис.1.).

Электрический двигатель преобразует электрическую энергию в механическую энергию и приводит в движение исполнительный орган технологического механизма.

Преобразователь частоты управляет электрическим двигателем и представляет собой электронное статическое устройство. На выходе преобразователя формируется электрическое напряжение с переменными амплитудой и частотой.

Название «частотно регулируемый электропривод» обусловлено тем, что регулирование скорости вращения двигателя осуществляется изменением частоты напряжения питания, подаваемого на двигатель от преобразователя частоты.

На протяжении последних 10 –15 лет в мире наблюдается широкое и успешное внедрение частотно регулируемого электропривода для решения различных технологических задач во многие отрасли экономики. Это объясняется в первую очередь разработкой и созданием преобразователей частоты на принципиально новой элементной базе, главным образом на биполярных транзисторах с изолированным затвором IGBT.

В настоящей статье коротко описаны известные сегодня типы преобразователей частоты, применяемые в частотно регулируемом электроприводе, реализованные в них методы управления, их особенности и характеристики.

При дальнейших рассуждениях будем говорить о трехфазном частотно регулируемом электроприводе, так как он имеет наибольшее промышленное применение.

О методах управления

В синхронном электрическом двигателе частота вращения ротора в установившемся режиме равна частоте вращения магнитного поля статора

В асинхронном электрическом двигателе частота вращения ротора в установившемся режиме отличается от частоты вращения на величину скольжения .

Частота вращения магнитного поля зависит от частоты напряжения питания. При питании обмотки статора электрического двигателя трехфазным напряжением с частотой создается вращающееся магнитное поле. Скорость вращения этого поля определяется по известной формуле

где – число пар полюсов статора.

Переход от скорости вращения поля , измеряемой в радианах, к частоте вращения , выраженной в оборотах в минуту, осуществляется по следующей формуле

где 60 – коэффициент пересчета размерности.

Подставив в это уравнение скорость вращения поля, получим, что

Таким образом, частота вращения ротора синхронного и асинхронного двигателей зависит от частоты напряжения питания.

На этой зависимости и основан метод частотного регулирования.

Изменяя с помощью преобразователя частоту на входе двигателя, мы регулируем частоту вращения ротора.

В наиболее распространенном частотно регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное частотное управление.

При скалярном управлении по определенному закону изменяют амплитуду и частоту приложенного к двигателю напряжения. Изменение частоты питающего напряжения приводит к отклонению от расчетных значений максимального и пускового моментов двигателя, к.п.д., коэффициента мощности. Поэтому для поддержания требуемых рабочих характеристик двигателя необходимо с изменением частоты одновременно соответственно изменять и амплитуду напряжения.

В существующих преобразователях частоты при скалярном управлении чаще всего поддерживается постоянным отношение максимального момента двигателя к моменту сопротивления на валу. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента двигателя к текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность двигателя.

При постоянстве перегрузочной способности номинальные коэффициент мощности и к.п.д. двигателя на всем диапазоне регулирования частоты вращения практически не изменяются.

Максимальный момент, развиваемый двигателем, определяется следующей зависимостью

где — постоянный коэффициент.

Поэтому зависимость напряжения питания от частоты определяется характером нагрузки на валу электрического двигателя.

Для постоянного момента нагрузки поддерживается отношение U/f = const, и, по сути, обеспечивается постоянство максимального момента двигателя. Характер зависимости напряжения питания от частоты для случая с постоянным моментом нагрузки изображен на рис. 2. Угол наклона прямой на графике зависит от величин момента сопротивления и максимального крутящего момента двигателя.

Вместе с тем на малых частотах, начиная с некоторого значения частоты, максимальный момент двигателя начинает падать. Для компенсации этого и для увеличения пускового момента используется повышение уровня напряжения питания.

В случае вентиляторной нагрузки реализуется зависимость U/f 2 = const. Характер зависимости напряжения питания от частоты для этого случая показан на рис.3. При регулировании в области малых частот максимальный момент также уменьшается, но для данного типа нагрузки это некритично.

Используя зависимость максимального крутящего момента от напряжения и частоты, можно построить график U от f для любого типа нагрузки.

Важным достоинством скалярного метода является возможность одновременного управления группой электродвигателей.

Скалярное управление достаточно для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.

Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять кроме амплитуды и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты.

Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно регулируемого электропривода без обратной связи по скорости невозможна.

Векторное управление с датчиком обратной связи скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости – сотые доли процента, точность по моменту – единицы процентов.

В синхронном частотно регулируемом приводе применяются те же методы управления, что и в асинхронном.

Однако в чистом виде частотное регулирование частоты вращения синхронных двигателей применяется только при малых мощностях, когда нагрузочные моменты невелики, и мала инерция приводного механизма. При больших мощностях этим условиям полностью отвечает лишь привод с вентиляторной нагрузкой. В случаях с другими типами нагрузки двигатель может выпасть из синхронизма.

Для синхронных электроприводов большой мощности применяется метод частотного управления с самосинхронизацией, который исключает выпадение двигателя из синхронизма. Особенность метода состоит в том, что управление преобразователем частоты осуществляется в строгом соответствии с положением ротора двигателя.

О преобразователях частоты

Преобразователь частоты – это устройство, предназначенное для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть преобразователей обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

Преобразователи частоты, применяемые в регулируемом электроприводе, в зависимости от структуры и принципа работы силовой части разделяются на два класса:

1. Преобразователи частоты с явно выраженным промежуточным звеном постоянного тока.

2. Преобразователи частоты с непосредственной связью (без промежуточного звена постоянного тока).

Каждый из существующих классов преобразователей имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

Исторически первыми появились преобразователи с непосредственной связью (рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристотров и подключает статорные обмотки двигателя к питающей сети.

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. На рис.5. показан пример формирования выходного напряжения для одной из фаз нагрузки. На входе преобразователя действует трехфазное синусоидальное напряжение uа, uв, uс. Выходное напряжение uвых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.

Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

— практически самый высокий КПД относительно других преобразователей (98,5% и выше),

— способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах,

— относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

Наиболее широкое применение в современных частотно регулируемых приводах находят преобразователи с явно выраженным звеном постоянного тока (рис. 6.).

В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.

Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 – 98%).

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 — 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая неэнергоемкая система управления, самая высокая рабочая частота

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в преобразователях частоты снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя, уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

Преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

На настоящий момент низковольтные преобразователи на IGBT имеют более высокую цену на единицу выходной мощности, вследствие относительной сложности производства транзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных преобразователей, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 – 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а также требует более эффективного отвода тепла от кремниевого кристалла.

Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность применения IGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких единичных модулей.

Структура и принцип работы низковольтного преобразователя частоты на IGBT транзисторах

Типовая схема низковольтного преобразователя частоты представлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента преобразователя.

Переменное напряжение питающей сети (uвх.) с постоянной амплитудой и частотой (Uвх = const, fвх = const) поступает на управляемый или неуправляемый выпрямитель (1).

Для сглаживания пульсаций выпрямленного напряжения (uвыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

С выхода фильтра постоянное напряжение ud поступает на вход автономного импульсного инвертора (3).

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (или однофазное) импульсное напряжение uи изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока. Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя. Амплитуда и частота напряжения определяются параметрами модулирующей синусоидальной функции.

При высокой несущей частоте ШИМ (2 … 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения uи может достигаться регулированием величины постоянного напряжения ud , а изменение частоты – режимом работы инвертора.

При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (Uвых = var, fвых = var).

Типовые схемы высоковольтных преобразователей частоты

В последние годы многие фирмы большое внимание, которое диктуется потребностями рынка, уделяют разработке и созданию высоковольтных частотных преобразователей. Требуемая величина выходного напряжения преобразователя частоты для высоковольтного электропривода достигает 10 кВ и выше при мощности до нескольких десятков мегаватт.

Для таких напряжений и мощностей при прямом преобразовании частоты применяются весьма дорогие тиристорные силовые электронные ключи со сложными схемами управления. Подключение преобразователя к сети осуществляется либо через входной токоограничивающий реактор, либо через согласующий трансформатор.

Предельные напряжение и ток единичного электронного ключа ограничены, поэтому применяют специальные схемные решения для повышения выходного напряжения преобразователя. Кроме того, это позволяет уменьшить общую стоимость высоковольтных преобразователей частоты за счет использования низковольтных электронных ключей.

В преобразователях частоты различных фирм производителей используются следующие схемные решения.

1. Двухтрансформаторная схема высоковольтного преобразователя частоты

В схеме преобразователя (рис. 8.) осуществляется двойная трансформация напряжения с помощью понижающего (Т1) и повышающего (Т2) высоковольтных трансформаторов.

Двойная трансформация позволяет использовать для регулирования частоты относительно дешевый низковольтный преобразователь частоты, структура которого представлена на рис. 7.

Преобразователи отличают относительная дешевизна и простота практической реализации. Вследствие этого они наиболее часто применяются для управления высоковольтными электродвигателями в диапазоне мощностей до 1 – 1,5 МВт. При большей мощности электропривода трансформатор Т2 вносит существенные искажения в процесс управления электродвигателем. Основными недостатками двухтрансформаторных преобразователей являются высокие массогабаритные характеристики, меньшие по отношению к другим схемам КПД (93 – 96%) и надежность.

Преобразователи, выполненные по этой схеме, имеют ограниченный диапазон регулирования частоты вращения двигателя как сверху, так и снизу от номинальной частоты.

При снижении частоты на выходе преобразователя увеличивается насыщение сердечника и нарушается расчетный режим работы выходного трансформатора Т2. Поэтому, как показывает практика, диапазон регулирования ограничен в пределах nном >n>0,5nном . Для расширения диапазона регулирования используют трансформаторы с увеличенным сечением магнитопровода, но это увеличивает стоимость, массу и габариты.

При увеличении выходной частоты растут потери в сердечнике трансформатора Т2 на перемагничивание и вихревые токи.

В приводах мощностью более 1 МВт и напряжении низковольтной части 0,4 – 0,6 кВ сечение кабеля между преобразователем частоты и низковольтной обмоткой трансформаторов должно быть рассчитано на токи до килоампер, что увеличивает массу преобразователя.

2. Схема преобразователя с последовательным включением электронных ключей

Для повышения рабочего напряжения преобразователя частоты электронные ключи соединяют последовательно (см. рис.9.).

Число элементов в каждом плече определяется величиной рабочего напряжения и типом элемента.

Основная проблема для этой схемы состоит в строгом согласовании работы электронных ключей.

Полупроводниковые элементы, изготовленные даже в одной партии, имеют разброс параметров, поэтому очень остро стоит задача согласования их работы по времени. Если один из элементов откроется с задержкой или закроется раньше остальных, то к нему будет приложено полное напряжение плеча, и он выйдет из строя.

Для снижения уровня высших гармоник и улучшения электромагнитной совместимости используют многопульсные схемы преобразователей. Согласование преобразователя с питающей сетью осуществляется с помощью многообмоточных согласующих трансформаторов Т.

На рис.9. изображена 6-ти пульсная схема с двухобмоточным согласующим трансформатором. На практике существуют 12-ти, 18-ти, 24-х пульсные схемы преобразователей. Число вторичных обмоток трансформаторов в этих схемах равно 2, 3, 4 соответственно.

Схема является наиболее распространенной для высоковольтных преобразователей большой мощности. Преобразователи имеют одни из лучших удельные массогабаритные показатели, диапазон изменения выходной частоты от 0 до 250-300 Гц, КПД преобразователей достигает 97,5%.

3. Схема преобразователя с многообмоточным трансформатором

Силовая схема преобразователя (рис.10.) состоит из многообмоточного трансформатора и электронных инверторных ячеек. Количество вторичных обмоток трансформаторов в известных схемах достигает 18. Вторичные обмотки электрически сдвинуты относительно друг друга.

Это позволяет использовать низковольтные инверторные ячейки. Ячейка выполняется по схеме: неуправляемый трехфазный выпрямитель, емкостной фильтр, однофазный инвертор на IGBT транзисторах.

Выходы ячеек соединяются последовательно. В приведенном примере каждая фаза питания электродвигателя содержит три ячейки.

По своим характеристикам преобразователи находятся ближе к схеме с последовательным включением электронных ключей.

Специальные машины постоянного тока (МПТ): электромашинный усилитель (ЭМЦ), тахогенератор, назначение, устройство, принцип работы.

Специальные машины постоянного тока

Универсальный коллекторный двигатель. Исполнительные двигатели постоянного тока. Магнитогидродинамический генератор. Тахогенератор. Электромашинный усилитель. Униполярный генератор. Вентильные двигатели.

Какие бывают электрические двигатели и где они применяются?

Электрические двигатели бывают постоянного и переменного тока (рис. 2). Наиболее распространены электрические двигатели переменного тока. Они просты по устройству, неприхотливы в эксплуатации. Основной недостаток — практически не регулируемая частота вращения.

Электрические двигатели переменного тока изготавливают одно- и многофазными. Основные элементы таких двигателей — статор (неподвижная часть) и ротор (вращающаяся часть). Выпускаются электродвигатели с коротко замкнутыми обмотками ротора (типа беличьей клетки) и обмотками, выведенными на коллектор (систему контактных колец) и замыкающимися через регулируемые резисторы. Такие роторы называют фазными, а электродвигатели — электродвигателями с фазным ротором.

Электрические двигатели переменного тока применяют для привода рабочих машин различного назначения (насосы, деревообрабатывающие станки, дробилки и т. д.), не требующих регулирования частоты вращения. Выпускаются на мощности от 0, 2 до 200 и более киловатт.

Электродвигатели постоянного тока состоят из подвижной части (якоря) и неподвижной части (статора). Они выпускаются с параллельным, последовательным и смешанным соединением обмоток якоря и статора. Достоинством двигателей постоянного тока является способность регулировать частоту вращения, но они требуют значительных усилий при эксплуатации.

Рис. 2. Электрические двигатели: а — постоянного тока; б — синхронные; в

асинхронные с фазным ротором; г — асинхронные трехфазные с коротко замкнутым ротором серии 4А. 1 — вал, 2

шпонка, 3 —подшипник, 4 — статор, 5 — обмотка статора, 6 — ротор (якорь); 7 — вентилятор; 8 — коробка выводов; 9 — лапа, 10 — коллектор; 11 — щетки; l1, l2 — продольное и поперечное расстояния в лапах; l3 — длина выступающего конца вала; l4. — размер выступающей крышки; h — высота оси вращения; d1, d2 — диаметры вала и отверстий в лапах.

Универсальные коллекторные двигатели применяются в промышленных и бытовых электроустановках (электрифицированный инструмент, вентиляторы, холодильники, соковыжималки, мясорубки, пылесосы и др.). Они рассчитаны для работы как от сети постоянного тока (110 и 220 В), так и от сети переменного тока частотой 50 Гц (127 и 220 В). Эти двигатели имеют большой пусковой момент и сравнительно малые размеры.

По своему устройству универсальные коллекторные двигатели принципиально не отличаются от двухполюсных двигателей постоянного тока с последовательным возбуждением.

В универсальных коллекторных двигателях не только якорь набирается из листовой электротехнической стали, но и неподвижная часть магнитопровода (полюса и ярмо).

Обмотка возбуждения этих двигателей включается с обеих сторон якоря. Такое включение (симметрирование) обмотки позволяет уменьшить радиопомехи, создаваемые двигателем.

Для получения примерно одинаковых частот вращения при номинальной нагрузке как на постоянном, так и на переменном токе обмотку возбуждения выполняют с ответвлениями: при работе двигателя от сети постоянного тока обмотку возбуждения используют полностью, а при работе от сети переменного тока — лишь частично.

Вращающий момент создается за счет взаимодействия тока в обмотке якоря (ротора) с магнитным потоком возбуждения.

Эти двигатели выпускаются на сравнительно небольшие мощности — от 5 до 600 Вт (для электроинструмента — до 800 Вт) и частоты вращения — 2770 — 8000 об/мин. Пусковые токи таких двигателей невелики, поэтому их в сеть включают непосредственно без пусковьк сопротивлений. Универсальные коллекторные двигатели имеют минимум четыре вывода: два для подключения к сети переменного тока и два для подключения к сети постоянного тока. КПД универсального двигателя на переменном токе ниже, чем на постоянном. Это вызвано повышенными магнитными и электрическими потерями. Величина тока, потребляемого универсальным двигателем при работе на переменном токе, больше, чем при работе этого же двигателя на постоянном токе, так как переменный ток помимо активной составляющей имеет еще и реактивную составляющую.

Частоту вращения таких двигателей регулируют, изменяя подводимое от сети напряжение, например, автотрансформатором, а у двигателей небольшой мощности — реостатом.

Однофазный коллекторный двигатель нельзя пускать в ход при малой нагрузке, потому что он может пойти «вразнос».

Отечественная промышленность выпускает универсальные коллекторные двигатели серий УЛ, МУН, УМТ, ДТА-4, УВ, М-1Д, ЭП, УД, Д2-03, ЭПП-1 и др.

ЭЛЕКТРИЧЕСКИЕ МИКРОМАШИНЫ АВТОМАТИЧЕСКИХ УСТРОЙСТВ

Электрические микромашины автоматических устройств гораздо разнообразнее микромашин общепромышленного применения, что объясняется спецификой выполняемых ими функций. Для них характерно не силовое преобразование энергии, а преобразование одной величины в другую. Например, электрического сигнала в механическое перемещение, углового смещения в напряжение и т.д.

Такие показатели работы, как КПД, cosj, полезная мощность, весьма важные для силовых электрических машин общего применения, здесь оказываются несущественными. Главными являются требования высокой точности работы, хорошего быстродействия, надежности и стабильности характеристик.

Микромашины автоматических устройств можно разделить на следующие группы:

1)исполнительные или управляемые микродвигатели;

4)электрические микромашины гироскопических систем.

1. ИСПОЛНИТЕЛЬНЫЕ ДВИГАТЕЛИ

Исполнительными (управляемыми) двигателяминазываются электромеханические устройства, преобразующие электрический сигнал в механическое вращение вала. Такие двигатели являются очень важными элементами систем автоматики и телемеханики. От качества их работы во многом зависит качество работы всей, порой очень сложной системы.

Главные требования, предъявляемые к исполнительным двигателям:

· отсутствие самохода — вращение двигателя при отсутствии сигнала управления;

· широкий диапазон регулирования частоты вращения;

· устойчивость работы во всем диапазоне угловых скоростей;

· максимальная линейность механических и регулировочных характеристик;

Особенность исполнительных двигателей заключается в том, что они практически никогда не работают в установившимcя режиме. Для них характерны частые пуски, реверсы, остановы и другие переходные режимы. В конструктивном отношении это закрытые машины, в большинстве случаев без вентилятора. Последний не нужен по причине малой эффективности в переходных режимах и нежелания увеличивать момент инерции.

В зависимости от питающего напряжения исполнительные двигатели подразделяются на три группы:

1) асинхронные исполнительные двигатели;

2) исполнительные двигатели постоянного тока;

3) шаговые двигатели.

Почти все исполнительные двигатели (за малым исключением) имеют две обмотки. На одну из них — обмотку возбуждения (ОВ), напряжение подается постоянно, на другую — обмотку управления (ОУ), напряжение подается лишь на время отработки перемещения.

2. ИСПОЛНИТЕЛЬНЫЕ ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

Несмотря на ряд существенных недостатков, связанных с наличием скользящего контакта между щеткой и коллектором, исполнительные двигатели постоянного тока широко используются в системах автоматического управления, регулирования и контроля, поскольку обладают и рядом положительных качеств, в частности такими как: плавное, широкое и экономичное регулирование частоты вращения; практическое отсутствие ограничений на максимальную и минимальную частоту вращения; большие пусковые моменты; хорошая линейность механических а при якорном управлении и регулировочных характеристик.

Как и любые исполнительные двигатели, эти имеют две обмотки: обмотку возбуждения и обмотку управления. При этом напряжение управления может подаваться либо на обмотку якоря, либо на обмотку возбуждения. Поэтому различают якорное и полюсное управление.

3. Якорное управление исполнительным двигателем

Рис. 2.1. Схема включения исполнительного двигателя при якорном управлении

Схема включения двигателя с якорным управлением показана на рис. 2.1. Напряжение возбуждения подается на обмотку полюсов, напряжение управления — на обмотку якоря. Коэффициент сигнала a здесь равен a = Uу /Uв . Для двигателей с постоянными магнитами a = Uу /Uу.ном . Регулирование частоты вращения осуществляется изменением напряжения управления.

Регулировочные характеристикилинейные. Напряжение трогания пропорционально моменту нагрузки. Линейность механических и регулировочных характеристик является важным достоинством якорного управления.

Мощность управления резко возрастает с увеличением коэффициента сигнала. Кроме того, она доходит до 95 % полной потребляемой мощности двигателя, поскольку является мощностью якорной цепи, что характерно для двигателей постоянного тока.

В данном случае это является существенным недостатком якорного управления, ибо предполагает наличие мощных и дорогих усилителей.

Мощность возбуждения остается величиной постоянной, независящей ни от коэффициента сигнала, ни от частоты вращения. К тому же — она небольшая по величине, что также характерно для машин постоянного тока.

Максимум механической мощности в сильной степени зависит от коэффициента сигнала и даже при a = 1 не превышает 1/4 базовой мощности.

4. Полюсное управление исполнительным двигателем

Рис. 2.4. Схема включения исполнительного двигателя при полюсном управлении

Схема управления приведена на рис.2.4 Напряжение управления подается на обмотку главных полюсов, напряжение возбуждения — на обмотку якоря, по которой в течение всего времени работы двигателя протекает ток возбуждения.

Несмотря на отмеченные достоинства полюсного управления, предпочтение все-таки следует отдать якорному потому, что оно обеспечивает линейные и однозначные характеристики, в принципе исключает самоход (при полюсном он возможен из-за взаимодействия тока якоря с потоком остаточной намагниченности полюсов), обладает более высоким быстродействием, поскольку индуктивность якоря меньше индуктивности обмотки возбуждения.

ЭЛЕКТРОМАШИННЫЕ УСИЛИТЕЛИ

Простейшим усилителем мощности является обычный генератор постоянного тока с независимым возбуждением. Коэффициент усиления машины определяется отношением тока, протекаемого в обмотке якоря, к току возбуждения:

В таком исполнении коэффициент усиления равен порядка 15 — 30.

Усилительную способность генератора можно увеличить, если использовать каскадную схему включения генераторов. В этом случае с выхода первого генератора подключается обмотка возбуждения второго, а выход со второго генератора будет превышать по мощности вход первого в 1000 и более раз.

Каскадная схема применяется редко из-за своей громоздкости и дороговизны.

Чаще используют так называемые электромашинные усилители (ЭМУ). Электрическая схема ЭМУ приведена на рис. 7.6.1.

Конструктивно электромашинный усилитель представляет собой коллекторную машину постоянного тока с независимым возбуждением, имеющую два комплекта щеток (продольные 1-1′ и поперечные 2-2′).

Ток, протекающий по обмотке возбуждения Iв, создает продольный магнитный поток Фd, направленный по оси полюсов машины. При вращении якоря на поперечных щетках 2-2′ появляется ЭДС Е2 = С n Фd Так как они замкнуты накоротко, то в обмотке якоря появляется большой ток I2 . Этот ток создает в обмотке якоря сильное поперечное магнитное поле реакции якоря Фq , неподвижное в пространстве и направленное по оси щеток 2-2′. Под действием магнитного потока Фq в якорной обмотке ме-жду щетками 1-1′ возникает ЭДС Е1 = С n Фq >>Е2 , так как Фq >>Фd . При подключении к щеткам 1-1′ нагрузки Rн в цепи потечет ток Iя превышающий ток Iв в десятки тысяч раз. Электромашинные усилители применяют для автоматического управления мощными электродвигателями.

В зависимости от конструкции и способа возбуждения ЭМУ подразделяются на следующие типы:

1) с независимым возбуждением;

2) со смешанным возбуждением;

3) со специальной ориентацией магнитных потоков.

ЭМУ с независимым возбуждением представляет собой обычный генератор постоянного тока, обмотка возбуждения которого питается от регулируемого источника напряжения. Выходное напряжение ЭМУ с независимым возбуждением с достаточной степенью точности линейно зависит от скорости вращения его ротора. ЭМУ с независимым возбуждением дает возможность управлять значительными мощностями нагрузки при незначительных затратах мощности в обмотке управления. Коэффициент усиления по мощности для некоторых типов ЭМУ с независимым возбуждением может достигать значений 100 и более. Постоянная времени обмоток возбуждения обычно составляет десятые доли секунды.

ЭМУ со смешанным возбуждением представляет собой генератор постоянного тока, работающий в режиме самовозбуждения. ЭМУ со смешанным возбуждением отличаются от усилителей с независимым возбуждением тем, что необходимая для создания магнитного потока возбуждения мощность почти целиком поступает с выхода по цепи положительной обратной связи. Вследствие этого результирующий коэффициент усиления системы может быть достаточно большим.

Для третьего типа ЭМУ классификационными признаками являются число ступеней усиления и ориентация управляющего магнитного потока второй (и третьей) ступени усиления по отношению к управляющему магнитному потоку первой ступени усиления. По числу ступеней усиления ЭМУ подразделяются на одно-, двух-и трехступенчатые. По ориентации управляющего магнитного потока второй ступени двух- и трехступенчатые ЭМУ подразделяются на ЭМУ с поперечным, с продольным полем и с продольно-поперечным полем.

ЭМУ с поперечным полем представляет собой специальный генератор постоянного тока с якорем, выполненным по типу якорей обычных машин постоянного тока, но с дополнительной парой поперечных короткозамкнутых щеток (см. рис. 14.55). Благодаря такой конструкции ЭМУ с поперечным полем требует для возбуждения мощность, в десятки раз меньшую, чем соответствующая мощность возбуждения обычных генераторов. На статоре ЭМУ расположены одна или не- . сколько обмоток управления (на рис. 14.55 показана только одна обмотка Wy), обмотка дополнительных полюсов и компенсационная обмотка.

В ЭМУ с поперечным полем магнитный поток управления второй ступенью усиления расположен перпендикулярно к магнитному потоку управления первой ступенью. Так как принято считать, что магнитный поток первой ступени, создаваемый входной управляющей обмоткой, направлен по продольной оси ЭМУ (перпендикулярно рис. 14.55), то магнитный поток управления второй ступени направлен по поперечной оси ЭМУ. Поэтому этот класс двухступенчатых ЭМУ и получил название ЭМУ с поперечным полем.

При подаче на обмотку управления Wy сигнала управления в ЭМУ возникает продольный магнитный поток управления. В витках вращающегося с постоянной скоростью ротора (якоря) наводится ЭДС, при этом наибольшего значения она достигает в витках, расположенных в продольной плоскости ЭМУ. Напряжение этой ЭДС снимается поперечными щетками 1 (см. рис. 14.55). Поскольку они закорочены и сопротивление цепи мало, то в цепи протекает достаточно большой ток, что приводит к формированию значительного по величине поперечного магнитного потока. Этот процесс называется реакцией якоря по поперечной цепи (первая ступень усиления ЭМУ). Под действием усиленного таким образом магнитного потока в витках вращающегося якоря ЭМУ наводится ЭДС, максимальная величина которой имеет место в витках, расположенных в плоскости этого потока, т.е. в поперечной плоскости ЭМУ. Напряжение этой ЭДС, снимаемое продольными щетками 2, является выходным сигналом ЭМУ (вторая ступень усиления). Поскольку при подключенной нагрузке по поперечным виткам якоря ЭМУ протекает ток, то под действием этого тока в ЭМУ создается магнитный поток, направленный по продольной оси навстречу потоку. Это так называемая реакция якоря ЭМУ по продольной оси. Таким образом, в продольной оси ЭМУ будет действовать некоторый результирующий магнитный поток, который является функцией не только управляющего напряжения в обмотке Wy, но и параметров нагрузки. Для уменьшения противодействующего магнитного потока в статоре ЭМУ используется компенсационная обмотка, с помощью которой достигается компенсация продольной реакции якоря.

Рис. 14.55. Упрощенная схема ЭМУ с поперечным полем

ОДНОЯКОРНЫЕ ПРЕОБРАЗОВАТЕЛИ

Для преобразования переменного тока в постоянный, как известно, используют выпрямители. Преобразование постоянного тока в переменный можно осуществить электромашинными преобразователями. Каскад из двух машин: (асинхронный двигатель переменного тока и генератор постоянного тока) вполне решают эту задачу.

Но бывает ситуация, когда необходимо преобразовать постоянный ток низкого напряжения в постоянный ток повышенного напряжения. Делается это в одной комбинированной машине, состоящей из двигателя и генератора постоянного тока с общей магнитной системой. Со стороны низкого напряжения это электродвигатель, а со стороны повышенного напряжения — генератор постоянного тока с независимым возбуждением.

В одних и тех же пазах якоря преобразователя заложены самостоятельные обмотки низкого и повышенного напряжения. Концы обмоток присоединены к соответствующему коллектору (рис. 7.7.1), причем обмотка повышенного, напряжения имеет значительно большее число проводников, чем обмотка низкого напряжения.

Одноякорные преобразователи широко применяются в авиационной технике, а также в общепромышленных установках, где первичным источником постоянного тока является аккумулятор.

Одноякорные преобразователи постоянного тока в трехфазный переменный отличается от рассмотренного тем, что обмотка повышенного напряжения состоит из

трех секций, смещенных друг от друга на 120°. Выводы секционных обмоток припаяны к трем контактным кольцам и с помощью токосъемных щеток переменный ток передается к потребителю.

ТАХОГЕНЕРАТОРЫ ПОСТОЯННОГО ТОКА

Тахогенераторами называют электрические машины малой мощности, работающие в генераторном режиме и служащие для преобразования частоты его вращения в электрический сигнал.

Тахогенераторы постоянного тока по принципу действия и конструктивному оформлению являются электрическими коллекторными машинами.

Выходной характеристикой тахогенератора является зависимость величины на-пряжения на зажимах якоря Uя от частоты его вращения n при постоянном магнитном потоке возбуждения Ф и постоянном сопротивлении нагрузки Rнагр

На рис. 7.8.1 показана выходная характеристика тахогенератора при различных Rнагр.

Тахогенераторы

Тахогенератором называется информационная электрическая машина, предназначенная для выработки электрических сигналов, пропорциональных частоте вращения ротора. Тахогенераторы могут быть постоянного и переменного тока. Тахогенераторы постоянного тока представляют собой маломощные генераторы постоянного тока с независимым возбуждением или с возбуждением от постоянных магнитов. Выходное напряжение тахогенератора пропорционально частоте вращения ротора.

Асинхронный тахогенератор по конструктивному исполнению подобен асинхронному двигателю с полым немагнитным ротором. Он состоит из статора и неподвижного сердечника ротора, между которыми, в воздушном зазоре вращается тонкий полый немагнитный цилиндр. Принципиальная схема асинхронного тахогенератора показана на рис. 13.4.

На статоре генератора размещены две обмотки, пространственно смещенные относительно друг друга на 90 o . Одна из них, обмотка возбуждения B, подключена к источнику синусоидального напряжения, другая обмотка, являющаяся генератором Г, включается на измерительный прибор или на измерительную схему.

Обмотка возбуждения создает пульсирующий магнитный поток Фв .

При неподвижном роторе ЭДС в генераторной обмотке равна нулю, так как вектор магнитного потока Фв перпендикулярен оси этой обмотки.

При вращении цилиндра пульсирующий магнитный поток индуктирует в нем ЭДС вращения. Под действием ЭДС в цилиндре появляются токи, направления которых указаны на рис. 13.4. Токи создают по оси генераторной обмотки пульсирующий поперечный поток Фп . Этот поток индуктирует в генераторной обмотке ЭДС, пропорциональную частоте вращения цилиндра.

Асинхронные тахогенераторы, как и тахогенераторы постоянного тока, используются для измерения скорости вращения валов, а также для вырабатывания ускоряющих или замедляющих сигналов в автоматических устройствах

Характеристика повреждения трансформаторов. Методы испытания трансформаторов

Силовые трансформаторы являются одним из наиболее массовых и значимых элементов энергосистем. Так, в 1999 г. только в ЕЭС России было в эксплуатации в сетях 110 — 750 кВ силовых трансформаторов и автотрансформаторов общей мощностью Sт.уст. = 567 569 МВ-А при установленной мощности генераторов Pг.уст. = 194 000 МВт. При этом коэффициент соотношения установленных мощностей трансформаторов и генераторов составил: Kт.г. = 2,92. При учете установленной мощности всех силовых трансформаторов, включая трансформаторы напряжением менее 110 кВ, Кт.г. существенно больше и достигает 6-6,5.

Естественно, что надежность работы сетей, электростанций и энергосистем в значительной степени зависит от надежности работы трансформаторов, тем более, что значительная часть трансформаторов отработала определенный стандартом минимальный срок службы — 25 лет [I], а техническое перевооружение трансформаторов в силу сложившихся условий идет крайне медленно: в 1993 г. оно составило 1,1%, а в 1999 г. — всего только 0,5%.

Для анализа надежности работы трансформаторов в первую очередь необходима представительная выборка эксплуатационных данных, а также следующая информация:

· распределение повреждений по основным узлам трансформаторов разных классов напряжений;

· характеристики тяжести повреждений;

· роль коротких замыканий;

· частота повреждений в зависимости от срока службы трансформаторов;

· причины и последствия повреждений;

· данные об отклонениях от требований нормативно-технических документов, инструкций заводов-изготовителей, противоаварийных и эксплуатационных циркуляров, руководящих и распорядительных документов РАО «ЕЭС России» [2].

За период с января 1997 по ноябрь 2000 г. было проанализировано в общей сложности по актам, поступившим в Департамент генеральной инспекции по эксплуатации электрических станций и сетей РАО «ЕЭС России», 712 отказов и технических нарушений силовых трансформаторов напряжением 35 — 750 кВ.

В табл. 1 приведено распределение повреждений силовых трансформаторов по узлам и классам напряжений, при этом их число составило: 29% для 35 кВ; 47% для 110 кВ; 19% для 220 кВ; 2% для 330 кВ; 3% для 500 кВ; 0% для 750 кВ.

Как следует из табл. 1, наибольшую повреждаемость имеют: высоковольтные вводы — 22%, обмотки — 16%, устройства РПН — 13,5%. Значительная доля отказов приходится на течи (11%) и упуск трансформаторного масла (23%).

Распределение повреждений силовых трансформаторов по узлам и классам напряжений за период январь 1997 г. — ноябрь 2000 г.

Название: Тиристорные преобразователи частоты: назначение, типы, структурная схема. Коротко о частотно-регулируемом приводе
Раздел: Рефераты по коммуникации и связи
Тип: учебное пособие Добавлен 06:12:09 24 января 2010 Похожие работы
Просмотров: 15145 Комментариев: 13 Оценило: 5 человек Средний балл: 5 Оценка: неизвестно Скачать
Узел Класс напряжения, кВ
35 110 220 330 500 750 Всего
Число % Число % Число % Число % Число % Число % Число %
Обмотки 61 30 43 13 10 7 1 8 115 16
Магнитопровод 2 1,5 1 8 3 0,5
Система охлаждения 7 3 16 5 8 6 2 15 3 14 36 5
РПН 4 2 61 18 26 19 1 8 5 24 97 13,5
Вводы 27 13 77 23 44 32 3 23 7 34 158 22
Течь масла 15 7 35 10 21 15 3 23 4 19 78 11
Упуск масла 59 30 75 22 24 18,5 2 15 2 9 162 23
Вандализм 31 15 31 9 1 1 63 9
Итого 204 100 338 100 136 100 13 100 21 100 712 100

В табл. 2 приведено распределение повреждений силовых трансформаторов по узлам, для которых в актах указана продолжительность их эксплуатации. Как видно из табл. 2, повреждения обмоток имеют место у трансформаторов с любыми сроками эксплуатации, для РПН наибольшее число повреждений у трансформаторов со сроками эксплуатации 10-30 лет, для высоковольтных вводов — после 10 лет эксплуатации. Однако имеющиеся данные не позволяют сделать оценку зависимости повреждаемости трансформаторов от срока эксплуатации, так как для этого необходимо учитывать число эксплуатируемых трансформаторов в каждом диапазоне времени службы.

Наиболее тяжелым повреждением трансформатора является внутреннее короткое замыкание (КЗ). Как показал анализ, повреждения, вызванные внутренними КЗ, имели место при повреждениях обмоток в 80% случаев общего числа повреждении обмоток, при повреждениях высоковольтных вводов — 89%, при повреждениях РПИ -25% и при повреждениях прочих узлов — 36% соответственно, включая ошибки при монтаже, ремонте и эксплуатации.

При обработке данных актов выявлен ряд случаев неправильного применения [3] в части требований к составлению актов расследования технологических нарушений в работе электростанций, сетей и энергосистем. Составители актов не всегда выполняют при их заполнении требования всех пунктов. Так, за период 1997-1998 гг. 23,4% актов были оформлены не полностью. В 2000 г. доля не полностью оформленных актов сократилась до 10,4%. В частности, в ряде случаев отсутствуют данные о недоотпуске, недовыработке энергии и экономическом ущербе от последствий отказа, как того требует [4].

Основные повреждения трансформаторов и высоковольтных вводов с указанием причин их возникновения, характером и последствиями их развития приведены в табл. 3.

Анализ повреждений трансформаторов с внутренними короткими замыканиями по периодам, указанным в [1] (первый — в течение первых 12 лет эксплуатации до первого капитального ремонта, второй — за полный нормированный срок службы не менее 25 лет, третий — за срок службы более 25 дет), представлен далее.

За период эксплуатации до 12 лет имели место следующие виды повреждений:

· внутренние повреждения трансформаторов из-за длительного неотключения при сквозных КЗ на стороне 10 кВ;

· повреждения обмоток высшего напряжения из-за возникновения виткового замыкания;

· повреждения негерметичных вводов, длительно хранившихся на складе до установки в трансформатор;

· перекрытия масляного канала герметичных вводов по внутренней поверхности нижней фарфоровой покрышки;

· нарушения целостности контактной системы и токоограничивающих сопротивлений контактора РПН, приведшие к образованию электрической дуги и выбросу масла.

За период 12-25 лет эксплуатации имели место следующие повреждения:

· повреждения обмоток низшего напряжения при резко переменных нагрузках дуговых электрических печей завода;

· повреждения из-за увлажнения и загрязнения изоляции обмоток;

· увлажнения бакелитовой изоляции контактора РПН;

· повреждения негерметичных вводов из-за увлажнения и загрязнения внутренней изоляции;

· перекрытие, масляного канала герметичных вводов по внутренней поверхности нижней фарфоровой покрышки.

Распределение повреждений силовых трансформаторов по узлам с указанием продолжительности их эксплуатации за период январь 1997 г. — ноябрь 2000 г.

Узел Число повреждений по продолжительности эксплуатации Всего
10 лет 10-20 лет 20-30 лет 30-40 лет более 40 лет
Обмотки 23 25 23 28 12 111
Магнитопровод 6 1 1
Система охлаждения 2 14 13 1 30
РПН 12 28 21 10 71
Вводы 15 37 38 31 9 130
Течь масла 12 16 19 11 3 61
Упуск масла 12 22 22 14 5 75
Вандализм 3 6 10 1 1 21
Итого 79 148 147 96 30 500

Т а б л и ц а 3

Основные повреждения трансформаторов высоковольтных вводов

Снижение электрической прочности маслобарьерной изоляции и пробой первого масляного канала, что может вызвать:

— развитие «ползущего разряда»

— ионизационный пробой витковой изоляции за счет вытеснения масла водяным паром из капилляров изоляции

Узел Повреждение Причина возникновения повреждения Характер и последствия развития повреждения
Обмотка Выгорание витковой изоляции и витков обмотки Длительное неотключение сквозного тока КЗ на стороне низшего напряжения трансформатора Выгорание витковой изоляции и витков, разложение масла, расплавление и разбрызгивание меди и разрушение изоляции
Деформации обмотки Недостаточная электрическая стойкость обмоток Повреждение изоляции вследствие деформации обмоток с возможным повреждением трансформатора
Увлажнение и загрязнение изоляции обмоток Нарушение герметичности трансформатора к токам КЗ
Износ изоляции обмоток Снижение механической стойкости изоляции обмоток Разрушение изоляции обмоток с последующим возникновением виткового замыкания или замыкания на другую обмотку при умеренном сквозном токе КЗ с внутренним повреждением трансформатора
Дефект изготовления грозоупорной обмотки Касание петель грозоупорных обмотокразделяющей перегородки В условиях вибрации трансформатора ведет к истиранию изоляции петель и развитию пробоя
Магнитопровод Перегрев магнитопровода Образование короткозамкнутого контура в магнитопроводе Оплавление стали магнитопровода, пожар в железе, разложение масла
Система охлаждения Нарушение охлаждения трансформатора Повреждение маслонасосов Нарушение охлаждения трансформатора и загрязнение механическими примесями
Засорение труб охладителей Перегрев трансформатора
Переключатели ответвлений РПН Нарушение контактов в РПН Искрение, перегрев, оплавление и выгорание контактов. Подгар токоограничивающих сопротивлений Неработоспособность РПН
Нарушение перегородки, изолирующей бак расширителя МЧН от бака трансформатора Дефект изготовления Загрязнение масла трансформатора, снижение его электрической прочности, усложнение диагностики трансформатора
Механическая неисправность ГОН Износ элементов кинематической схемы Обгорание контактов переключателей
Нарушение герметичности бака контактора Увлажнение бакелитового цилиндра контактора Внутреннее дуговое КЗ по увлажненным расслоениям бакелитовой изоляции бака РПН
Прочие узлы Нарушение герметичности Подсос воздуха через сальники задвижек. Нарушение герметичности гибкой оболочки расширителя, неисправность воздухоосушителя Проникновение атмосферной влаги и воздуха, ослабление электрической прочности изоляции
Нарушение контактных соединений отводов, демпферов и др. Дефект монтажа и наладки Перегрев контактов, загрязнение контактов продуктами разложения изоляции и масла
Течь масла через резиновые прокладки в месте соединений бака с выхлопной трубой, из-под разъема крепления ввода Дефекты монтажа, ремонтам эксплуатации Упуск масла из трансформатора
Высоковольтные негерметичные вводы Увлажнение и загрязнение изоляции негерметичных вводов Проникновение атмосферной влаги во ввод, образование примесей в масле ввода Создает условия для развития теплового и электрического пробоя изоляции ввода
Высоковольтные герметичные вводы Отложение осадка (продуктов окисления масла или вымывания из конструктивных материалов) на внутренней поверхности фарфора и на поверхности внутренней изоляции Осадок адсорбирует влагу и загрязнения, в том числе металлосодержащие Приводит к возникновению проводящих дорожек, развитию разрядов и пробою масляного канала ввода
Коллоидное старение масла В результате окислительных процессов и взаимодействия масла с конструктивными материалами, в первую очередь, с медесодержащими и железосодержащими, происходит образование и рост коллоидных частиц Приводит к снижению электрической прочности масляного канала ввода
Течь масла из вводов через нижние резиновые прокладки, из-за нарушения верхнего уплотняющего узла, через резиновые уплотнения измерительного вывода Дефекты монтажа, ремонта и эксплуатации Ведет к снижению давления масла, нарушению герметичности, попаданию влаги и воздуха во ввод. Вызывает снижение электрической прочности изоляции
Повышение давления во вводах Вызывается потерей герметичности сильфонов и, как следствие, недостаточной температурной компенсацией имеющегося объема масла, а также появлением источника интенсивного газообразования или нарушением связи между вводом и выносным баком давления Снижение электрической прочности внутренней изоляции ввода

За период после 25 лет эксплуатации имели место повреждения:

· внутренние повреждения трансформаторов из-за длительного их неотключения при сквозных КЗ на стороне 10 кВ;

· повреждения РПН и обмоток трансформаторов при переключениях РПН;

· повреждения трансформаторов из-за нарушения контактов отвода обмотки, обрыва части проводников гибкой связи от вводного изолятора к обмотке, отгорания отвода обмотки в баке трансформатора с замыканием на ярмовую балку;

· повреждения негерметичных вводов из-за увлажнения и загрязнения внутренней изоляции;

· износ изоляции обмоток.

Из зафиксированных случаев повреждений трансформаторов с внутренними короткими замыканиями 15% сопровождались взрывами и пожарами. Эти повреждения в основном были вызваны повреждениями РПН, обмоток и высоковольтных вводов.

Так, в частности, при перекрытии изоляции масляного канала герметичного ввода ГМТА-110 произошло повреждение автотрансформатора АТДЦТН-125000/220/110 1985г. изготовления. Трансформатор поврежден полностью и восстановлению не подлежит.

Из-за сильного износа изоляции обмоток произошло повреждение с пожаром трансформатора ОТД-60000/220/110 1958г. изготовления с полным разрушением трансформатора и вводов 220, 110 и 10 кВ.

В результате повреждения РПН автотрансформатора АОДЦТН-267000/500/220 1973 г. изготовления и последующего пожара произошли: разрыв бака, разрушение фарфоровых покрышек вводов 220 кВ, корпуса контактора устройства РПН, отгорание спуска гибкой связи 220 кВ от воздействия пламени пожара, повреждение оборудования шкафов обдува (ШАОТ) и кабельных связей системы охлаждения, а также трех охладителей.

Проведенный анализ показал, что внутренние КЗ в трансформаторах 110-500кВ связаны, в первую очередь, с повреждениями РПН, высоковольтных вводов и обмоток. При этом наиболее тяжелые последствия имеют место при развитии таких дефектов, как:

· снижение электрической прочности масляного канала высоковольтных герметичных вводов из-за отложения осадка на внутренней поверхности фарфора и на поверхности внутренней изоляции, а также из-за коллоидного старения масла;

· снижение электрической прочности бумажно-масляной изоляции высоковольтных негерметичных вводов из-за увлажнения и загрязнения;

· увлажнение, загрязнение и износ изоляции обмоток трансформаторов;

· выгорание витковой изоляции и витков обмоток из-за длительного неотключения сквозного тока КЗ на стороне низшего напряжения трансформатора;

· ошибки монтажа, ремонта и эксплуатации.

Необходимо отметить, что большая часть указанных дефектов могла бы быть своевременно выявлена применением существующих методов и средств технической диагностики.

С выходом шестого издания [5] для силовых трансформаторов, автотрансформаторов и масляных реакторов существенно расширен перечень контролируемых параметров. При этом принципиальное отличие действующего документа [5] от предыдущего [6] заключается в том, что наряду с традиционными испытаниями, лежащими в основе оценки состояния трансформаторов, где контролируемые параметры в своей основе имеют связь с электрической прочностью изоляции, введены новые, не имеющие непосредственной связи, но нацеленные на раннее обнаружение развития дефектов. К ним относятся: хроматографический анализ газов, растворенных в масле; контроль содержания фурановых соединений в масле; измерение степени полимеризации; тепловизионный контроль; измерение сопротивления короткого замыкания. Также появляются предложения по дальнейшему расширению данного перечня, в частности: контроль уровня частичных разрядов; ИК-спектрометрический анализ; контроль мутности и поверхностного натяжения масла; вибрационный контроль состояния прессовки обмотки и др.

Вид диагностической ценности методов контроля

Метод контроля Анализируемый процесс Вид диагностической ценности
Хроматографический анализ газов, растворенных в масле Перегрев токоведущих соединений и элементов конструкции внутренней изоляции, электрический разряд в масле Сопутствующий показатель физико-химического разрушения изоляции. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность
Измерение степени полимеризации бумажной изоляции Износ бумажной изоляции Функция физико-химического разрушения изоляции. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность
Измерение содержания фурановых соединений в масле Старение бумажной изоляции Сопутствующий показатель физико-химического разрушения изоляции. Отсутствие монотонности и значимых различий изменения содержания от срока эксплуатации и степени износа изоляции. Случайная диагностическая ценность
Измерение мутности масла Коллоидно-дисперсные процессы в высоковольтных герметичных вводах Функция физико-химического состояния коллоидно-дисперсной системы. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность
Измерение поверхностного натяжения Старение масла Функция полярности жидкости. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность
ИК-спектрометрия Старение масла Сопутствующий показатель наличия продуктов старения масла. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность
Тепловизионный контроль Локальные зоны перегрева Сопутствующий показатель теплового состояния трансформатора и токоведущих частей. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность
Измерение частичных разрядов Ионизационные процессы в изоляции Сопутствующий показатель физико-химического разрушения изоляции. Отсутствие монотонности изменения во времени при развитии процесса. Случайная диагностическая ценность
Измерение сопротивления короткого замыкания Деформация обмоток Сопутствующий показатель изменения геометрии обмоток Монотонность изменения во времени при развитии процесса Детерминированная диагностическая ценность
Метод низковольтных импульсов Деформация обмоток Сопутствующий показатель изменения геометрии обмоток Монотонность изменения во времени при развитии процесса Детерминированная диагностическая ценность
Определение усилий прессовки обмоток трансформатора по частоте собственных колебаний системы прессовки при внешнем импульсном механическом воздействии Распрессовка обмоток Сопутствующий показатель степени прессовки обмоток. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность

Один из наиболее объективных показателей, позволяющих оценить информативность используемого признака, — диагностическая ценность. При наличии статистических данных йот показатель представляет собой численную оценку информации о состоянии оборудования, которой обладает интервал значений измеряемого параметра.

Следует отметить, что при анализе диагностической ценности того или иного признака принципиально важное значение имеют следующие аспекты:

· является ли контролируемый показатель функцией физико-химического состояния изоляции или он отслеживает сопутствующие изменения при развитии процессов, приводящих к повреждениям;

· наличие монотонности изменения значения измеряемого показателя во времени при развитии характеризуемого им процесса;

· наличие значимых различий между значениями измеряемого показателя и степенью развития процесса.

Выполнение или невыполнение этих условий определяет вид диагностической ценности (наличие детерминированной или случайной, диагностической ценности) у используемых признаков.

В табл. 4 приведена оценка вида диагностической ценности методов контроля процессов, приводящих к повреждениям трансформатора. Необходимо подчеркнуть, что признаки со случайной диагностической ценностью, определяемой отсутствием монотонности изменения значений при развитии контролируемого им процесса, не могут быть использованы для принятия решений о состоянии оборудования, а лишь в некоторых случаях могут свидетельствовать о необходимости более полного обследования.

Дополнительно необходимо отметить, что в настоящее время в эксплуатации еще находится довольно много трансформаторов, изготовленных в соответствии с [7], имеющих недостаточную электродинамическую стойкость к возросшим уровням токов короткого замыкания в энергосистемах. Согласно [1] расчетная мощность трехфазного короткого замыкания в сетях 6 — 750 кВ примерно в 2,5 раза больше принятой в [I]. Повреждаемость трансформаторов, разработанных до 1970 г., согласно [8] превышает 1%, в то время как у новых она около 0,2% (без учета повреждений из-за высоковольтных вводов). Для трансформаторов, изготовленных в соответствии с [I], имеет место повышенный риск их повреждений. Риск в этом случае представляет собой материальные и социальные потери от коротких замыканий.

Объективное наличие фактора риска в условиях эксплуатации требует применения целенаправленных мероприятий, позволяющих снизить риск как в части вероятности повреждения трансформатора, так и в части возможных убытков. К первой части следует отнести используемые в практике координации уровней токов короткого замыкания различные мероприятия по ограничению сквозных токов короткого замыкания автотрансформаторов энергосистем при достижении токами значений 80% и более нормированного уровня [9, 10]. Это изменение схемы сети (схемные решения), обеспечивающее снижение токов короткого замыкания; стационарное и автоматическое деление сети; введение реакторов в нейтраль трансформаторов и автотрансформаторов; ограничение опасных воздействий токов короткого замыкания на обмотки автотрансформаторов путем выбора очередности АПВ линий и даже блокировки АПВ; применение методов и средств диагностики.

Требуется повышенное внимание к мероприятиям, оказывающим прямое влияние на снижение возможных убытков в случае возникновения аварийной ситуации: действия персонала в соответствии с нормативными инструкциями, эффективность работы автоматической системы пожаротушения, четкая работа релейной защиты и наличие необходимого резерва электрооборудования.

Выводы

1. Внутренние короткие замыкания в трансформаторе обусловлены чаще всего повреждениями РПН, высоковольтных вводов и обмоток. Эти повреждения сами по себе являются наиболее частыми.

2. Целесообразно внесение дополнений и изменений в РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования» в части оценки состояния бумажной изоляции обмоток на основе анализа диагностической ценности нормируемых показателей для трансформаторов, отработавших определенный стандартами минимальный нормированный срок службы 25 лет.

3. Целесообразно разработать методические указания по повышению надежности герметичных вводов в эксплуатации для продления срока службы трансформаторов.

4. Для трансформаторов, у которых возможны превышения допустимых для них значений токов короткого замыкания, имеет место повышенный уровень риска их повреждений, который следует учитывать в эксплуатации. Важной составной частью мероприятий при оценке технического состояния таких трансформаторов является выявление наличия опасных деформаций обмоток, потери механической прочности витковой изоляции и распрессовки обмоток.

5. Необходимо повысить требования к электротехнической промышленности в части повышения надежности работы РПН, вводов и обмоток (конструкция и изоляция).

Схемы электрооборудования обслуживаемого участка (цеха, отдела)

Защита от вредных веществ в промышленности: Вентиляция. Назначение, виды

Вентиляцией называется совокупность мероприятий и устройств, используемых при организации воздухообмена для обеспечения заданного состояния воздушной среды в помещениях и на рабочих местах в соответствии со СНиП. (Строительными нормами).

Системы вентиляции обеспечивают поддержание допустимых метеорологических параметров в помещениях различного назначения.

Различают следующие виды вентиляционных систем:

1. Естественная вентиляция (Перемещение воздуха в системах естественной вентиляции происходит вследствие разности температур, давлений наружного воздуха и воздуха в помещении).

2. Механическая вентиляция (В механических системах вентиляции используются оборудование и приборы, позволяющие перемещать воздух на значительные расстояния).

3. Приточная вентиляция (Приточные системы служат для подачи в вентилируемые помещения чистого воздуха взамен удалённого).

4. Вытяжная вентиляция (Вытяжная вентиляция удаляет из помещения загрязненный или нагретый отработанный воздух). И т. д.

Вентиляционные системы, как правило, состоят из определенного набора компонентов:

1. Воздухозаборная решётка (через неё поступает воздух в систему)

2. Воздушный клапан (предотвращает попадания в помещение наружного воздуха при выключенной вентиляционной системе).

3. Фильтр (фильтрует поступающий воздух от механических загрязнений).

4. Калорифер или воздухонагреватель (подогревает воздух, поступающий в систему вентиляции в зимний период).

5. Шумоглушитель (предотвращает распространение шума по воздуховодам).

6. Вентилятор (подаёт или выбрасывает воздух из системы).

7. Воздуховоды (распределяют воздушные потоки по помещению).

8. Воздухораспределители (решетки или диффузоры: через них осуществляется подача (забор) воздуха из помещения).

9. Автоматика (управление элементами вентиляционной системы).

На сегодняшний день наиболее распространённым вентиляционным оборудованием является вентиляционное оборудование фирм Ostberg (Швеция), Systemair (Швеция).

Тиристорный регулятор мощности: схема, принцип работы и применение

В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте — оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция – регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

Область применения тиристорных регуляторов

Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.

Как работает тиристор?

Тиристор – это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:

Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод — катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.

Вам, скорее всего, не всё понятно? Не стоит отчаиваться — ниже будет подробно описан процесс работы готового устройства.

Область применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.

Можно ли регулировать обороты двигателя?

Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют «болгарками», и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.

Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.

Схема тиристорного регулятора мощности на одном и двух тиристорах

Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.

Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.

Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.

Как это работает?

Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

Заштрихованная область – это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

Разберемся, как работает конкретно наш тиристорный регулятор мощности

Оговорим заранее, что вместо слов «положительная» и «отрицательная» будут использованы «первая» и «вторая» (полуволна).

Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для ограничения тока управления, а R1 и R2 — для термостабилизации схемы.

Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.

Применение регулятора в быту и техника безопасности

Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.

Преобразователь однофазного напряжения 220В в трехфазное

Преобразователь однофазного напряжения в трехфазное разработан на основе схемы регулятора мощности, приведенной в [1], и предназначен для питания трехфазного электродвигателя.

Принципиальная схема

Схема регулятора подключается к сети через автоматический выключатель SF1, обеспечивающий номинальный потребляемый ток. После включения в сеть регистр сдвига DD2 сбрасывается в ноль на время заряда конденсатора С2 через резистор R5. После заряда С2 до напряжения срабатывания элемента DD1.1 разрешается сдвиг в регистре DD2.

При установке выхода регистра в состояние логической «1» открывается подключенный к нему транзистор (VT1. VT6), который коммутирует соответствующий тиристор. Временная диаграмма работы (последовательности коммутации тиристоров) приведена на рисунке 2.

Рис. 1. Принципиальная схема преобразователя напряжения из однофазного 220В в трехфазное.

Рис. 2. Временная диаграмма работы (последовательности коммутации тиристоров).

Детали и настройка

Конденсаторы С4. С6 — коммутационные (запирающие) емкости. Их величины даны ориентировочно. Они подбираются во время настройки схемы в зависимости от мощности двигателя и частоты коммутации тиристоров. Величину емкости можно рассчитать по приближенной формуле:

C = (0,01 * Р(Вт) / n) * (1 / 30n) (мкФ),

где: n=1 при номинальной частоте двигателя.

После настройки схемы R3 и R4 выпаивают, на место R4 впаивают конденсатор емкостью 0,68 мкФ. Между точками А и В впаивают подстроечный резистор сопротивлением 15 кОм, которым точно устанавливают частоту вращения электродвигателя.

Схемы импульсных преобразователей

Схемы импульсных преобразователей

Классификация схем. Существует множество схем импульсных пре­образователей постоянного тока. Это многообразие, главным обра­зом, связано с использованием различных схемных способов прину­дительного конденсаторного выключения однооперационных тирис­торов, составляющих основу полупроводникового ключа.

Схемы классифицируются по следующим признакам: способу за­пирания тиристоров (обратным напряжением, обратным током), виду коммутации (одноступенчатая, двухступенчатая), схеме включения коммутирующей ЭДС (параллельная, последовательная), структуре цепей заряда и разряда коммутирующего конденсатора (зависимая, независимая).

Схемы с одноступенчатой коммутацией. В простейших схемах с одноступенчатой коммутацией для запирания тиристоров использу­ются постоянно включенные колебательные цепи (рис. 8.8).

При включении тиристора VT в LкCк-контуре возникает колеба­тельный процесс. Через некоторое время ток в тиристоре «вытесняет­ся» встречным током колебательного контура и становится равным нулю. Тиристор запирается обратным напряжением от коммутирующего конденсатора. Для изменения среднего значения напряжения на нагрузке в этих схемах может быть применен лишь частотно-импульсный способ, что заметно ограничивает регулировочные свойства и энергетические показатели преобразователя. Поэтому в подавляющем большинстве случаев в современных тиристорных импульсных преобразователях используются схемы с двухступенчатой коммутацией.

Схемы с двухступенчатой коммутацией (рис. 8.9). В таких схемах коммутирующие цепи присоединяются к цепи силового (главного тиристора с помощью вспомогательных (коммутирующих) тиристоров в определенные моменты времени, и ток главного тиристора на короткий интервал времени проходит через коммутирующий тирис­тор. При этом запирание главного тиристора может осуществляться обратным напряжением (жесткая коммутация) или импульсом обрат­ного тока (мягкая коммутация).

Рис. 8.9. Базовые схемы тиристорных импульсных преобразователей с коммутацией импульсом обратного тока (а, в, д) и приложением обратного напряжения (б, г, е).

Многоквадрантный режим импульсного преобразователя. Рассмот­ренные выше схемы включения ИР соответствуют только одноква­дрантному режиму преобразования энергии, так как полярность напряжения и2 и направление тока i2 цепи нагрузки для каждой из схем неизменны.

Рассмотрим возможность реализации в схемах с ИР многоква­дрантных режимов преобразования энергии в цепях постоянного тока (рис. 8.12).

В схемах (рис. 8.12, а,б) показаны направления потоков энергии Р. Возможные области режимов работы в координатах U2, I2 показа­ны заштрихованными областями для соответствующего квадранта. Эти схемы можно включить совместно в такой комбинации, которая обеспечивает многоквадрантный режим работы.

На рис. 8.12, в и г приведены схемы для двухквадрантного режима работы. Схема (см. рис. 8.12, в) предусматривает изменение направле­ния тока I2, а схема (рис. 8.12, г) — напряжения U2. В обоих случаях достигается изменение направления потока Р. В схеме с изменением направления тока I2 предусматривается специальный коммутирую­щий дроссель Lк с выведенной средней точкой для разделения выклю­чаемого тиристора от встречно включенного диода. Этот дроссель снижает ответвление коммутирующего тока в цепь данного диода.

Схема (рис. 8.12, д) позволяет реализовать четырехквадрантный режим импульсного преобразователя. Поскольку напряжение U2 как и ток I2 на стороне нагрузки могут изменять направление на обрат­ное, достигается работа преобразователя во всем пространстве состояний. Эта схема представляет собой преобразователь постоянно-переменного тока, т.е. мостовую схему однофазного инвертора, обеспечи­вающую передачу энергии из цепи постоянного тока в цепь переменного тока и обратную передачу энергии.

9. АВТОНОМНЫЕ ИНВЕРТОРЫ

9.1. НАЗНАЧЕНИЕ И ВИДЫ АВТОНОМНЫХ ИНВЕРТОРОВ

Автономные инверторы — это преобразователи постоянного тока в переменный однофазный или многофазный ток. Коммутация тока в них осуществляется независимо от процессов во внешних элект­рических цепях благодаря наличию дополнительных коммутирующих устройств внутри самого преобразователя. На его выходе можно по­лучать переменный ток теоретически любой частоты, плавно регули­ровать от нуля до максимального значения частоту и напряжение. Благодаря этому свойству автономные инверторы находят все более широкое применение в регулируемых электроприводах с асинхронными двигателями трехфазного тока. Особенно перспективно применение автономных инверторов в тяговых электроприводах электрово­зов, электропоездов, тепловозов.

В зависимости от способа принудительной коммутации тока, схемы инвертора, параметров источника питания и нагрузки автономные инверторы делятся на виды, отличающиеся специфическими осо­бенностями процессов переключений тока. Полная коммутация с переключением тока с одной ветви схемы на другую в автономных инверторах происходит на нескольких этапах, важнейшими из которых являются: уменьшение прямого тока в одном из тиристоров до нуля, задержка приложения прямого напряжения на этом тиристоре до полного восстановления его запирающей способности, нарастание прямого тока во втором тиристоре. Эти события могут совершаться совместно или последовательно. Средства для осуществления надеж­ной коммутации обычно являются одной из наиболее трудных про­блем в автономных инверторах. Принципиально эти средства можно разделить на два класса.

К первому классу следует отнести полностью управляемые силовые полупроводниковые приборы (силовые транзисторы и запираемые тиристоры).

Второй класс составляют обычные не полностью управляемые СПП (однооперационные тиристоры), дополненные специальными узлами принудительной коммутации, например, в виде предварительно заряженных конденсаторов и вспомогательных тиристоров.

Рассмотрим принцип работы автономного инвертора на примере простейшей однофазной схемы с использованием указанных выше

средств коммутации (рис. 91).

Принцип работы инвертора на полностью управляемых приборах.

Силовые транзисторы используются как ключи, получая сигналы управления СУ по цепи базы от отдельной схемы управления СУ, построенной на основе генератора прямоугольных импульсов. Сигналы управления, поступающие на транзисторы VT1 и VT2, не совпадают по времени, что устраняет появление сквозного тока источника питания Е. Предполагается, что один транзистор открывается в тот момент, когда другой закрывается. В схеме не требуется дополнительных ком­мутирующих устройств, так как транзисторы обладают свойством полной управляемости, и для включения и выключения достаточно управлять током их базовых цепей.

Рис 9. 1. Схемы и временные диаграммы работы однофазного автономного инвертора на транзисторах при работе на активную нагрузку (без обратных диодов) (с) и на активно-индуктивную нагрузку (с обратными диодами) (б)

Сигналы управления подаются на VT1, VT2 с периодом следования Т. При активной нагрузке (см. рис. 9.1, а) поочередное включение транзисторов обуславливает приложение ЭДС источника Е к первичной обмотке трансформатора Т, выполненного с выведенной средней (нулевой) точкой 0. По первичным полуобмоткам протекают токи i11, i12. На вторичной обмотке возникает напряжение и2 прямоугольной формы. Ток i2 при активной нагрузке R повторяет форму кривой и2 и переходит через нулевое значение одновременно с моментом переключения транзисторов. При работе транзисторов в нулевой схеме в течение непроводящей части периода к ним прикладывается в прямом направлении напряжение 2Е.

В реальных схемах нагрузка носит, как правило, активно-индуктивный характер (см. рис. 9.1, б). Во время переключения транзисторов в такой схеме возникают условия, которые могут привести к большим перенапряжениям, поскольку ток в цепи с индуктивным элементом не может мгновенно изменить направление. Следовательно, для предупреждения перенапряжения в схеме должна быть пред­усмотрена ветвь тока нагрузки на интервалах tt1, t2 t3 после переключения транзистора.

Для пропуска тока могут быть включены разнообразные устройства, например резисторы, конденсаторы или дополнительные цепи с полупроводниковыми приборами. Наиболее экономичное решение было предложено выполнять по схеме с обратными диодами VD1, VD2, включенными встречно-параллельно основным (главным) транзисторам VT1, VT2 [4]. Для этого случая на рис. 9.1, б показаны формы напряжений и токов в схеме инвертора. В схеме с обратным диодами после переключения транзистора контур индуктивного тока нагрузки проходит через диод, включенный встречно ЭДС источника Е. Входной ток >

Принцип работы инвертора на однооперационных тиристорах. Рас­смотрим схему инвертора, в которой требуются дополнительные эле­менты для осуществления коммутации. Схема однофазного инвертора на однооперационных тиристорах VT1, VT2 (рис. 9.2) называется параллельным инвертором [4] и строится по принципу коммутации тока с использованием конденсатора С, включенного параллельно цепи нагрузки.

Широко известная схема однофазного параллельного инвертора отличается от схемы (см. рис. 9.1) наличием дросселя в цепи постоянного тока с индуктивностью Ld и коммутирующего конденсатора емкостью С. В этой схеме принудительное выключение однооперационных тиристоров VTI, VT2 осуществляется предварительно заряжен­ным коммутирующим конденсатором. Коммутация тиристора VT1 начинается с момента (t2, t6), когда отпирается второй тиристор VT2, и конденсатор С, заряженный так, что верхняя обкладка положитель­на, обеспечивает обратное напряжение на запираемом тиристоре VT1.

выполнения этого условия необходимо включить конденсатор такой емкости С, чтобы отводить ток нагрузки от тиристора на интервале времени выключения.

Дроссель L цепи постоянного тока такого инвертора обычно имеет достаточно большую индуктивность, чтобы исключить или су­щественно уменьшить пульсации подводимого постоянного тока id. При этом ток id переключения с одного тиристора на другой равнозначен току прямоугольной формы через тиристоры VT1 и VT2. Ток i2 цепи RL-нагрузки имеет плавное изменение, и разность токов ти­ристора (источника) и нагрузки компенсируется током конденсатора ic. Их алгебраическая сумма на каждом временном интервале равна нулю. Конденсатор заряжается на интервале, когда ток тиристора превышает ток нагрузки (приведенный к числу витков первичной обмотай трансформатора), и разряжается, если ток нагрузки превышает ток источника. В результате конденсатор перезаряжается дваж­ды за один период Т. Напряжение конденсатора ис накладывается на ЭДС источника Е, и на выходе инвертора напряжение ии содержит постоянную составляющую Е и переменную составляющую, опреде­ляемую напряжением на конденсаторе ис (см. рис. 9.2). Напряжение на входе ии имеет значительые пульсации, возрастающие с уменьшени­ем емкости С при неизменных параметрах RL-нагрузки.

Расчет параллельного инвертора довольно сложен. Основные принципы которые позволяют выполнить расчет, сводятся к следую­щему:

мощность получаемая от источника постоянного тока, должна

эффективное значение напряжения нагрузки;

так как кривые напряжений и токов несинусоидальны и со­держат ряд гармонических составляющих, то реактивные мощности основной и каждой высшей гармонической составляющей тока источника питания должны быть равны соответствующим состав­ляющим реактивной мощности всей цепи переменного тока на выходе;

в установившемся режиме среднее за интервал проводящего состояния каждого тиристора напряжение на полуобмотке первичной обмотки трансформатора должно быть равно напряжению источника питания Е.

Принцип работы инверторов на однооперационных тиристорах с последовательным конденсатором в нагрузке. Последовательная RC­-цепь нагрузки образует резонансный контур, обеспечивающий ком­мутацию. Такие инверторы получили название последовательных (рис. 9.3) [4].

Когда тиристор VT1 открыт, а тиристор VT2 закрыт, после­довательная резонансная цепь подсоединена к источнику постоян­ного тока. За время первого полупериода резонансного колебания (t —t2 ) напряжение на конденсаторе иc возрастает до значения, близкого 2Е. Затем ток id уменьшается ниже тока удержания тиристора и прекращается. Второй тиристор VT2 можно включить, спустя интервал (t2 — t3) длительностью не менее времени вы­ключения тиристора. Когда тиристор VT2 включается, происходит такой же колебательный процесс перезаряда конденсатора через цепь нагрузки. При этом источник питания не участвует в работе. Конденсатор перезаряжается током исходной полярности. Далее с интервалом (t5 — t6) открывается тиристор VT1, и процессы в схеме повторяются. Если интервалы t2 — t3 и t5t6 поддерживать минимальными, то ток i в цепи нагрузки близок к синусоидальной форме. Для устойчивой коммутации тиристоров эти временные интервалы должны быть достаточными для гарантированного выключения тиристоров.

Каждый электрик должен знать:  Сильно греется лента при работе от БК компьютера.
Добавить комментарий