Силовые полупроводниковые приборы диоды и тиристоры, их виды и применение


СОДЕРЖАНИЕ:

Полупроводниковые приборы — Диоды, тиристоры, оптоэлектронные приборы — Справочник — Горюнов Н.Н.

Название: Полупроводниковые приборы — Диоды, тиристоры, оптоэлектронные приборы — Справочник.

Автор: Горюнов Н.Н.

Приведены электрические параметры, габаритные размеры, предельные эксплуатационные данные и другие характеристики отечественных серийно выпускаемых полупроводниковых диодов, тиристоров, светодиодов и оптронов широкого применения.

Справочные сведения о полупроводниковых приборах составлены на основе данных, зафиксированных в государственных стандартах и технических условиях на отдельные типы приборов. Авторами сохранена удачная форма представления данных, использовавшаяся в предыдущих изданиях аналогичных справочников издательства «Энергия»: приведены сведения об основном назначении, габаритных и присоединительных размерах, маркировке, важнейших параметрах, режимах измерения, предельных эксплуатационных режимах и зависимостях полупроводниковых приборов.
Для широкого круга специалистов по электронике, автоматике, измерительной и вычислительной технике, занимающихся разработкой, эксплуатацией и ремонтом радиоэлектронной аппаратуры.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Полупроводниковые приборы — Диоды, тиристоры, оптоэлектронные приборы — Справочник — Горюнов Н.Н. — fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу

Силовые полупроводниковые приборы: диоды и тиристоры, их виды и применение

Полупроводниковые диоды и тиристоры

Физические процессы в электронно-дырочном переходе

К полупроводниковым относятся материалы, которые при комнатной температуре имеют удельное сопротивление r =10-3. 1010 Ом × см, зависящее от температуры, освещенности, ионизирующего излучения, электрического поля и др.

Для изготовления полупроводниковых приборов применяют простые полупроводниковые вещества — германий, кремний, селен — и некоторые химические соединения, например, арсенид галлия GaAs, антимонид индия InSb, фосфид индия InP, карбид кремния SiC.

Полупроводники имеют кристаллическую структуру, которая однородна при температуре абсолютного нуля. По мере нагрева часть валентных связей нарушается вследствие тепловых колебаний в кристаллической решетке, что приводит к одновременному образованию свободных электронов и незаполненных связей (дырок). Генерация пар носителей заряда может происходить также под действием света, электрического поля, излучения и др. Электропроводность собственного полупроводника, обусловленную парными носителями заряда (электронами и дырками), называют собственной. Вводя в собственный полупроводник примеси, получают примесную электропроводность. Донорные примеси, атомы которых отдают электроны, образуют полупроводники с преобладающей электронной электропроводностью (n-типа). Полупроводники с преобладающей дырочной электропроводностью называют полупроводниками p-типа, а соответствующие примеси — акцепторами.

Область на границе контакта двух полупроводников с противоположным типом электропроводности называется электронно-дырочнымили n-p-переходом. Переход обладает несимметричной проводимостью, т. е. имеет нелинейное сопротивление. Работа большинства полупроводниковых приборов (диодов, тиристоров и др.) основана на использовании свойств n-p-переходов.

Рассмотрим процессы в n-p-переходе при отсутствии внешнего источника напряжения (рис.1.1). Так как носители заряда совершают беспорядочное тепловое движение, то происходит их диффузия из одного полупроводника в другой. Концентрация электронов в n-слое больше, чем в p-слое, и часть электронов перейдет из n-слоя в p-слой. Одновременно наблюдается диффузионный переход дырок из p-слоя в n-слой. В результате в n-слое остается нескомпенсированный объемный заряд положительных ионов (в основном донорной примеси), а в p-слое — нескомпенсированный объемный заряд отрицательных ионов акцепторной примеси. Между образовавшимися объемными зарядами возникает контактная разность потенциалов Uк= j n- j p и электрическое поле напряженностью Ек. На потенциальной диаграмме n-p-перехода (рис.1.1б) за нулевой потенциал принят потенциал граничного слоя. В n-p-переходе возникает потенциальный барьер, препятствующий диффузионному перемещению носителей заряда. Высота барьера равна контактной разности потенциалов и обычно составляет десятые доли вольта. На рис.1.1б изображен барьер для электронов, стремящихся за счет диффузии перемещаться из области n в область p.

Таким образом, в n-p-переходе вследствие ухода электронов и дырок вглубь p- и n-областей образуется обедненный зарядами слой, называемый запирающим и обладающий большим сопротивлением в сравнении с сопротивлением остальных объемов n- и p-областей.

Если источник внешнего напряжения положительным полюсом подключить к полупроводнику p-типа и отрицательным к n-типа (прямое включение), то электрическое поле, создаваемое в n-p-переходе прямым напряжением Uпр, действует навстречу контактной разности потенциалов Uк. Потенциальный барьер понижается до величины Uк-Uпр, уменьшаются толщина запирающего слоя и его сопротивление Rпр.

Если полярность внешнего источника изменить на обратную, то потенциальный барьер возрастает до величины Uк+Uобр. В этом случае через переход могут пройти только неосновные носители: электроны из p-области в n-область и дырки во встречном направлении. Так как концентрация основных носителей заряда на насколько порядков выше концентрации неосновных, то прямые токи на несколько порядков больше обратных. Электронно-дырочный переход обладает выпрямляющими свойствами, которые используются для создания диодов.

Диодом называют полупроводниковый прибор с одним n-p-переходом и двумя внешними выводами. По назначению диоды делят на выпрямительные, высокочастотные, импульсные, стабилитроны и т.д. Их изготавливают на основе германия или кремния. Выпрямительные диоды пред назначены для преобразования переменного тока низкой частоты в постоянный ток. Вольтамперная характеристика (ВАХ) выпрямительного диода, его условное графическое изображение и буквенное обозначение даны на рис.1.2. Основные параметры выпрямительного диода: предельно допустимый постоянный ток диода Iпр.max и максимально допустимое обратное напряжение Uобр.max.

Стабилитрон представляет собой кремниевый полупроводниковый диод, который нормально работает при электрическом пробое n-p-перехода. При этом напряжение на диоде незначительно зависит от протекающего тока. Электрический пробой не вызывает разрушения перехода, если ограничить ток до допустимой величины. Стабилитроны применяют для стабилизации постоянного напряжения. ВАХ стабилитрона и его условное графическое обозначение приведены на рис.1.3. Основные параметры стабилитрона: напряжение стабилизации Uст.ном, минимальный Icт.min и максимальный Iст.max токи стабилизации, максимальная мощность Pст.max.

Тиристором называют полупроводниковый прибор с тремя или более n-p-переходами и двумя (динистор) или тремя (тринистор) выводами. Он может находиться в одном из двух устойчивых состояний: низкой проводимости (закрыт) или высокой проводимости (открыт). Структура, условное графическое и буквенное обозначения тиристора, его вольтамперная характеристика даны на рис.1.4а, б, в.

Основу прибора составляет кристалл кремния, в котором созданы четыре слоя с разными типами электропроводности. Внешний p-слой называют анодом (А), внешний n-слой — катодом (К), а два внутренних слоя — базами. Одна из баз имеет вывод — управляющий электрод (У).

При прямом включении (анод положителен по отношению к катоду) переходы П1 и П3 смещены в прямом направлении, а переход П2 — в обратном направлении. До тех пор, пока П2 закрыт, прямой ток практически равен нулю (участок оа характеристики рис. 1.4в). При некотором значении прямого напряжения, равном Uвкл.max, за счет перераспределения зарядов в области баз переход П2 открывается (точка а). Сопротивление его быстро уменьшается (участок аб), и тиристор работает на участке бв характеристики, которая подобна ВАХ диода.

Напряжение включения Uвкл.max можно уменьшить введением добавочных носителей заряда в любой из слоев, прилегающих к переходу П2. Добавочные носители заряда на рис.1.4а вводятся в слой p от вспомогательной управляющей цепи с независимым источником Еy. При увеличении тока управления Iy характеристика (рис.1.4в) смещается влево (к естественной прямой ветви ВАХ диода). Тиристор остается во включенном состоянии, пока протекающий через него ток больше критического, называемого током удержания Iуд. Как только Iпр станет меньше Iуд, тиристор закрывается.

Следует отметить, что после включения тиристора объемные заряды в области перехода П2 будут компенсированы основным током, если он больше тока Iуд, и тогда ток управления Iу не нужен. Поэтому для снижения потерь в тиристоре он управляется короткими импульсами Iу.

При обратном включении тиристора (анод отрицателен по отношению к катоду) закрыты два перехода П1 и П3, и тиристор тока не проводит. Во избежание пробоя необходимо, чтобы обратное напряжение было меньше Uобр.max.

Основные параметры, используемые при выборе тиристоров: предельно допустимый анодный ток в открытом состоянии тиристора Iпр.max, предельно допустимое обратное напряжение Uобр.max, предельно допустимое прямое напряжение в закрытом состоянии тиристора Uпр.max, ток удержания Iуд.

Маломощные тиристоры применяют в релейных схемах и маломощных коммутирующих устройствах. Мощные тиристоры используют в управляемых выпрямителях, инверторах и различных преобразователях.

Биполярные и полевые транзисторы

Устройство и физические процессы в биполярном транзисторе.

Биполярным транзистором называют полупроводниковый прибор с двумя n-p-переходами, образованными слоями полупроводникового материала n-p-n или p-n-p-типа. Он имеет три или более выводов, изготавливается на основе германия или кремния, обеспечивает усиление мощности электрических сигналов. На рис.2.1 приведены структурные схемы, условные графические и буквенные обозначения транзисторов n-p-n-типа (рис.2.1,а) и p-n-p-типа (рис.2.1,б).

Средний слой кристалла называют базой. Ее толщина мала, составляет несколько микрометров и концентрация примесей здесь значительно меньше, чем в соседних слоях. Крайние слои называют эмиттером (Э) и коллектором (К).

Для нормальной работы транзистора между его выводами должны быть включены источники питания. Если источники включены так, что оба перехода П1, П2 находятся под обратным напряжением, то токи транзистора практически равны нулю — этот режим называют отсечкой. Если переходы транзистора имеют прямое смещение, то их сопротивление мало, и транзистор можно рассматривать как узел цепи. Такой режим работы называют насыщением. В усилительном каскаде транзистор работает в активном режиме, при этом эмиттерный переход смещен в прямом направлении, а коллекторный — в обратном (рис.2.1). Прямосмещенный эмиттерный переход имеет небольшое сопротивление — несколько Ом. Коллекторный переход, при отсутствии инжекции из эмиттера, имеет очень большое сопротивление — несколько МОм, поэтому в цепь коллектора можно включать нагрузку с большим сопротивлением, практически не изменяя тока коллектора.

Под действием источника Еэ основные носители заряда из эмиттера преодолевают n-p-переход и попадают в область базы, где частично рекомбинируют с основными носителями заряда базы, образуя ток базы Iб. Так как концентрация дырок (для n-p-n-типа) и электронов (для p-n-p-типа) в базе мала, то не все инжектированные из эмиттера заряды рекомбинируют. Большинство зарядов, вследствие диффузии и поля источника Ек, преодолевает коллекторный переход и образуют ток коллектора.

Коэффициент передачи тока эмиттера

a = D Iк / D Iэ при Uкб=const.

В современных транзисторах база очень тонкая и a =0,99 и больше.

Когда Iэ=0, то будет небольшой ток через коллекторный переход Iко, обусловленный движением неосновных носителей заряда.

Схемы включения, характеристики и параметры биполярного транзистора

Рассмотренная на рис.2.1 схема включения транзистора называется схемой с общей базой (ОБ), так как база является общим электродом для входной и выходной цепей. Она обеспечивает усиление сигнала по напряжению и мощности, но ток в нагрузке будет меньше, чем входной ток источника сигнала.

Наиболее часто используется в электронных устройствах схема включения транзистора с общим эмиттером (ОЭ) — рис.2.2,а. Входным здесь является ток базы Iб, а выходным — ток коллектора Iк.

Коэффициент передачи тока базы схемы ОЭ

b = D Iк/ D Iб при Uкэ=const; b = a /(1- a )>>1.

Эта схема обеспечивает усиление тока и напряжения сигнала и максимальное усиление мощности.

Основными характеристиками транзисторов ОЭ являются

1) выходные — Iк(Uкэ) при Iб=const (рис.2.2,б),

2) входные — Iб(Uбэ) при Uкэ=const (рис.2.2,в).

Они определяют связь между постоянными составляющими токов и напряжений, дают возможность выбрать наилучший режим работы, оценить нелинейные искажения усиливаемого сигнала.

Для расчета цепей с биполярными транзисторами в настоящее время используются h-параметры: транзистор представляют четырехполюсником и записывают уравнения четырехполюсника в h-параметрах. Коэффициенты четырехполюсника (h-параметры) выражаются следующим образом:

h11= D Uбэ/ D Iб при Uкэ=const — входное сопротивление Rвх, Ом;

h12= D Uбэ/ D Uкэ при Iб=const — безразмерный коэффициент обратной связи по напряжению;

h21= D Iк/ D Iб при Uкэ=const — безразмерный коэффициент передачи тока ( b );

h22= D Iк/ D Uкэ при Iб=const — выходная проводимость (1/Rвых), См.

h-параметры приводятся в справочниках, а также могут быть определены по семейству входных и выходных характеристик транзистора.

Устройство и физические процессы в полевых транзисторах

Биполярные транзисторы управляются током и потребляют заметную мощность от входной цепи. Указанного недостатка лишены полевые транзисторы (ПТ) — это полупроводниковые приборы с каналом, ток в котором управляется электрическим полем. Принцип действия их основан на использовании носителей заряда только одного знака (электронов или дырок), поэтому их иначе называют униполярными.

Главным достоинством ПТ является высокое входное сопротивление, т.е. они практически не потребляют ток из входной цепи. Кроме того, они более технологичны и дешевле, чем биполярные, обладают хорошей воспроизводимостью требуемых параметров.

По способу создания канала различают ПТ с управляющим n-p-переходом, со встроенным каналом и с индуцированным каналом. Последние два типа относятся к разновидностям МДП-транзисторов с изолированным затвором.

У ПТ с управляющим n-p-переходом (рис.2.3,а) канал — это слой полупроводника n-типа (может быть p-типа), заключенный между двумя n-p-переходами. Канал имеет два вывода во внешнюю цепь: исток (И), из которого заряды выходят в канал, сток (С), в который заряды входят из канала. Слои p-типа соединены между собой и имеют вывод во внешнюю цепь, называемый затвором (З). Затвор служит для регулирования поперечного сечения канала. Особенность ПТ в том, что движение основных носителей заряда только одного знака происходит по каналу от истока к стоку, а не через переход, как в биполярном транзисторе.

Управляющее напряжение между З и И является обратным для обоих n-p-переходов (Uзи 0). Оно вызывает вдоль канала равномерный слой, обедненный носителями заряда при Uси=0. Изменяя Uзи, изменяют ширину n-p-переходов, тем самым регулируют сечение токопроводящего канала и его проводимость. Напряжение Uси > 0 вызывает неравномерность обедненного зарядами слоя, наименьшее сечение канала вблизи стока.

Управляющее действие затвора иллюстрируют передаточной (стоко-затворной) характеристикой Iс(Uзи) при Uси=const. На практике чаще используют выходные (стоковые) характеристики Iс(Uси) при Uзи=const, по которым строят передаточные (рис.2.3,в).

МДП-транзисторы со встроенным каналом имеют структуру металл — диэлектрик — полупроводник. У поверхности кристалла полупроводника (подложки p-типа) созданы две области n-типа и тонкая перемычка между ними — канал (рис.2.4,а). Области n-типа имеют выводы: И-исток и С-сток. Кристалл покрыт окисной пленкой диэлектрика SiO2, на которой расположен металлический затвор (З), электрически изолированный от цепи исток — сток. Подложка соединяется с истоком внутри прибора, либо имеет вывод во внешнюю цепь (П).

При отрицательном потенциале на затворе Uзи 0 поле затвора выталкивает электроны из канала в p-подложку, исток и сток. Канал обедняется электронами, его сопротивление увеличивается и ток стока уменьшается. Такой режим называют режимом обеднения. Характеристики Iс(Uси) располагаются ниже кривой при Uзи=0 (рис.2.4,в). Если на затвор подано Uзи > 0, то под действием поля затвора канал насыщается электронами из p-подложки, истока и стока — это режим обогащения.

Таким образом, МДП-транзистор со встроенным каналом может работать как в режиме обеднения, так и в режиме обогащения , что наглядно показывают его характеристики. Структура, условное графическое изображение, передаточная Iс(Uзи) при Uси=const и стоковые Iс(Uси) при Uзи=const характеристики ПТ со встроенным каналом даны на рис.2.4,а,б,в.

МДП-транзисторы с индуцированным каналом не имеют специально созданного канала между истоком и стоком, и при Uзи=0 выходной ток Iс=0. Канал индуцируется при положительном потенциале на затворе Uзи > 0 благодаря притоку электронов из p-подложки, истока и стока. Этот прибор работает только в режиме обогащения.

Основными параметрами полевых транзисторов являются крутизна S= D Iс/ D Uзи при Uси=const и внутреннее (выходное) сопротивление Ri= D Ucи/ D Iс при Uзи=const. Иногда пользуются третьим параметром — коэффициентом усиления m = D Uси/ D Uзи при Iс=const; m =SRi.

Современные радиодетали: диоды, тиристоры, модули и их применение

В сфере производства радиоаппаратуры широкое применение получили силовые полупроводниковые приборы, диоды, тиристоры и микроэлементы. Современные детали данного типа характеризуются отменными эксплуатационными свойствами, небольшими размерами и весом, высоким уровнем КПД, оперативным срабатыванием, длительным сроком службы.

На их основании создаются надежные, эргономичные источники питания, незаменимые в электрических приводах, автоматизированных системах, робототехнике и т. д. Купить радиодетали в огромном ассортименте предлагает компания «РадиоЭлемент». В ее каталоге насчитывается более 30 000 наименований. Большая их часть представлена перечисленными компонентами.

Диоды: разновидности и применение

Силовые полупроводники в виде диодов предназначены для преобразования электрической энергии. Они применяются в цепях с постоянным и переменным током. Эти элементы могут выполнять разные функции. Ими комплектуются:

  • турбинные генераторы;
  • синхронные компенсаторы;
  • сварочные выпрямители низковольтного типа;
  • гальваническое оборудование;
  • электрические генераторы в автомобилях, тракторах и другой технике.

Низкочастотные диоды разработаны для цепей до 500 Гц. Они могут испытывать вибрации в частотах от 1 до 100 Гц. Радиодетали выпускаются в разных форматах – штыревом, лавинном и таблеточном. Существует особый класс диодов – быстровосстанавливающиеся. Их используют в цепях до 2000 Гц. Они способны испытывать повышенные нагрузки на больших частотах.

Тиристоры: виды и применение

На сайте https://www.radioelementy.ru/ в ассортименте радиодеталей представлены в разных видах и тиристоры. Они относятся к категории силовых полупроводников. Их основное предназначение – управление мощными нагрузками при помощи слабых сигналов. Ими комплектуются выпрямители и инверторы, регуляторы импульсного типа, цепи возбуждения генераторов, системы, отвечающие за пуск и регулирование электроподвижными городскими составим. Их можно встретить в сварочном оборудовании, коммутаторах. В промышленности их применяют для создания радиоэлектронных устройств, конструирования электродуговых печей, оборудования для нагревания и плавки.

Приборы классифицируются на несколько групп по числу выводов и направлению проводимости. Выпускаются диодные, триодные, тетродные варианты, симметричные и асимметричные.

Электронные модули и их преимущества

Радиолюбителям и профессионалам сегодня доступны не только отдельные детали, но и готовые модули – микросхемы. Это элементы, имеющие собственный корпус. Они выполняются на пленке или на кристалле-полупроводнике. Их функции – обработка и преобразование импульсов. Модули имеют много преимуществ перед аналогами. Сюда входят:

  • сравнительно небольшая стоимость;
  • высокий уровень надежности, достигаемый благодаря наличию защитного корпуса;
  • низкая степень потребления электрической энергии;
  • небольшие размеры, позволяющие уменьшить габариты приборов и оборудования;
  • большой коэффициент полезного действия.

Область использования модульных решений обширна. Они применяются для комплектации контрольно-измерительных устройств. На их основании производятся коммутационная техника, компьютеры, приборы бытового применения. Микросхемы могут иметь различное количество и типы интегрированных диодов, тиристоров и других компонентов: резисторов, конденсаторов. Дополнительное преимущество таких деталей – простота и высокая скорость внедрения в цепь. Это делает их альтернативой традиционным разрозненным приборам.

Полупроводниковые диоды. Классификация и принцип работы.

Полупроводниковый диод – это электропреобразовательный полупроводниковый прибор с одним электрическим переходом и двумя выводами, в котором используются свойства р-n- перехода.

1. Классификация и условные графические обозначения диодов.

Полупроводниковые диоды классифицируются:

1) по назначению: выпрямительные, высокочастотные и сверхвысокочастотные (ВЧ- и СВЧ- диоды), импульсные, полупроводниковые стабилитроны (опорные диоды), туннельные, обращенные, варикапы и др.;

2) по конструктивно – технологическим особенностям: плоскостные и точечные;

3) по типу исходного материала: германиевые, кремниевые, арсенидо — галлиевые и др.

Классификация и условные графические обозначения диодов представлены на рис. 1:

Рис. 1. Классификация и условные графические обозначения диодов.

В точечном диоде используется пластинка германия или кремния с электропроводностью n- типа (рис. 2), толщиной 0,1…0,6мм и площадью 0,5…1,5 мм2; с пластинкой соприкасается заостренная проволочка (игла) с нанесенной на нее примесью. При этом из иглы в основной полупроводник диффундируют примеси, которые создают область с другим типом электропроводности. Таким образом, около иглы образуется миниатюрный р-n- переход полусферической формы.

Рис. 2. Устройство точечных диодов

Для изготовления германиевых точечных диодов к пластинке германия приваривают проволочку из вольфрама, покрытого индием. Индий является для германия акцептором. Полученная область германия р- типа является эмиттерной.

Для изготовления кремниевых точечных диодов используется кремний n- типа и проволочка, покрытая алюминием, который служит акцептором для кремния.

В плоскостных диодах р-n- переход образуется двумя полупроводниками с различными типами электропроводности, причем площадь перехода у различных типов диодов лежит в пределах от сотых долей квадратного миллиметра до нескольких десятков квадратных сантиметров (силовые диоды).

Плоскостные диоды изготовляются методами сплавления (вплавления) или диффузии (рис. 3).

Рис. 3. Устройство плоскостных диодов, изготовленных сплавным (а) и диффузионным методом (б)

В пластинку германия n- типа вплавляют при температуре около 500°С каплю индия (рис. 3, а) которая, сплавляясь с германием, образует слой германия р- типа. Область с электропроводностью р- типа имеет более высокую концентрацию примеси, нежели основная пластинка, и поэтому является эмиттером. К основной пластинке германия и к индию припаивают выводные проволочки, обычно из никеля. Если за исходный материал взят германий р- типа, то в него вплавляют сурьму и тогда получается эмиттерная область n- типа.

Диффузионный метод изготовления р-n- перехода основан на том, что атомы примеси диффундируют в основной полупроводник (рис. 3, б). Для создания р- слоя используют диффузию акцепторного элемента (бора или алюминия для кремния, индия для германия) через поверхность исходного материала.

2. Разновидности полупроводниковых диодов.

2.1 Выпрямительные диоды

Выпрямительный полупроводниковый диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

Выпрямительные диоды выполняются на основе р-n- перехода и имеют две области, одна из них является более низкоомной (содержит большую концентрацию примеси), и называется эмиттером. Другая область, база – более высокоомная (содержит меньшую концентрация примеси).

В основе работы выпрямительных диодов лежит свойство односторонней проводимости р-n- перехода, которое заключается в том, что последний хорошо проводит ток (имеет малое сопротивление) при прямом включении и практически не проводит ток (имеет очень высокое сопротивление) при обратном включении.

Как известно, прямой ток диода создается основными, а обратный – не основными носителями заряда. Концентрация основных носителей заряда на несколько порядков превышает концентрацию не основных носителей, чем и обусловливаются вентильные свойства диода.

Основными параметрами выпрямительных полупроводниковых диодов являются:

  • прямой ток диода Iпр, который нормируется при определенном прямом напряжении (обычно Uпр = 1…2В);
  • максимально допустимый прямой ток Iпр мах диода;
  • максимально допустимое обратное напряжение диода Uобр мах, при котором диод еще может нормально работать длительное время;
  • постоянный обратной ток Iобр, протекающий через диод при обратном напряжении, равном Uобр мах;
  • средний выпрямленный ток Iвп.ср, который может длительно проходить через диод при допустимой температуре его нагрева;
  • максимально допустимая мощность Pмах, рассеиваемая диодом, при которой обеспечивается заданная надежность диода.

По максимально допустимому значению среднего выпрямленного тока диоды делятся на маломощные (Iвп.ср 10А).

Для сохранения работоспособности германиевого диода его температура не должна превышать +85°С (рис. 4, а). Кремниевые диоды могут работать при температуре до +150°С (рис.4, б).

Рис. 4. Изменение вольт — амперной характеристики полупроводникового диода от температуры: а − для германиевого диода; б − для кремниевого диода

Падение напряжения при пропускании прямого тока у германиевых диодов составляет Uпр = 0,3…0,6В, у кремниевых диодов − Uпр = 0,8…1,2В. Большие падения напряжения при прохождении прямого тока через кремниевые диоды по сравнению с прямым падение напряжения на германиевых диодах связаны с большей высотой потенциального барьера р-n- переходов, сформированных в кремнии.

С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера.

При подаче на полупроводниковый диод обратного напряжения в нем возникает незначительный обратный ток, обусловленный движением не основных носителей заряда через р-n- переход.

При повышении температуры р-n- перехода число не основных носителей заряда увеличивается за счет перехода части электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает.

В случае приложения к диоду обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейшей рост тока и, наконец, тепловой пробой (разрушение) р-n- перехода. Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7…0,8)Uпроб.

Допустимое обратное напряжение германиевых диодов достигает − 100…400В, а кремниевых диодов − 1000…1500В.

Выпрямительные диоды применяются для выпрямления переменного тока (преобразования переменного тока в постоянный); используются в схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.

В ряде мощных преобразовательных установок требования к среднему значению прямого тока, обратного напряжения превышают номинальное значение параметров существующих диодов. В этих случаях задача решается параллельным или последовательным соединением диодов.

Параллельное соединение диодов (рис. 5, б)применяют в том случае, когда нужно получить прямой ток, больший предельного тока одного диода. Но если диоды одного типа просто соединить параллельно, то вследствие несовпадения прямых ветвей ВАХ они окажутся различно нагруженными и, в некоторых прямой ток будет больше предельного.

Рис. 5. Параллельное соединение выпрямительных диодов

Для выравнивания токов используют диоды с малым различием прямых ветвей ВАХ (производят их подбор) или последовательно с диодами включают уравнительные резисторы с сопротивлением в единицы Ом. Иногда включают дополнительные резисторы (рис. 5, в) с сопротивлением, в несколько раз большим, чем прямое сопротивление диодов, для того чтобы ток в каждом диоде определялся главным образом сопротивлением Rд, т.е. Rд >> rпр вд. Величина Rд составляет сотни Ом.

Каждый электрик должен знать:  Кофемашина Nivona 767 пишет Наполните систему - что делать

Последовательное соединение диодов применяют для увеличения суммарного допустимого обратного напряжения. При воздействии обратного напряжения через диоды, включенные последовательно, протекает одинаковый обратный ток Iобр. однако ввиду различия обратных ветвей ВАХ общее напряжение будет распределяться по диодам неравномерно. К диоду, у которого обратная ветвь ВАХ идет выше, будет приложено большее напряжение. Оно может оказаться выше предельного, что повлечет пробой диодов.

Рис. 6. Последовательное соединение выпрямительных диодов

Для того, чтобы обратное напряжение распределялось равномерно между диодами независимо от их обратных сопротивлений, применяют шунтирование диодов резисторами (рис. 6). Сопротивления Rш резисторов должны быть одинаковы и значительно меньше наименьшего из обратных сопротивлений диодов Rш Вольт-амперная ха­рактеристика варикапа приведена на рис. 10.

Полупроводниковым материалом для изготовления варикапов является кремний.

Основные параметры варикапов:

· номинальная емкость Св – емкость при заданном обратном напряжении (Св = 10…500 пФ);

· коэффициент перекрытия по емкости Кс=Cmax/Cmin; (Кс = 5…20) – отношение емкостей варикапа при двух заданных значениях обратных напряжений.

Варикапы широко применяются в различных схемах для автоматической подстройки частоты, в параметрических усилителях.

Рис. 10. Вольт-фарадная характеристика варикапа

2.5 Тиристоры

Тиристором называется полупроводниковый прибор многослойной структуры с тремя и более р-п переходами, который может переключаться нэ закрытого состояния в открытое или наоборот. Важнейшее свойство тиристоров — два устойчивых состояния его работы. Первое состояние характеризует­ся малым «прямым» током, протекающим через структуру, и большим падением напряжения на ней. Второе состо­яние соответствует большому «прямому» току и малому падению напряжения между выходными электродами.

По устройству и принципу дей­ствия тиристоры подразделяются на динисторы, тринисторы и симисторы. Общим признаком для всех тирист­ров является нелинейная ВАХ с участком отрицательного сопротивления, что обусловливает регенеративный про­цесс в приборе при переходе его из запертого в открытое состояние. Предпочтительным материалом для изготовления тиристоров считается кремний.

Рис. 11. Устройство тиристора и его транзисторная модель, поясня­ющая принцип работы.

Рис. 12. Вольт-амперная ха­рактеристика тиристора.

Структура р-n-р-n динистора показана на рис. 11. В кристалле с четырехслойной структурой имеется три р-п перехода. Крайние области называют р- и n-эмиттерами, а средние — р- и n-базами. Вольт-амперная ха­рактеристика тиристора приведена на рис. 12. При подключении к динистору напряжения (на аноде «+». на катоде»—») переходы П1 и П3 смешаются в пря­мом направлении, т. е. пропускают ток, а средний пере­ход П2 — в обратном. Напряжение, при котором происходит включение ти­ристора Uвкл, часто называют пусковым.

Тринистором называется тиристор с тремя выводами, один из которых сделан от внутреннего слоя и называет­ся управляющим электродом (УЭ). Существенным преи­муществом тринистора явля­ется возможность управления напряжением включения прибора с помощью УЭ, причем мощность управляющих сигналов значительно меньше мощности прямого тока. Тиристор с УЭ обладает свойством усилителя.

Рис. 13. Устройство незапираемого тринистора (а) и графики, по­ясняющие его работу (б).


Различа­ют тринисторы незапираемые и запираемые. В незапираемых приборах УЭ используется только для отпирания, т. е. переключения тринистора из непроводящего состоя­ния в открытое; в запираемых тринисторах посредством УЭ можно и открывать и закрывать прибор. Встречают­ся тринисторы с двумя УЭ. Структура незапираемого тринистора приведена на рис. 13 , а. Как и динистор, он состоит нз четырех чередующихся р- и n-слоев. Кроме анодного и катодного вы­водов имеется вывод УЭ, который может быть присоеди­нен ко внутреннему р- или n-слою, что отразится только на полярности управляющего напряжения. Если УЭ при­соединен к р-области, на него подается отрицательное относительно катода управляющее напряжение, если присоединен к n-области, полярность меняется на обратную.

Эффект управления объясняется тем, что входной ток УЭ увеличивает один из эмиттерных токов, т. е. воздействует на рост коэффициента передачи тока. На рис. 13 , б по­казано семейство ВАХ тринистора. Если снять управляющее напряжение, тринистор бу­дет оставаться включенным, пока прямой ток станет меньше . Этот ток называется током выключения — точка Г на графике рис. 13, б . Запираемые тринисторы отличаются от незапнрасмых тем, что способны переключаться из открытого состояния в запертое сигналом в цепи УЭ.

3. Расчет электрических цепей с полупроводниковыми диодами.

В практических схемах в цепь диода включается какая-либо нагрузка, например резистор (рис. 14, а). Прямой ток проходит тогда, когда анод имеет положительный потенциал относительно катода.

Режим диода с нагрузкой называют рабочим режимом. Если бы диод обладал линейным сопротивлением, то расчет тока в подобной схеме не представлял бы затруднений, так как общее сопротивление цепи равно сумме сопротивления диода постоянному току Rо и сопротивления нагрузочного резистора Rн. Но диод обладает нелинейным сопротивлением, и значение Rо у него изменяется при изменении тока. Поэтому расчет тока делают графически. Задача состоит в следующем: известны значения Е, Rн и характеристика диода, требуется определить ток в цепи I и напряжение на диоде Uд.

Характеристику диода следует рассматривать как график некоторого уравнения, связывающего величины I и U. А для сопротивления Rн подобным уравнением является закон Ома:

Итак, имеются два уравнения с двумя неизвестными I и U, причем одно из уравнений дано графически. Для решения такой системы уравнений надо построить график второго уравнения и найти координаты точки пересечения двух графиков.

Уравнение для сопротивления Rн – это уравнение первой степени относительно I и U. Его графиком является прямая линия называемая линией нагрузки. Она строится по двум точкам на осях координат. При I = 0 из уравнения (3.1) получаем: Е − U = 0 или U = Е, что соответствует точке А на рис. 14, б. А если U = 0, то I = E/Rн. откладываем этот ток на оси ординат (точка Б). через точки А и Б проводим прямую, которая является линией нагрузки. Координаты точки D дают решение поставленной задачи.

Следует отметить, что графический расчет рабочего режима диода можно не делать, если Rн >> Rо. В этом случае допустимо пренебречь сопротивлением диода и определять ток приближенно: I = E/Rн.

Рассмотренный метод расчета постоянного напряжения можно применить для амплитудных или мгновенных значений, если источник дает переменное напряжение.

Поскольку полупроводниковые диоды хорошо проводят ток в прямом направлении и плохо в обратном, то большинство полупроводниковых диодов применяется для выпрямления переменного тока.

Простейшая схема для выпрямления переменного тока показана на рис. 15. В ней последовательно соединен источник переменного ЭДС – е, диод VD и нагрузочный резистор Rн. Эта схема называется однополупериодной.

Работа простейшего выпрямителя происходит следующим образом. В течение одного полупериода напряжение для диода является прямым и проходит ток, создающий на резисторе Rн падение напряжения UR. В течение следующего полупериода напряжение является обратным, тока практически нет и UR = 0. Таким образом, через диод, нагрузочный резистор проходит пульсирующий ток в виде импульсов, длящихся полпериода. Этот ток называют выпрямленным током. Он создает на резисторе Rн выпрямленное напряжение. Графики на рис. 15, б иллюстрируют процессы в выпрямителе.

Амплитуда положительных полуволн на диоде очень мала. Это объясняется тем, что когда проходит прямой ток, то большая часть напряжения источника падает на нагрузочном резисторе Rн, сопротивление которого значительно превышает сопротивление диода. В этом случае

Для обычных полупроводниковых диодов прямое напряжение не более 1…2В. Например, пусть источник имеет действующее напряжение Е=200В и . Если Uпр max = 2В, то UR max = 278В.

При отрицательной полуволне подводимого напряжения тока практически нет и падение напряжения на резисторе Rн равно нулю. Все напряжение источника приложено к диоду и является для него обратным напряжением. Таким образом, максимальное значение обратного напряжения равно амплитуде ЭДС источника.

Простейшая схема применения стабилитрона приведена на рис. 16, а. Нагрузка (потребитель) включена параллельно стабилитрону. Поэтому, в режиме стабилизации, когда напряжение на стабилитроне почти постоянно, такое же напряжение будет и на нагрузке. Обычно Rогр рассчитывают для средней точки Т характеристики стабилитрона.

Рассмотрим случай, когда Е = const, а Rн изменяется в пределах от Rн min до Rн max..

Значение Rогр можно найти по следующей формуле:

где Iср = 0,5(Iст min+Iст max) – средний ток стабилитрона;

Iн = Uст/Rн – ток нагрузки (при Rн = const);

Iн.ср = 0,5(Iн min+Iн max), (при Rн = var),

Рис. 16. Схема применения стабилитрона

Работу схемы в данном режиме можно объяснить так. Поскольку Rогр постоянно и падение напряжения на нем, равное (Е − Uст), также постоянно, то и ток в Rогр, равный (Iст + Iн.ср), должен быть постоянным. Но последнее возможно только в том случае, если ток стабилитрона I и ток нагрузки Iн изменяются в одинаковой степени, но в противоположные стороны. Например, если Iн увеличивается, то ток I на столько же уменьшается, а их сумма остается неизменной.

Принцип действия стабилитрона рассмотрим на примере цепи, состоящей из последовательно соединенного источника переменной ЭДС – е, стабилитрона VD и резистора R (рис. 17, а).

В положительный полупериод на стабилитрон подается обратное напряжение, и до величины напряжения пробоя стабилитрона все напряжение прикладывается к стабилитрону, так как ток в цепи равен нулю. После электрического пробоя стабилитрона напряжение на стабилитроне VD остается без изменений и все оставшееся напряжение источника ЭДС будет приложено к резистору R. В отрицательный полупериод стабилитрон включен в проводящем направлении, падение напряжения на нем порядка 1В, а оставшееся напряжение источника ЭДС приложено к резистору R. ВАХ и диаграмма работы приведены на рис. б, в.

Классификация полупроводниковых приборов.

Полупроводниковыми приборами называются приборы, принцип действия которых основан на использовании свойств pn-переходов.

1. Полупроводниковые резисторы

2. Полупроводниковые диоды

3. Биполярные транзисторы

4. Полевые транзисторы

6. Полупроводниковые фотоэлектрические приборы.

7. Полупроводниковые микросхемы.

8. Комбинированные полупроводниковые приборы.

Полупроводниковые резисторы

1. Линейные резисторы

3. Терморезисторы (термисторы и позисторы)

Линейные резисторы

Линейный резистор — полупроводниковый резистор, в котором применяется слаболегированный материал типа кремния или арсенида галлия.

Используются в интегральных микросхемах.

Варисторы

Варистор — полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения.

Один из основных параметров варистора коэффициент нелинейности. , где U I Напряжения и ток варистора. Коэффициент нелинейности для различных типов варисторов лежит в пределах 2-6.

Терморезисторы (термисторы и позисторы)

Терморезистор — полупроводниковый резистор, в котором используется зависимость электрического сопротивления полупроводника от температуры.

Термистор — сопротивление с ростом температуры падает.

Позистор — сопротивление с ростом температуры растет.

Один из основных параметров терморезистора — температурный коэффициент сопротивления, который выражает процентное изменение сопротивления в зависимости от температуры.

Для термисторов K=-0.3 — -0.66. У позисторов температурный коэффициент положительный. Применяются в системах регулирования, тепловой защите.

Тензорезисторы

Тензорезистор — полупроводниковый резистор, в котором используется зависимость электрического сопротивления от механических деформаций. Важнейшей характеристикой является деформационная характеристика.

Основными параметрами является номинальное сопротивление R= 100-500 Ом и коэффициент тензочувствительности

Полупроводниковые диоды.

Полупроводниковый диод это полупроводниковый прибор с одним pn-переходом. По конструкции классифицируются как плоскостные и точечные.

К точечным диодам относятся:

К плоскостным диодам относятся:

3. Туннельные диоды

4. Обращенные диоды

Выпрямительные диоды.

Это диоды предназначенные для выпрямления переменного тока. По мощности подразделяютя на маломощные, средней и большой мощности. Вольтамперная характеристика аналогична характеристике pn-перехода. Основные параметры:

— прямое напряжение, которое нормируется при определенном прямом токе.

— максимально допустимый прямой ток

— максимально допустимое обратное напряжение

— обратный ток, который нормируется при определенном обратном напряжении.

Для повышения обратного напряжения диоды включаются последовательно. В диодных матрицах диоды присоединены к одному общему выводу. В диодных сборках используется параллельное, последовательное, мостовое и другие способы включения диодов.

Стабилитроны

Полупроводниковый диод, напряжение на котором в области пробоя слабо зависит от тока и который используется для стабилизации напряжения. Работа стабилитрона видна из его вольт — амперной характеристики.

При увеличении Iн Iс уменьшается, а напряжение остается постоянным за счет характеристики стабилитрона. Основными параметрами стабилитрона являются:

1. Напряжение на участке стабилизации Uст

2. Динамическое сопротивление на участке стабилизации

3. Минимальный и максимальный токи стабилизации Iст min Iст max Стабилитроны допускают последовательное включение, при этом общее напряжение стабилизации равно сумме напряжений стабилизации.

Туннельный диод.

Полупроводниковый диод на основе вырожденного полупроводника. Из-за высокой концентрации примесей и малой ширины pn-перехода в области перехода появляются так называемые потенциальные ловушки, что приводит к образованию на вольтамперной характеристике участка с отрицательным сопротивлением (т.е. при увеличении напряжения ток уменьшается).

Основными параметрами являются:

2. Отношение тока пика к току впадины

Обращенные диоды

— Разновидность туннельных диодов. Электрическая проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении. Обладают вентильными свойствами при малых напряжениях в той области, где выпрямительные диоды вентильными свойствами не обладают. Туннельные диоды применяются в генераторах высокочастотных колебаний и в импульсных переключателях.

Варикап

Полупроводниковый диод, в котором используется зависимость емкости pn-перехода от обратного напряжения. Варикап применяется в качестве элемента с электрически управляемой емкостью. Используется в схемах управления, для автоматической подстройки частоты.

Общая емкость при небольшом обратном напряжении Uобр=2-5В и коэффициент перекрытия по емкости . Для большинства варикапов С=10-500 пФ и К=5-20.

В последнее время появилось еще два типа диодов — магнитодиод и тензодиод. Магнитодиод — полупроводниковый диод в котором используется изменение вольтамперной характеристики под действием магнитного поля. Основным параметром является его чувствительность , где dU и dB приращение прямого напряжения и магнитной индукции. K=(10-50)*103 B/(Тл*мА)

Тензодиод -полупроводниковый диод в котором используется изменение вольтамперной характеристики под действием механических деформаций. В качестве тензодиодов обычно применяются туннельные диоды у которых отдельные участки в/а характеристики существенно зависят от деформации рабочего тела диода.

Биполярные транзисторы

Биполярным транзистором называется полупроводниковый прибор состоящий из трех областей с чередующимися типами электропроводности, пригодный для усиления мощности.

1. низкочастотные f 300 Мгц

1. малой мощности Рmax 1.5 Bт

В биполярных транзисторах ток определяется носителями зарядов двух типов: электронов и дырок (отсюда и название биполярный) Транзистор имеет три вывода которые называют база, эмиттер, коллектор. В зависимости от проводимости транзисторы подразделяют на транзисторы прямой проводимости p-n-p и транзисторы обратной проводимости n-p-n. В зависимости от полярности прикладываемых напряжений транзистор может работать в одном из трех режимов:

1. Режим отсечки. Напряжение между эмиттером и базой и напряжение между эмиттером и коллектором обратные.

2. Режим насыщения. Напряжение между эмиттером и базой и напряжение между эмиттером и коллектором прямые.

3. Активный режим. Напряжение между эмиттером и базой прямое, а между эмиттером и коллектором обратное.

Рассмотрим работу транзистора в активном режиме.

При действии прямого напряжения Еб эмиттерный переход смещается в прямом направлении (ширина перехода уменьшается) и дырки свободно проходят через pn переход в область базы. База очень тонкая, поэтому основная масса дырок перемещается к коллекторному переходу и лишь незначительная часть рекомбинирует с электронами базы, образуя ток базы Iб. Изменением тока базы можно изменять напряжение на эмиттерном переходе (изменять ширину, а следовательно сопротивление перехода) и таким образом управлять током между эмиттером и коллектором. Следовательно, особенность транзистора состоит в том, что между его электронно дырочными переходами существует взаимодействие — ток одного из переходов может управлять током другого перехода. В этом состоит усилительное свойство транзистора — незначительное изменение тока базы Iб влечет значительное изменение тока коллектора Iк. Уравнение связи токов в транзисторе имеет вид: Iэ=Iб+Ik+Iко, где Iко — обратный коллекторный ток. Связь между приращением эмиттерного и коллекторного токов характеризуется коэффициентом передачи тока: при Uкб=Const для схемы с общей базой.

Схемы включения транзистора.

Дата добавления: 2020-08-06 ; просмотров: 978 ; ЗАКАЗАТЬ РАБОТУ

Силовые полупроводниковые приборы: диоды и тиристоры, их виды и применение

В зависимости от конструкции корпуса, в котором размещается полупроводниковая выпрямительная структура, диоды и тиристоры разделяют на штыревые, фланцевые, таблеточные, с корпусом под запрессовку, модульные.

Штыревые корпуса СПП (рис. 2.8) состоят из массйвного основания, снабженного штырем, и крышки, которая при соединении с основанием образует герметичную полость для размещения полупроводниковой структуры. Основание корпуса диода для тиристора, на котором располагается полупроводниковая структура, служит одним из основных электрических выводов СПП и одновременно теплоотводом. Соединения основания корпуса с токоподводом и охладителем осуществляется с помощью штыря, на котором имеется резьба. Крышка корпуса СПП несет на себе второй основной электрический вывод СПП и обеспечивает изоляцию его от основания. Крышки штыревых корпусов тиристоров снабжаются также проходными изоляторами для управляющего электрода. Выводы со стороны крышки корпуса могут выполняться как жесткими, так и гибкими.

Рис. 2.8. Диод штыревой конструкции с гибким (а) и жестким (б) выводом

Рис. 2.9. Тиристор фланцевой конструкции с жестким (а) и гибким (б) выводами

В зависимости от ориентации полупроводниковой структуры по отношению к основанию и крышке корпуса различают диоды и тиристоры прямой (анод на основании) и обратной (катод на основании) полярности.

Внешняя образующая поверхность основания корпусов штыревой конструкции имеет форму шестигранника и обеспечивает возможность применения гаечного ключа при монтаже СПП в преобразовательном устройстве.

Фланцевая конструкция (рис. 2.9) корпусов диодов и тиристоров отличается от штыревой конструкции отсутствием штыря у основания и формой внешней образующей основания, выполненной в виде фланца. Крепление диодов и тиристоров фланцевой конструкции к токоотводу и охладителю осуществляется путем прижима фланца основания с помощью прижимного устройства. Фланцевая конструкция корпусов в отечественном силовом полупроводниковом приборостроении не имеет широкого распространения, применяется в основном для СПП, размещаемых на вращающихся конструкциях (так называемые роторные СПП).

Штыревая и фланцевая конструкции диодов и тиристоров обеспечивают возможность одностороннего охлаждения полупроводниковой структуры и применяются для СПП на токи до 320—500 А.

Таблеточные корпуса (рис. 2.10) диодов и тиристоров представляют собой цилиндрический полый изолятор, в торцевых частях которого имеются два медных основания, между которыми располагается полупроводниковая структура.

Основания корпуса служат для подсоединения токоподводов и теплоотводов, прижимаемых к основаниям с помощью специального прижимного устройства.

Рис. 2.10. Тиристор таблеточного исполнения

Таблеточная конструкция корпуса диода и тиристора обеспечивает возможность как одностороннего, так и двустороннего отвода тепла от полупроводниковой структуры СПП и применяется для приборов на токи 2 50 А и выше.

Корпуса диодов под запрессовку (рис. 2.11) состоят из полого цилиндра с рифленой на: ружной образующей поверхностью, закрытого с одного из торцов дном—основанием-, на котором располагается полупроводниковая структура, и проходного изолятора с гибким или жестким выводом, закрывающим вторрй торец цилиндра. Соединение диода в корпус под запрессовку с теплоотводом и одним из токоотводов осуществляется запрессовкой корпуса в специальное отверстие в них. Как и диоды штыревой и фланцевой конструкции, диоды в корпусах под запрессовку выполняются прямой (анод на основании) и обратной (катод на основании) полярности.

Корпуса СПП под запрессовку обеспечивают одностороннее охлаждение полупроводниковой структуры и применяются для диодов на токи до 25 А, так называемые автотракторные диоды.

Модульная конструкция (рис. 2.12) диодов и тиристоров состоит из основания с теплопроводной электроизолирующей прокладкой, на которой располагаются одна или несколько полупроводниковых структур, соединенных между собой определенным образом, и пластмассового защитного корпуса с электрическими выводами.

Рис. 2.11, Диод с корпусом под запрессовку с гибким (а) и жестким (б) выводами

Рис. 2.12. Силовой полупроводниковый диодно-тиристорный модуль: а, б — общий вид; в — схема соединения

Основание конструкции служит теплоотводом, электрически изолированным от выводов полупроводниковых структур СПП, входящих в состав модуля. Модульные конструкции выпускают с различными комбинациями СПП на токи до 160 А.

Полупроводниковые приборы (стр. 1 из 4)

Это электронные приборы, действие которых основано на электронных процессах в полупроводниках. В электронике П. п. служат для преобразования различных сигналов, в энергетике — для непосредственного преобразования одних видов энергии в другие.

Известно много разнообразных способов классификации П. п., например по назначению и принципу действия, по типу материала, конструкции и технологии, по области применения. Однако к основным классам П. п. относят следующие: электропреобразовательные приборы, преобразующие одни электрические величины в др. электрические величины (полупроводниковый диод, транзистор, тиристор); оптоэлектронные приборы, преобразующие световые сигналы в электрические и наоборот (оптрон, фоторезистор, фотодиод, фототранзистор, фототиристор. полупроводниковый лазер, светоизлучающий диод, твердотельный преобразователь изображения — аналог видикона и т.п.); термоэлектрические приборы, преобразующие тепловую энергию в электрическую и наоборот (термоэлемент, термоэлектрический генератор, солнечная батарея, термистор и т.п.); магнитоэлектрич. приборы (датчик, использующий Холла эффект, и т.п.); пьезоэлектрический и тензометрический приборы, которые реагируют на давление или механическое смещение. К отдельному классу П. п. следует отнести интегральные схемы, которые могут быть электропреобразующими, оптоэлектронными и т.д. либо смешанными, сочетающими самые различные эффекты в одном приборе. Электропреобразовательные П. п. — наиболее широкий класс приборов, предназначенных для преобразования (по роду тока, частоте и т.д.), усиления и генерирования электрических колебаний в диапазоне частот от долей гц до 100 Ггц и более; их рабочие мощности находятся в пределах от 10 -5 -10 -4 сек, ограничивает частотный предел их применения (обычно областью частот 50-2000 гц ).

Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10 -7 -10 -10 сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами, главным образом в слаботочных сигнальных цепях ЭВМ.

Рис.3. Полупроводниковый диода с р-n – переходом

Рис.4. Вольтамперные характеристики туннельного и обращенного диодов

При невысоких пробивных напряжениях обычно развивается не тепловой, а обратимый лавинный пробой р-n-перехода — резкое нарастание тока при почти неизменном напряжении, называется напряжением стабилизации Ucт. На использовании такого пробоя основана работа полупроводниковых стабилитронов. Стабилитроны общего назначения с Uc т от 3-5 в до 100-150 в применяют главным образом в стабилизаторах и ограничителях постоянного и импульсного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается исключительно высокая температурная стабильность Ucт (до 1×10 -5 — 5×10 -6 К -1 ), — в качестве источников эталонного и опорного напряжений.

В предпробойной области обратный ток диода подвержен очень значительным флуктуациям; это свойство р-n-перехода используют для создания генераторов шума. Инерционность развития лавинного пробоя в р-n-переходе (характеризующаяся временем 10 -9 -10 -10 сек) обусловливает сдвиг фаз между током и напряжением в диоде, вызывая (при соответствующей схеме включения его в электрическую цепь) генерирование СВЧ колебаний. Это свойство успешно используют в лавинно-пролётных полупроводниковых диодах, позволяющих осуществлять генераторы с частотами до 150 Ггц.

Рис.5. Полупроводниковые диоды (внешний вид)

Для детектирования и преобразования электрических сигналов в области СВЧ используют смесительные П. д. и видеодетекторы, в большинстве которых р-n-переход образуется под точечным контактом. Это обеспечивает малое значение ёмкости Св (рис.3 ), а специфическое, как и у всех СВЧ диодов, конструктивное оформление обеспечивает малые значения паразитных индуктивности Lk и ёмкости Ск и возможность монтажа диода в волноводных системах.

При подаче на р-n-переход обратного смещения, не превышающего U*обр, он ведёт себя как высокодобротный конденсатор, у которого ёмкость Св зависит от величины приложенного напряжения. Это свойство используют в варикапах, применяемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, в параметрических полупроводниковых диодах, служащих для усиления СВЧ колебаний, в варакторах и умножительных диодах, служащих для умножения частоты колебаний в диапазоне СВЧ. В этих П. д. стремятся уменьшить величину сопротивления rб (основной источник активных потерь энергии) и усилить зависимость ёмкости Свот напряжения Uo6p.

У р-n-перехода на основе очень низкоомного (вырожденного) полупроводника область, обеднённая носителями заряда, оказывается очень тонкой (

10 -2 мкм), и для неё становится существенным туннельный механизм перехода электронов и дырок через потенциальный барьер (см. Туннельный эффект).На этом свойстве основана работа туннельного диода, применяемого в сверхбыстродействующих импульсных устройствах (например, мультивибраторах, триггерах),в усилителях и генераторах колебаний СВЧ, а также обращенного диода, применяемого в качестве детектора слабых сигналов и смесителя СВЧ колебаний. Их ВАХ (рис.4 ) существенно отличаются от ВАХ других П. д. как наличием участка с «отрицательной проводимостью», ярко выраженной у туннельного диода, так и высокой проводимостью при нулевом напряжении.

К П. д. относят также ПП приборы с двумя выводами, имеющие неуправляемую четырёхслойную р-n-р-n-структуру и называют динисторами (см. Тиристор ), а также приборы, использующие объёмный эффект доменной неустойчивости в ПП структурах без р-n-перехода — Ганна диоды . В П. д. используют и др. разновидности ПП структур: контакт металл — полупроводник (см. Шотки эффект , Шотки диод ) и р-i-n-структуру, характеристики которых во многом сходны с характеристиками р-n-перехода. Свойство р-i-n-структуры изменять свои электрические характеристики под действием излучения используют, в частности, в фотодиодах и детекторах ядерных излучений , устроенных Т.о., что фотоны или ядерные частицы могут поглощаться в активной области кристалла, непосредственно примыкающей к р-n-переходу, и изменять величину обратного тока последнего. Эффект излучательной рекомбинации электронов и дырок, проявляющийся в свечении некоторых р-n-переходов при протекании через них прямого тока, используется в светоизлучающих диодах . К П. д. могут быть отнесены также и полупроводниковые лазеры .

ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ. ВЫПРЯМИТЕЛЬНЫЕ УСТАНОВКИ

ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

Как уже было отмечено, наибольшее применение на электроподвижном составе нашли тяговые двигатели постоянного тока. Для преобразования переменного тока в постоянный (точнее, пульсирующий ) на электровозах переменного тока устанавливают выпрямители . В выпрямителях используют полупроводниковые приборы. Принцип действия этих приборов основан на их свойстве пропускать ток только в одном направлении.
Для изготовления полупроводниковых вентилей используют германий, кремний, селен и другие материалы. Пластины, изготовленные из этих материалов, после внесения специальных примесей имеют слоистую структуру, в которой чередуются проводимости различных типов — электронная (n) и дырочная (р).
В неуправляемых выпрямителях используют неуправляемые вентили — диоды , которые начинают проводить ток, как только к ним прикладывают напряжение, действующее в проводящем направлении. Диоды имеют двухслойную р-n-p-структуру, для них характерна высокая проводимость в прямом направлении и низкая в обратном.
В преобразователях, предназначенных не только для выпрямления, но и для регулирования выпрямленного напряжения и инвертирования (т. е. преобразования постоянного напряжения в переменное) используют полупроводниковые управляемые вентили — тиристоры.
Полупроводниковые приборы подразделяют на различные типы по исходному материалу, назначению, конструкции, мощности, виду охлаждения, диапазону рабочих частот и т. д. В силовых цепях электроподвижного состава используют мощные (силовые) кремниевые полупроводниковые приборы с принудительным воздушным охлаждением.
Силовые диоды способны выдерживать высокое (до 4000 В) обратное (прикладываемое в непроводящем направлении) напряжение при незначительных токах утечки (до 5 мА).

Каждый электрик должен знать:  Что такое нагрузочная цепь

Рис. 59 Общий вид диода штыревой конструкции (а)
и его вольт-амперная характеристика (б)

У силового диода (рис. 59, а) наружный конец гибкого вывода является одним из электродов вентиля, на него насажен стандартный наконечник для включения прибора в схему. Положительный электрод называется анодом , а отрицательный — катодом. Направление тока в вентиле (от верхнего гибкого вывода к основанию или, наоборот, от основания к выводу) указывают значком на корпусе вентиля. Охладители имеют массивное основание и ребра, увеличивающие поверхность охлаждения.
Основной для полупроводниковых вентилей является вольт-амперная характеристика (ВАХ), показывающая зависимость тока, проходящего через прибор в прямом Iпр и обратном Iобр направлении от соответствующего напряжения (рис. 59, б).
При прохождении прямого тока через вентиль в нем вследствие внутреннего электрического сопротивления происходит падение напряжения (прямое падение напряжения) и возникают потери энергии, которые выделяются в виде тепла. Поэтому ток Iпр, проходящий через диод в прямом (проводящем) направлении, ограничивается допустимой температурой нагрева полупроводниковой структуры и условиями охлаждения. Современные силовые диоды с воздушным охлаждением рассчитаны на предельные прямые токи до 1600 А.
При включении диода в непроводящем направлении ток Iобр с увеличением обратного напряжения Uобр возрастает медленно. Затем при достижении предельного напряжения Umax наступает пробой вентиля, т. е. он теряет свои запирающие свойства. Поэтому напряжение, подводимое к вентилю, должно быть меньше значения Umax, при котором происходит пробой.
Вентили рассчитывают на определенное обратное номинальное напряжение (повторяющееся напряжение), при котором завод-изготовитель гарантирует их длительную работу без пробоя.
В зависимости от номинального напряжения Uном вентили подразделяют на классы. Величина Uном/100 означает класс вентиля. Например, кремниевый вентиль 8-го класса имеет повторяющееся напряжение
8 * 100 = 800 В. Вполне понятно, что чем выше класс вентиля, тем больше его стоимость. На электровозах устанавливают вентили не ниже 8-го класса.
Для того чтобы напряжение, приложенное к вентилю, не могло превысить предельного значения, вентили выбирают с соответствующим запасом.
Устанавливаемые на современных отечественных электровозах полупроводниковые вентили могут кратковременно пропускать в прямом направлении ток более 1000 А, не повреждаясь при этом, но не выдерживают обратного тока даже 1 А. Это объясняется тем, что прямой ток, как и выделяемое при прохождении его тепло, распределяется равномерно по всей площади структуры полупроводника. Обратный же ток проходит не по всей поверхности, а по отдельным небольшим каналам. Поэтому в отдельных точках выделяется значительное количество тепла, что способствует пробою вентиля.
Учитывая это, кремниевые пластины вентилей стали изготовлять по особой технологии. Это позволило обеспечить прохождение обратного тока равномерно по всей поверхности пластины, что снизило вероятность его недопустимого нагрева и пробоя. Такие вентили получили название лавинных. Их широко применяют на электровозах.
Силовые тиристоры, широко применяемые на электроподвижном составе, способны находиться в закрытом состоянии в случае приложения к ним как прямого, так и обратного напряжения, если на вентиль не подается сигнал управления, и пропускать ток при весьма малом падении напряжения в прямом направлении, если прибор открыт управляющим сигналом.
После того как тиристор откроется, он продолжает работать независимо от того, поступает или нет сигнал на его управляющий вывод. Закрыть его можно только уменьшив прямой ток практически до нуля. Тиристоры имеют более сложную, четырехслойную р-n-р-n-структуру, обеспечивающую эти свойства.
Управляемые вентили (штыревые и др.) конструктивно сходны с неуправляемыми (см. рис. 59, а). Отличие их состоит в том, что они, кроме силового (гибкого), имеют еще дополнительный вывод в корпусе от управляющего электрода, В мощных тиристорах толщина кремниевой пластинки, находящейся внутри корпуса полупроводникового прибора, не превышает 0,35 мм. Диаметр ее зависит от пропускаемого тока.
Широкое распространение получили тиристоры (рис. 60, а) и диоды таблеточного типа, так как у них по сравнению со штыревыми существенно увеличена поверхность охлаждения, улучшен теплоотвод и выше стойкость к перегрузкам.

Рис.60 Общий вид тиристора таблеточной конструкции

Таблеточные тиристоры и диоды зажимают контактными поверхностями, представляющими собой анодный и ка-
тодный электроды прибора, между двумя половинками охладителей, которые изолированы друг от друга.
Напряжение включения можно значительно снизить, если на управляющий электрод подать импульс тока. Очевидно, что тиристоры должны выдерживать в закрытом состоянии не только обратное напряжение, но и прямое. Переход тиристора в открытое состояние должен происходить только при наличии импульса тока в цепи управления.
Для тиристоров, как и для диодов, основными параметрами являются: предельный прямой ток, обратное повторяющееся напряжение, прямое падение напряжения, обратный ток утечки. Кроме того, существует ряд дополнительных параметров: прямое повторяющееся напряжение, ток управления, напряжение управления, время включения и выключения, а также ряд других пара­метров.
Обозначения тиристоров и диодов расшифровываются следующим образом. Например, в марке ДЛ123-320-20 буквы и цифры означают: Д — диод; Л — лавинный; 123 — группа цифр, характеризующих модификацию прибора, условный диаметр и конструктивное исполнение корпуса; 320 — предельный ток, А; 20 — класс вентиля. В марке Т253-1250-16 буква «Т» означает тиристор, а цифры расшифровываются так же, как в обозначении диода.

ПРЕОБРАЗОВАТЕЛЬНЫЕ УСТАНОВКИ ДЛЯ РЕЖИМА ТЯГИ

Неуправляемые выпрямители широко применяют на электровозах переменного тока для питания тяговых двигателей в режиме тяги. Они преобразуют переменный ток в постоянный (пульсирующий). Выпрямители могут быть соединены с обмоткой трансформатора различными способами и вследствие этого имеют различную структуру. Самое простое включение показано на рис. 61, где выпрямитель состоит из одного диода.

Рис. 61. Схема однополупериодного выпрямления (а)
и кривая выпрямленного напряжения (б)

Электродвижущая сила во вторичной обмотке трансформатора, как и в первичной, изменяется по синусоиде. Когда э. д. с, а следовательно, и напряжение U, приложенное к выпрямителю, во вторичной обмотке действуют слева направо (на рис. 61, а направление показано сплошной стрелкой), потенциал анода диода VD выше, чем катода, и через двигатель проходит ток. При изменении направления э. д. с. на противоположное выпрямитель не пропускает тока. Таким образом, по цепи нагрузки проходит не постоянный, а пульсирующий ток: он постоянен только по направлению (рис. 61, б). Рассмотренная схема однополупериодного выпрямления на электровозе не используется. Для того чтобы через выпрямитель проходил ток в оба полупериода, применяют схему двухполупериодного выпрямления либо с нулевым выводом вторичной обмотки трансформатора, либо мостовую.


Рис.62. Схемы двухполупериодного выпрямления (а и б)
и кривая выпрмленного напряжения (в)

В схеме с нулевым выводом вторичную обмотку трансформатора делят на две равные части, выпрямитель и двигатель включают, как показано на рис. 62, а. Когда э. д. с, а следовательно, и напряжение в первый полупериод направлены слева направо (сплошная стрелка на рис. 62, а), проводит ток (открыт) диод VD2, а диод VD1 закрыт. К нему приложено напряжение, действующее в непроводящем направлении. При изменении направления э. д. с. трансформатора на противоположное ток проводит вентиль VD1. Таким образом, в течение обоих полупериодов через двигатель проходит ток, изменяющийся от нуля до амплитудного значения и вновь до нуля.
Недостаток такой схемы выпрямления заключается в том, что в каждый полупериод работает только половина
обмотки трансформатора, а это приводит к плохому использованию, а значит, и большему расходу меди.
Выпрямительная установка, собранная по мостовой схеме, состоит из четырех плеч (рис. 62, б). Когда напряжение во вторичной обмотке трансформатора действует слева направо, ток проходит через диод VD1, нагрузку (двигатель), диод VD3 в обмотку трансформатора (сплошные стрелки). При изменении направления напряжения (штриховые стрелки) ток проходит через диод VD2, нагрузку, диод VD4 и возвращается в обмотку трансформатора. Следовательно, как и в предыдущей схеме, ток в каждый полупериод проодит через нагрузку в одном направ­лении (рис. 62, в).
В мостовой схеме вторичная обмотка тягового трансформатора работает полностью. На первый взгляд кажется, что число вентилей в этой схеме удваивается. Однако напряжение, приходящееся на каждый диод, уменьшается в 2 раза. Поскольку каждое плечо моста VD1—VD4 имеет несколько последовательно включенных вентилей и несколько параллельных ветвей, то общее число диодов, необходимое для выпрямителя, питающего тяговые двигатели и собранного по мостовой схеме (см. рис. 62, б), равно числу диодов в схеме рис. 62, а. Так, один выпрямитель электровоза ВЛ80т(с) имеет в каждом плече моста 12 параллельных ветвей (рис. 63), каждая из которых содержит четыре последовательно включенных лавинных вентиля.

Рис. 63. Схема плеча выпрямительной установки восьмиосного электровоза

Следовательно, в одном выпрямителе имеется 4-4-12= 192 вентиля. Выпрямитель рассчитан на номинальные выпрямленные ток 3200 А и напряжение 1350 В. Он питает два тяговых двигателя. Поэтому на восьмиосных электровозах установлено четыре таких выпрямителя; общее число вентилей в них равно 708. Коэффициент полезного действия выпрямителя 99%. Выпрямитель размещен в двух шкафах и работает только с принудительным охлаждением. Каждый выпрямитель снабжается довольно сложной защитой.
Управляемые выпрямители, собранные на тиристорах, позволили осуществить не только преобразование переменного тока в постоянный, но и плавное регулирование напряжения, подводимого к тяговым двигателям электровозов переменного тока, вместо ступенчатого.
Как же осуществляется плавное регулирование? В выпрямителе, собранном на тиристорах VS по схеме моста (рис. 64, а), можно изменять угол а их включения, т. е. подавать в соответствующие моменты управляющие импульсы тока Iу (см. рис. 60).

Рис. 64. Принципиальная схема плавного регулирования напряжения,
подводимого к тяговым двигателям (а), и кривые напряжения при глубоком регулировании

При этом можно регулировать среднее значение напряжения Ucp от нуля при а = 180° до максимального возможного при а = 0° (рис. 64, б). Последнее соответствует среднему выпрямленному напряжению в неуправляемых выпрямителях (см. рис. 62, в).
Как видно из рис. 64, при таком регулировании, называемом глубоким, возникают большие пульсации напряжения и выпрямленного тока. Это значительно осложняет работу тяговых двигателей. Для устранения таких пульсаций на электровозе ВЛ80р осуществляется более плавное регулирование напряжения. Здесь тяговый трансформатор имеет три секции вторичной обмотки с напряжениями Um/4, Um/4 и Um/2. Выпрямитель выполнен по мост­вой схеме (рис. 65, а), имеет восемь плеч.

Рис.65. Упрощенная силовая схема электровоза ВЛ80р (а)
и кривые напряжения при зонном регулировании
в пределах секции вторичной обмотки трансформатора (б)

Предусмотрено четыре зоны регулирования выпрямленного напряжения, в каждой из которых осуществляется плавное регулирование в пределах четверти амплитуды полного напряжения. Переключение с одной секции на другую тиристоры позволяют осуществлять без тока и необходимость в контакторах с дугогашением отпадает.
Напряжения, возникающие в процессе его плавного изменения в пределах регулируемой секции, складываются с напряжением, индуцируемым в секциях, где уже был завершен этот процесс (рис. 65, б). Поэтому здесь только в первой секции вторичной обмотки (когда на двигатели подается небольшое напряжение) осуществляется глубокое регулирование.

Реферат: Полупроводниковые приборы

Полупроводниковые приборы

Это электронные приборы, действие которых основано на электронных процессах в полупроводниках. В электронике П. п. служат для преобразования различных сигналов, в энергетике — для непосредственного преобразования одних видов энергии в другие.

Известно много разнообразных способов классификации П. п., например по назначению и принципу действия, по типу материала, конструкции и технологии, по области применения. Однако к основным классам П. п. относят следующие: электропреобразовательные приборы, преобразующие одни электрические величины в др. электрические величины (полупроводниковый диод, транзистор, тиристор); оптоэлектронные приборы, преобразующие световые сигналы в электрические и наоборот (оптрон, фоторезистор, фотодиод, фототранзистор, фототиристор. полупроводниковый лазер, светоизлучающий диод, твердотельный преобразователь изображения — аналог видикона и т.п.); термоэлектрические приборы, преобразующие тепловую энергию в электрическую и наоборот (термоэлемент, термоэлектрический генератор, солнечная батарея, термистор и т.п.); магнитоэлектрич. приборы (датчик, использующий Холла эффект, и т.п.); пьезоэлектрический и тензометрический приборы, которые реагируют на давление или механическое смещение. К отдельному классу П. п. следует отнести интегральные схемы, которые могут быть электропреобразующими, оптоэлектронными и т.д. либо смешанными, сочетающими самые различные эффекты в одном приборе. Электропреобразовательные П. п. — наиболее широкий класс приборов, предназначенных для преобразования (по роду тока, частоте и т.д.), усиления и генерирования электрических колебаний в диапазоне частот от долей гц до 100 Ггц и более; их рабочие мощности находятся в пределах от 10 -5 -10 -4 сек, ограничивает частотный предел их применения (обычно областью частот 50-2000 гц ).

Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10 -7 -10 -10 сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами, главным образом в слаботочных сигнальных цепях ЭВМ.

Рис.3. Полупроводниковый диода с р-n – переходом

Рис.4. Вольтамперные характеристики туннельного и обращенного диодов

При невысоких пробивных напряжениях обычно развивается не тепловой, а обратимый лавинный пробой р-n-перехода — резкое нарастание тока при почти неизменном напряжении, называется напряжением стабилизации Ucт. На использовании такого пробоя основана работа полупроводниковых стабилитронов. Стабилитроны общего назначения с Uc т от 3-5 в до 100-150 в применяют главным образом в стабилизаторах и ограничителях постоянного и импульсного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается исключительно высокая температурная стабильность Ucт (до 1×10 -5 — 5×10 -6 К -1 ), — в качестве источников эталонного и опорного напряжений.

В предпробойной области обратный ток диода подвержен очень значительным флуктуациям; это свойство р-n-перехода используют для создания генераторов шума. Инерционность развития лавинного пробоя в р-n-переходе (характеризующаяся временем 10 -9 -10 -10 сек) обусловливает сдвиг фаз между током и напряжением в диоде, вызывая (при соответствующей схеме включения его в электрическую цепь) генерирование СВЧ колебаний. Это свойство успешно используют в лавинно-пролётных полупроводниковых диодах, позволяющих осуществлять генераторы с частотами до 150 Ггц.

Рис.5. Полупроводниковые диоды (внешний вид)

Для детектирования и преобразования электрических сигналов в области СВЧ используют смесительные П. д. и видеодетекторы, в большинстве которых р-n-переход образуется под точечным контактом. Это обеспечивает малое значение ёмкости Св (рис.3 ), а специфическое, как и у всех СВЧ диодов, конструктивное оформление обеспечивает малые значения паразитных индуктивности Lk и ёмкости Ск и возможность монтажа диода в волноводных системах.

При подаче на р-n-переход обратного смещения, не превышающего U*обр, он ведёт себя как высокодобротный конденсатор, у которого ёмкость Св зависит от величины приложенного напряжения. Это свойство используют в варикапах, применяемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, в параметрических полупроводниковых диодах, служащих для усиления СВЧ колебаний, в варакторах и умножительных диодах, служащих для умножения частоты колебаний в диапазоне СВЧ. В этих П. д. стремятся уменьшить величину сопротивления rб (основной источник активных потерь энергии) и усилить зависимость ёмкости Свот напряжения Uo6p.

У р-n-перехода на основе очень низкоомного (вырожденного) полупроводника область, обеднённая носителями заряда, оказывается очень тонкой (

10 -2 мкм), и для неё становится существенным туннельный механизм перехода электронов и дырок через потенциальный барьер (см. Туннельный эффект).На этом свойстве основана работа туннельного диода, применяемого в сверхбыстродействующих импульсных устройствах (например, мультивибраторах, триггерах),в усилителях и генераторах колебаний СВЧ, а также обращенного диода, применяемого в качестве детектора слабых сигналов и смесителя СВЧ колебаний. Их ВАХ (рис.4 ) существенно отличаются от ВАХ других П. д. как наличием участка с «отрицательной проводимостью», ярко выраженной у туннельного диода, так и высокой проводимостью при нулевом напряжении.

К П. д. относят также ПП приборы с двумя выводами, имеющие неуправляемую четырёхслойную р-n-р-n-структуру и называют динисторами (см. Тиристор ), а также приборы, использующие объёмный эффект доменной неустойчивости в ПП структурах без р-n-перехода — Ганна диоды . В П. д. используют и др. разновидности ПП структур: контакт металл — полупроводник (см. Шотки эффект , Шотки диод ) и р-i-n-структуру, характеристики которых во многом сходны с характеристиками р-n-перехода. Свойство р-i-n-структуры изменять свои электрические характеристики под действием излучения используют, в частности, в фотодиодах и детекторах ядерных излучений , устроенных Т.о., что фотоны или ядерные частицы могут поглощаться в активной области кристалла, непосредственно примыкающей к р-n-переходу, и изменять величину обратного тока последнего. Эффект излучательной рекомбинации электронов и дырок, проявляющийся в свечении некоторых р-n-переходов при протекании через них прямого тока, используется в светоизлучающих диодах . К П. д. могут быть отнесены также и полупроводниковые лазеры .

Большинство П. д. изготавливают, используя планарно-эпитаксиальную технологию (см. Планарная технология ), которая позволяет одновременно получать до нескольких тысяч П. д. В качестве полупроводниковых материалов для П. д. применяют главным образом Si, а также Ge, GaAs, GaP и др., в качестве контактных материалов — Au, Al, Sn, Ni, Cu. Для защиты кристалла П. д. его обычно помещают в металло-стеклянный, металло-керамический, стеклянный или пластмассовый корпус (рис.5 ).

В СССР для обозначения П. д. применяют шестизначный шифр, первая буква которого характеризует используемый полупроводник, вторая — класс диода, цифры определяют порядковый номер типа, а последняя буква — его группу (например, ГД402А — германиевый универсальный диод; КС196Б — кремниевый стабилитрон).

От своих электровакуумных аналогов, например кенотрона , газоразрядного стабилитрона , индикатора газоразрядного , П. д. отличаются значительно большими надёжностью и долговечностью, меньшими габаритами, лучшими техническими характеристиками, меньшей стоимостью и поэтому вытесняют их в большинстве областей применения.

С развитием ПП электроники совершился переход к производству наряду с дискретными П. д. диодных структур в ПП монолитных интегральных схемах и функциональных устройствах, где П. д. неотделим от всей конструкции устройства.

Рис.1 Энергетические диаграммы электронно-дырочного перехода туннельного диода

Рис.2 Вольтамперные характеристики туннельных диодов

Туннельный диод

Туннельный диод, двухэлектродный электронный прибор на основе полупроводникового кристалла, в котором имеется очень узкий потенциальный барьер, препятствующий движению электронов; разновидность полупроводникового диода. Вид вольтамперной характеристики (ВАХ) Т.д. определяется главным образом квантово-механическим процессом туннелирования (см. Туннельный эффект), благодаря которому электроны проникают сквозь барьер из одной разрешенной области энергии в другую. Изобретение Т.д. впервые убедительно продемонстрировало существование процессов туннелирования в твёрдых телах. Создание Т.д. стало возможно в результате прогресса в полупроводниковой технологии, позволившего создавать полупроводниковые материалы с достаточно строго заданными электронными свойствами. Путём легирования полупроводника большим количеством определённых примесей удалось достичь очень высокой плотности дырок и электронов в р — и n — областях, сохранив при этом резкий переход от одной области к другой (см. Электронно-дырочный переход).Ввиду малой ширины перехода (50-150 Å) и достаточно высокой концентрации легирующей примеси в кристалле, в электрическом токе через Т.д. доминируют туннелирующие электроны. На рис.1 приведены упрощённые энергетические диаграммы для таких р — n — переходов при четырёх различных напряжениях смещения U. При увеличении напряжения смещения до U1 межзонный туннельный ток (it на рис.1 , б) возрастает. Однако при дальнейшем увеличении напряжения (например, до значения U2 , рис.1 , в) зона проводимости в n-oбласти и валентная зона в р-области расходятся, и ввиду сокращения числа разрешенных уровней энергии для туннельного перехода ток уменьшается — в результате Т.д. переходит в состояние с отрицательным сопротивлением. При напряжении, достигшем или превысившем U3 (рис.1 , г), как и в случае обычного р — n-перехода, будет доминировать нормальный диффузионный (или тепловой) ток.

Первый Т.д. был изготовлен в 1957 из германия; однако вскоре после этого были выявлены др. полупроводниковые материалы, пригодные для получения Т.д.: Si, InSb, GaAs, InAs, PbTe, GaSb, SiC и др. На рис.2 приведены ВАХ ряда Т.д. В силу того что Т.д. в некотором интервале напряжений смещения имеют отрицательное дифференциальное сопротивление и обладают очень малой инерционностью, их применяют в качестве активных элементов в высокочастотных усилителях электрических колебаний, генераторах и переключающих устройствах.

Рис.1. Схема включения стабилитрона в параметрическом стабилизаторе напряжения

Рис.2. Вольтамперная характеристика стабилитрона

Стабилитрон

Стабилитрон [от лат. stabilis — устойчивый, постоянный и (элек) трон], двухэлектродный газоразрядный или полупроводниковый прибор, напряжение на котором при изменении (в определённых пределах) протекающего в нём тока изменяется незначительно.С. применяют для поддержания постоянства напряжения на заданном участке электрической цепи, например в стабилизаторах напряжения (см. Стабилизатор электрический) — параметрических (рис.1) либо компенсационных (в качестве опорного элемента), в импульсных устройствах, ограничителях уровня напряжения и т.д. Коэффициент стабилизации напряжения К , характеризующий относительное изменение напряжений на входе и выходе участка цепи [К = (DUвх/Uвх): (DUвых/Uвых)], определяется видом вольтамперной характеристики С. (рис.2) и величиной сопротивления балластного резистора ; чем характеристика положе, тем сильнее стабилизирующий эффект.

Действие газоразрядных С. основано на свойствах тлеющего разряда и коронного разряда.С. тлеющего разряда выполняются в виде коаксиальной или плоскопараллельной системы электродов, помещенных в баллон, наполненный инертным газом под давлением несколько кн/м 2 . Область значений стабилизируемого напряжения у таких С.60-150 в , рабочий диапазон токов 5-40 ма .С. коронного разряда выполняются обычно в виде коаксиальной системы электродов с анодом малого радиуса и катодом большого радиуса (отношение радиусов

5-10); баллон С. наполнен газом (водородом) под относительно высоким давлением — от нескольких кн/м 2 до давлений, превышающих атмосферное (100 кн/м 2 ). Они предназначены для стабилизации высоких напряжений (

3Ї10 2 -3Ї10 4 в ) при малых токах (от

Полупроводниковый стабилитрон

Полупроводниковый стабилитрон , полупроводниковый диод, на выводах которого напряжение остаётся почти постоянным при изменении в некоторых пределах величины протекающего в нём электрического тока. Рабочий участок вольтамперной характеристики П. с. находится в узкой области обратных напряжений, соответствующих электрическому пробою его р-n -перехода. При напряжениях пробоя Unp 6,5 в — с лавинным умножением носителей заряда; при промежуточных напряжениях генерируемые первоначально (вследствие туннельного эффекта) носители заряда создают условия для управляемого лавинного пробоя. В СССР выпускаются (1975) кремниевые П. с. на различные номинальные напряжения стабилизации в диапазоне от 3 до 180 в.П. с. применяют главным образом для стабилизации напряжения и ограничения амплитуды импульсов, в качестве источника опорного напряжения, в потенциометрических устройствах.

Варикап

[англ. varicap, от vari (able) — переменный и cap (acity) — ёмкость], конденсатор в виде полупроводникового диода, ёмкость которого нелинейно зависит от приложенного к нему электрического напряжения. Эта ёмкость представляет собой барьерную ёмкость электронно-дырочного перехода и изменяется от единиц до сотен пф (у отдельных В. практически в 3-4 раза) при изменении обратного (отрицательного знака) напряжения на несколько десятков вольт.В. обладает высокой добротностью (малыми потерями электрической энергии), малым температурным коэффициентом ёмкости, независимостью от частоты практически во всём диапазоне радиочастот, стабильностью параметров во времени.В. изготавливают на базе кремния, германия, арсенида галлия (см. Полупроводниковые материалы).В радиоэлектронных устройствах свойство нелинейности изменения ёмкости В. применяют для получения параметрического усиления, умножения частоты и др., а возможность электрического управления значением ёмкости — для дистанционной и безынерционной перестройки резонансной частоты колебательного контура и др.

полупроводниковый прибор электронный полупроводник

Транзистор

Рис.1 Транзисторы (схема)

Транзистор (от англ. transfer — переносить и resistor — сопротивление), электронный прибор на основе полупроводникового кристалла, имеющий три (или более) вывода, предназначенный для генерирования и преобразования электрических колебаний.

Изобретён в 1948 У. Шокли, У. Браттейном и Дж. Бардином (Нобелевская премия, 1956).Т. составляют два основных крупных класса: униполярные Т. и биполярные Т.

В униполярных Т. протекание тока через кристалл обусловлено носителями заряда только одного знака — электронами или дырками (см. Полупроводники). Подробно об униполярных Т. см. в ст. Полевой транзистор.

Рис.2а Внешний вид сверхвысокочастотных транзисторов в металлокерамических корпусах

Рис.2б Бескорпусные транзисторы

Рис.2в Сверхвысокочастотный малошумящий транзистор

В биполярных Т. (которые обычно называют просто Т.) ток через кристалл обусловлен движением носителей заряда обоих знаков. Такой Т. представляет собой (рис.1 ) монокристаллическую полупроводниковую пластину, в которой с помощью особых технологических приёмов созданы 3 области с разной проводимостью: дырочной (p) и электронной (n). В зависимости от порядка их чередования различают Т. p-n-p-типа и n-p-n-типа. Средняя область (её обычно делают очень тонкой) — порядка нескольких мкм, называется базой, две другие — эмиттером и коллектором. База отделена от эмиттера и коллектора электронно-дырочными переходами (р-n-переходами): эмиттерным (ЭП) и коллекторным (КП). От базы, эмиттера и коллектора сделаны металлические выводы.

Рассмотрим физические процессы, происходящие в Т., на примере Т. n-p-n-типа (рис.1 , а). К ЭП прикладывают напряжение Uбэ , которое понижает потенциальный барьер перехода и тем самым уменьшает его сопротивление электрическому току (то есть ЭП включают в направлении пропускания электрического тока, или в прямом направлении), а к КП — напряжение U , повышающее потенциальный барьер перехода и увеличивающее его сопротивление (КП включают в направлении запирания или в обратном направлении). Под действием напряжения Uбэ через ЭП течёт ток iэ , который обусловлен главным образом перемещением (инжекцией) электронов из эмиттера в базу. Проникая сквозь базу в область КП, электроны захватываются его полем и втягиваются в коллектор. При этом через КП течёт коллекторный ток ik . Однако не все инжектированные электроны достигают КП: часть их по пути рекомбинирует с основными носителями в базе — дырками (число рекомбинировавших электронов тем меньше, чем меньше толщина базы и концентрация дырок в ней). Так как в установившемся режиме количество дырок в базе постоянно, то это означает, что часть электронов уходит из базы в цепь ЭП, образуя ток базы iб таким образом, iэ = ik + iб . Обычно iб 2 . Надёжность работы Т. (определяется по среднему статистическому времени наработки на один отказ) характеризуется значениями

10 5 ч, достигая в отдельных случаях 10 6 ч. В отличие от электронных ламп Т. могут работать при низких напряжениях источников питания (до нескольких десятых долей в), потребляя при этом токи в несколько мка. Мощные Т. работают при напряжениях 10-30 в и токах до нескольких десятков а, отдавая в нагрузку мощность до 100 вт и более.

Верхний предел диапазона частот усиливаемых Т. сигналов достигает 10 Ггц, что соответствует длине волны электромагнитных колебаний 3 см. По шумовым характеристикам в области низких частот Т. успешно конкурируют с малошумящими электрометрическими лампами. В области частот до 1 Ггц Т. обеспечивают значение коэффициента шума не свыше 1,5-3,0 дб. На более высоких частотах коэффициент шума возрастает, достигая 6-10 дб на частотах 6-10 Ггц.

Т. является основным элементом современных микроэлектронных устройств. Успехи планарной технологии позволили создавать на одном кристалле полупроводника площадью 30-35 мм 2 электронные устройства, насчитывающие до нескольких десятков тыс.Т. Такие устройства, получившие название интегральных микросхем (ИС, см. Интегральная схема), являются основой радиоэлектронной аппаратуры третьего поколения. Примером такой аппаратуры могут служить наручные электронные часы, содержащие от 600 до 1500 Т., и карманные электронные вычислительные устройства (несколько тыс. т.). Переход к использованию ИС определил новое направление в конструировании и производстве малогабаритной и надёжной радиоэлектронной аппаратуры, получившее название микроэлектроники. Достоинства Т. в сочетании с достижениями технологии их производства позволяют создавать ЭВМ, насчитывающие до нескольких сотен тыс. элементов, размещать сложные электронные устройства на борту самолётов и космических летательных аппаратов, изготовлять малогабаритную радиоэлектронную аппаратуру для использования в самых различных областях промышленности, в медицине, быту и т.д. Наряду с достоинствами Т. (как и др. полупроводниковые приборы) имеют ряд недостатков, в первую очередь — ограниченный диапазон рабочих температур. Так, германиевые Т. работают при температурах не свыше 100°С, кремниевые 200°С. К недостаткам Т. относятся также существенные изменения их параметров с изменением рабочей температуры и довольно сильная чувствительность к ионизирующим излучениям. См. также Дрейфовый транзистор, Импульсный транзистор, Конверсионный транзистор, Лавинный транзистор.

Полевой транзистор

Полевые транзисторы (схематическое изображение):

Полевой транзистор это канальный транзистор, полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого входным сигналом. Протекание в П. т. рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы называются униполярными (в отличие от биполярных). По физической структуре и механизму работы П. т. условно делят на 2 группы. Первую образуют П. т. с управляющим р-n-переходом (см. Электронно-дырочный переход) или переходом металл — полупроводник (т. н. барьером Шотки, см. Шотки эффект),вторую — П. т. с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник). В последних в качестве диэлектрика используют окисел кремния (МОП-транзистор) или слоистые структуры, например SiO2 — Al2 O3 (МАОП-транзистор), SiO2 — Si3 N4 (МНОП-транзистор) и др. К П. т. с изолированным затвором относят также П. т. с т. н. плавающим затвором и П. т. с накоплением заряда в изолированном затворе (их применяют как элементы электронной памяти). В П. т. в качестве полупроводника используют в основном Si и GaAs, в качестве металлов, образующих переход, — Al, Mo, Au.П. т. созданы в 50-70-е гг.20 в. на основе работ американских учёных У. Шокли, С. Мида, Д. Канга, М. Аталлы и др.

В П. т.1-й группы (рис., а и б) управляющим электродом (затвором) служит полупроводниковый или металлический электрод, образующий с полупроводником канальной области р-n-переход или переход металл — полупроводник. На затвор подаётся напряжение, уменьшающее ток, который протекает от истока к стоку: при увеличении этого напряжения область пространственного заряда перехода (обеднённая носителями заряда) распространяется в канальную область и уменьшает проводящее сечение канала. При некотором значении напряжения затвора, т. н. напряжении отсечки Uoт, ток в приборе прекращается.

В П. т. с изолированным затвором (рис., б) управляющий металлический электрод отделен от канальной области тонким слоем диэлектрика (0,05-0,20 мкм).Канал может быть либо образован технологическим способом (встроенный канал), либо создан напряжением, подаваемым на затвор в рабочем режиме (индуцированный канал). В зависимости от этого прибор имеет передаточную характеристику соответственно вида I или II (см. рис., в).

П. т. широко применяют в электронной аппаратуре для усиления электрических сигналов по мощности и напряжению. П. т. — твердотельные аналоги электронных ламп, они характеризуются аналогичной системой параметров — крутизной характеристики (0,1-400 ма/в),напряжением отсечки (0,5-20 в), входным сопротивлением по постоянному току (10 11 -10 16 ом) и т.д.

П. т. с управляющим р-n-переходом обладают наиболее низким среди полупроводниковых приборов уровнем шумов (являющихся в основном тепловыми шумами) в широком диапазоне частот — от инфранизких до СВЧ (коэффициент шума лучших П. т. 40 Ггц).П. т. с изолированным затвором обладают высоким входным сопротивлением по постоянному току (до 10 16 ом, что на 2-3 порядка выше, чем у др.П. т., и сравнимо с входным сопротивлением лучших электрометрических ламп).В области СВЧ усиление и уровень шумов у этих П. т. такие же, как и у биполярных транзисторов (предельная частота усиления по мощности около 10 Ггц, коэффициент шума на частоте 2 Ггц около 3,5 дб и динамический диапазон > 100 дб), однако они превосходят последние по параметрам избирательности и помехоустойчивости (благодаря строгой квадратичности передаточной характеристики). Относительная простота изготовления (по планарной технологии) и схемные особенности построения позволили использовать их в больших интегральных схемах (БИС) устройств вычислительной техники (например, созданы БИС, содержащие > 10 тыс. МДП-транзисторов в одном кристалле).

Тиристор

Рис.1 Тиристор (схема)

Рис.2 Вольтамперная характеристика тиристора

Рис.3 Тиристор (двухтранзисторная схема)

Тиристор (от греч. thýra — дверь, вход и англ. resistor — резистор), полупроводниковый прибор, выполненный на основе монокристалла полупроводника с четырёхслойной структурой р-n-p-n-типа, обладающий свойствами вентиля электрического и имеющий нелинейную разрывную вольтамперную характеристику (ВАХ). С крайними слоями (областями) монокристалла контактируют силовые электроды (СЭ) — анод и катод, от одного из промежуточных слоев делают вывод электрода управления (УЭ).

К СЭ подсоединяют токоподводы силовой цепи и устройства теплоотвода. В случае, когда к СЭ прикладывается напряжение прямой полярности Unp ( как указано на рис.1 ), первый (П1 ) и третий (П3 ) электронно-дырочные переходы смещаются в прямом направлении, а второй (П2 ) — в обратном. Через переходы П1 и П3 в области, примыкающие к переходу П2 , инжектируются неосновные носители, которые уменьшают сопротивление перехода П2 , увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через Т. сначала растет медленно, что соответствует участку ОА на ВАХ (рис.2 ). В этом режиме Т. можно считать запертым, так как сопротивление перехода П2 всё ещё очень велико (при этом напряжения на переходах П1 и П3 малы, и почти всё приложенное напряжение падает на переходе П2 ). По мере увеличения напряжения на Т. снижается доля напряжения, падающего на П2 , и быстрее возрастают напряжения на П1 и П2 , что вызывает дальнейшее увеличение тока через Т. и усиление инжекции неосновных носителей в область П3 . При некотором значении напряжения (порядка десятков или сотен в), называется напряжением переключения Uпер (точка А на ВАХ), процесс приобретает лавинообразный характер, Т. переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи (точка В на ВАХ).

Процесс скачкообразного переключения Т. из состояния с низкой проводимостью в состояние с высокой проводимостью можно объяснить, рассматривая Т. как комбинацию двух транзисторов (T1 и Т2 ), включенных навстречу друг другу (рис.3 ). Крайние области монокристалла являются эмиттерами (р-слой называется анодным эмиттером, n-слой — катодным), а средние — коллектором одного и одновременно базой др. транзистора. Ток i, протекающий во внешней цепи Т., является током первого эмиттера iэ1 и током второго эмиттера iэ2 . Вместе с тем этот ток складывается из двух коллекторных токов iк1 и iк2 , равных соответственно a1 iэ1 и a2 iэ2 , где «a1 и a2 — коэффициенты передачи эмиттерного тока транзисторов T1 и Т2 ; кроме того, в его состав входит ток коллекторного перехода iкo (так называемый обратный ток). Таким образом i =a1 iэ1 + a2 iэ2 + iкo . С учётом iэ1 = iэ2 = i имеем . При малых токах a1 и a2 значительно меньше 1 (и их сумма также меньше 1). С увеличением тока a1 и a2 растут, что ведёт к возрастанию i. Когда он достигает значения, называется током включения Iвк , сумма a1 +a2 становится приблизительно равной 1, и ток скачком возрастает до величины, ограничиваемой сопротивлением нагрузки (точка В на рис.2 ). Всякий Т. характеризуется предельно допустимым значением прямого тока Iпред ( точка Г на рис.2 ), при котором на приборе будет небольшое остаточное напряжение Uocт . Если же уменьшать ток через Т., то при некотором его значении, называется удерживающим током Iyд ( точка Б на рис.2 ), Т. запирается — переходит в состояние с низкой проводимостью, соответствующее участку ОА на ВАХ. При напряжении обратной полярности кривая зависимости тока от напряжения выглядит так же, как соответствующая часть ВАХ полупроводникового диода.

Описанный способ включения Т. (повышением напряжения между его СЭ) применяют в Т., называется вентилями-переключателями (реже неуправляемыми Т., или динисторами). Однако преимущественное распространение получили Т., включаемые подачей в цепь УЭ импульса тока определённой величины и длительности при положительной разности потенциалов между анодом и катодом (обычно их называют управляемыми вентилями или Т.). Особую группу составляют фототиристоры, перевод которых в состояние с высокой проводимостью осуществляется световым воздействием. Выключение Т. производят либо снижением тока через Т. до значения I , либо изменением полярности напряжения на его СЭ.

Рис.4 Управляемый тиристор (в разрезе)

Рис.5 (а, Тиристоры (общий вид)

Рис.5 (в, Тиристоры (общий вид)

В соответствии с назначением различают Т. с односторонней проводимостью, с двухсторонней проводимостью (симметричные), быстродействующие, высокочастотные, импульсные, двухоперационные и специальные.

Полупроводниковый элемент Т. изготовляют из кремниевых монокристаллических дисков (пластин), вводя в Si добавки В, Al и Р. При этом в основном используют диффузионную и сплавную технологию. Конструктивно Т. выполняют (рис.4 ) в герметичном корпусе; для обеспечения механической прочности и устранения тепловых напряжений, возникающих из-за различия коэффициентов расширения Si и Cu (материал электродов), между кристаллом и электродами устанавливают термокомпенсирующие вольфрамовые или молибденовые диски. Различают Т. штыревой конструкции — в металлических и металлокерамических корпусах, прижимные (с отводом тепла с одной стороны Т.) и таблеточные (с двухсторонним отводом тепла). Основные конструкции Т. — таблеточная и штыревая. Т. на токи до 500 а изготовляют с воздушным охлаждением, на токи свыше 500 а — обычно с водяным.

Современные Т. изготовляют на токи от 1 ма до 10 ка напряжения от нескольких в до нескольких кв; скорость нарастания в них прямого тока достигает 10 9 а/сек, напряжения — 10 9 в/сек, время включения составляет величины от нескольких десятых долей до нескольких десятков мксек, время выключения — от нескольких единиц до нескольких сотен мксек; кпд достигает 99%.

Т. нашли применение в качестве вентилей в преобразователях электрической энергии (см. Преобразовательная техника, Тиристорный электропривод), исполнительных и усилительных элементов в системах автоматического управления , ключей и элементов памяти в различных электронных устройствах и т.п., где они совместно с др. полупроводниковыми приборами к середине 70-х гг.20 в. в основном вытеснили электронные (электровакуумные) и ионные (газоразрядные и ртутные) вентили.

Разновидности и области применения полупроводниковых диодов

В зависимости от типа используемых полупроводников и степени их легирования можно создать диоды, обладающие характерными особенностями и имеющие определенное функциональное назначение.

Рассмотрим особенности различных типов диодов (см. рис. 1.4, в), их параметры и области применения.

Выпрямительные диоды, предназначенные для выпрямления низкочастотного переменного тока, используются в устройствах питания. Существуют кремниевые, германиевые и селеновые плоскостные диоды (сплавные и диффузные). Условия применения выпрямительных диодов определяют предельные значения их параметров:

максимальный средний прямой ток Iпр max;

максимальный импульсный прямой ток Iи.пр max;

максимальное обратное напряжение Uобр max;

среднее за период значение обратного тока Iобр при заданном обратном напряжении Uобр.

Мощные выпрямительные диоды пропускают прямой ток до 1500 А, а высоковольтные кремниевые диоды выдерживают обратное напряжение до 1600 В. Для отвода тепла мощные диоды монтируются на металлических радиаторах, имеющих большую поверхность и высокую теплопроводность.

Высокочастотные диоды (детекторные, смесительные и модуляторные) применяют для детектирования маломощных ВЧ сигналов. В этом случае существенное значение имеет собственная емкость диода, для уменьшения которой используется контактная технология, позволяющая формировать небольшую базовую область р-п-перехода в месте контакта острия вольфрамовой иглы с полупроводником. Эта технология заключается в следующем: мощный импульс тока разогревает место контакта, возникает диффузия вольфрама в полупроводник и после его охлаждения образуется небольшая область перехода. Емкость такого диода, составляющая десятые доли пикофарад (пФ), обеспечивает диапазон рабочих частот 300ѕ600 МГц. Точечные диоды на более высокие частоты изготавливают с использованием прижимного контакта металл—полупроводник без разогревания. Такие диоды могут работать при частотах до 20 ГГц.

Основными характеристиками ВЧ диодов являются: предельная частота, дифференциальное прямое сопротивление переменному току Rд = DUпр/DIпр (гдеDUпри DIпр— изменения прямых напряжения и тока) и емкость диода Сд. Остальные их параметры аналогичны параметрам низкочастотных выпрямительных диодов.

Импульсные диоды (мезодиоды, диоды с накоплением заряда, диоды Шоттки) работают в режиме электронного ключа в импульсных схемах, т.е. у них имеется два состояния: открыто—закры­то. При этом в открытом состоянии диод должен иметь малое сопротивление, а в закрытом — большое. Быстродействие импульсных схем определяется временем перехода диода из одного состояния в другое. Условия применения импульсных диодов определяют предельные значения их параметров:

максимальный выпрямленный ток Iпр max;

максимальный импульсный прямой ток Iи.пр max;

максимальное обратное напряжение Uобр max;

максимальный обратный ток Iобр max;

прямое импульсное напряжение на диоде при заданном импульсе прямого тока;

время включения tвкл;

время восстановления обратного сопротивления tвос.

В мезодиодах р-п-переход формируется путем травления полупроводника.

В диодах с накоплением зарядов р-n-переход формируется мето­дом диффузии, благодаря чему в приповерхностном слое создается большой градиент концентрации примеси. В результате возника­ет электрическое поле, направленное в сторону возрастания концен­трации примеси, обеспечивающее накопление зарядов вблизи границы р- и п-областей, что ускоряет переходные процессы.

Диоды с накоплением заряда способны накапливать и удерживать заряд в потенциальных ямах. Они используются как элементы задержки включения за счет наличия стадии рассасывания зарядов, а также как элементы памяти. С их помощью формируют задер­жку в слаботочных импульсных приборах. На их основе созданы приборы с зарядовой связью: ПЗС-линейки и ПЗС-матрицы. Послед­ние используются как быстродействующие запоминающие устройства и элементы памяти.

Диоды Шоттки работают на основе перехода металл—n-полупроводник. При этом металл имеет работу выхода больше, чем полупроводник n-проводимостью. На границе раздела формируется контактный выпрямляющий переход.

Прямой ток возникает за счет основных носителей зарядов металла (электронов). В отличие от обычных диодов накопления зарядов в переходе диода Шоттки не происходит, т.е. эти диоды имеют малую емкость р-n-перехода (Сp-n

Диоды Шоттки нашли широкое применение в транзисторных клю­чевых схемах. Транзисторный ключ в сочетании с диодом Шоттки имеет повышенное быстродействие и называется транзисто­ром Шот­тки. Это сочетание часто применяется в логических микросхемах.

Стабилитрон — полупроводниковый плоскостной диод из сильно­легированного кремния. ВАХ стабилитрона имеет вид кривой 1, представленной на рис. 1.4, б. На участке электрического пробоя дифференциальное сопротивление Rд=dU/dI очень мало. Резкий рост обратного тока наблюдается вблизи значения обратного напряжения, равного Uпроб. Поскольку вблизи Uпробмалое изменение обратного напряжения соответствует большому изменению обратного тока, напряжение пробоя называют напряжением стабилизации Uст. Основными параметрами стабилитронов являются:

напряжение стабилизации Uст;

дифференциальное сопротивление Rдпри напряжении Uст;

температурный коэффициент напряжения стабилизации

(где DUст— изменение напряжения стабилизации при изменении температуры DT);

минимально допустимый ток стабилизации Imin, при котором Uстнаходится в заданных пределах;

максимально допустимый ток стабилизации Imax;

максимально допустимая рассеиваемая мощность Рр max.

Стабилитроны применяют в устройствах питания для стабилизации напряжения (см. гл. 4). В зависимости от структуры, состава и конструкции стабилитроны имеют разные значения напряжения стабилизации. Имея разные номиналы, они обеспечивают диапазон стабилизации напряжения в блоках питания от 3 до 200 В. Стабилизация осуществляется при обратном напряжении на стабилитроне, и идет она тем лучше, чем круче кривая зависимости тока от напряжения и соответственно, чем меньше дифференциальное сопротивление.

Варикап — полупроводниковый диод, действие которого основано на использовании зависимости емкости протяженного и слаболегированного р-п-перехода от обратного напряжения. Емкость варикапа с увеличением обратного напряжения уменьшается примерно от 500 до 50 пФ.

Варикапы — это диоды с низколегированной областью между п- и р- областями. При обратном включении такого диода его емкость изменяется пропорционально напряжению. Варикапы используются в колебательных контурах с управляемой резонансной частотой в диапазоне дециметровых и сантиметровых волн СВЧ (от 300 МГц до 30 ГГц). Наиболее часто варикап используется для формирования радиосигналов с линейной частотной модуляцией.

Туннельными являются диоды с высокой концентрацией легирующих присадок и узкими p-n-переходом и запрещенной зоной. В p-n-переходе такого диода при прямом включении возникают высокие напряжения, и электроны туннелируют в р-область. Туннельный эффект состоит в способности заряженной частицы проникнуть за потенциальный барьер даже в том случае, если ее энергия ниже потенциального барьера.

В сильных электрических полях вблизи границы раздела р- и п-областей туннельных диодов может образоваться тонкий потенциальный барьер, через который с определенной вероятностью электроны проходят без изменения собственной энергии благодаря туннельному эффекту. Формируемая в результате N-образная ВАХ с ниспадающим участком и отрицательной дифференциальной проводимостью позволяет использовать туннельные диоды в качестве генераторов СВЧ колебаний на частотах от 10 до 100 ГГц.

Светодиод излучает свет при прохождении прямого инжекционного тока. Этот ток называется инжекционным, так как при нем происходит впрыскивание электронов из п-области в р-п-переход. Излучение света связано с рекомбинацией носителей зарядов (электронов и дырок), а также с возбуждением валентных электронов атомов р-области электронами, проникающими через р-п-переход. Основными характеристиками светодиодов являются предельные ток и напряжение питания, крутизна ВАХ и квантовый выход (отношение потребляемой мощности к мощности излучения).

Фотодиоды создаются на основе использования эффекта возбуждения электронов полупроводника квантами света. Если р-п-переход осветить светом, то в нем возникают носители зарядов (электроны и дырки), увеличивающие прямую и обратную прово­димости. Наиболее чувствительными являются фотодиоды, основан­ные на изменении собственной проводимости полу­про­вод­никовых структур, и лавинные фотодиоды. В средней части p-i-п-структуры фотодиода находится полупроводник без приме­сей, обладающий слабой собственной проводимостью. Однако его проводимость резко возрастает под действием света, и при подаче прямого или обратного напряжения на фотодиод возникает ток, пропорциональный интенсивности поданного света.
В лавин­ных фотодиодах используются более сложные полупроводниковые структуры и более высокие напряжения (около 100 В). Возни­кающие под действием света возбужденные электроны ускоря­ются электрическим полем и, соударяясь с атомами полупроводника, вызывают лавинный поток вторичных электронов.

Основными характеристиками фотодиодов являются пороговая чувствительность (минимальная мощность излучения, регистри­руемая фотоприемником), чувствительность (отношение изменения тока или напряжения на выходе фотоприемника к мощности на входе) и время срабатывания или предельная частота воспроизведения входного сигнала.

Полупроводниковые диоды широко используются в электронной технике. Их применяют как смесители частот сигнала и гетеродина в супергетеродинных схемах, для детектирования радиосигналов, выпрямления переменного напряжения (выпрямители), селекции импульсов определенной полярности (импульсные диоды), стабилизации напряжения (стабилитроны), в качестве управ­ляемой напряжением емкости (варикапы) и т.п.

Туннельные диоды с N-образной ВАХ и диоды с S-образной ВАХ используются для генерации СВЧ колебаний.

Существуют и специализированные диоды – диоды Гана и обращенные диоды, используемые в СВЧ генераторах и усилителях.

Используют и такие специализированные полупроводниковые устройства варисторы и термисторы. В термисторах, в отличие от резисторов сопротивление при нагреве падает. Поэтому их используют в качестве компенсаторов температурного изменения в резисторах.

В импульсной технике широкое распространение получили диодные электронные ключи, работающие по принципу включено — выключено (ток есть — тока нет). Применяются последовательные и парал­лельные схемы диодных ключей. В схемах последовательных диодных ключей диод пропускает ток только в одном направ­лении (от плюса к минусу) как в выпрямителях (см. гл. 4). При параллельном соединении используются стабилитроны (см. раздел 4.3).

Биполярные транзисторы

Транзисторы — это полупроводниковые приборы с тремя электродами, подобные электровакуумному триоду, предназначенные для усиления тока или напряжения. Различают биполярные транзисторы, обычно называемые просто транзисторами, полевые транзисторы и фототранзисторы.

Биполярный транзистор — это прибор, составленный из полупроводников с двумя рп-переходами и имеющий три вывода: эмиттер (Э), базу (Б) и коллектор (К). Существуют два типа биполяр­ных транзисторов: прп-транзисторы (рис. 1.5, а) и рпр-транзисторы (рис. 1.5, б). Принципы их работы аналогичны, отличаются они количеством и порядком расположения полупроводников с р— и п-проводимостями, а также полярностью подаваемого постоянного напряжения смещения.

Рис. 1.5. Структуры и УГО биполярных транзисторов п-р-п- (а) и р-п-р-типа (б)

Рассмотрим работу транзистора прп-типа (рис. 1.6, а) при подаче напряжения смещения на базу. Переход база—эмиттер (или просто эмиттерный переход) такого транзистора смещен в прямом направлении напряжением UБ-Э, поэтому электроны из области эмиттера перетекают через этот переход в область базы, создавая ток IБ. Это обычный прямой ток рп-перехода, смещенного в прямом направлении. Как только электроны попадают в область базы, они начинают испытывать притяжение положительного потенциала коллектора. Если область базы сделать очень узкой, то почти все эти электроны пройдут через нее к коллектору, и только очень малая их часть соберется базой, формируя базовый ток IБ. Фактически более 95% всех электронов эмиттерного тока IЭсобирается коллектором, формируя коллекторный ток IК транзистора. Таким образом, IЭ= IБ+ IК.

Так как базовый ток IБочень мал (чаще всего он измеряется микроамперами), то им обычно пренебрегают. Тем самым предполагают, что токи эмиттера и коллектора равны, и каждый из них называют током транзистора.

Рис. 1.6. Схемы протекания тока в п-р-п- (а) и р-п-p-транзисторах (б) при подаче напряжения смещения на базу

Отметим, что переход база—коллектор (или просто коллекторный переход) смещен в обратном направлении напряжением UБ-К. Это необходимое условие работы транзистора, поскольку в противном случае электроны не притягивались бы к коллектору. При этом в соответствии с правилом выбора направления тока (от положительного потенциала к отрицательному) считается, что ток транзистора течет от коллектора к эмиттеру.

В рпр-транзисторах полярность подаваемого напряжения смещения должна быть обратной (рис. 1.6, б). В этом случае ток транзистора будет представлять собой перемещение дырок от эмиттера к коллектору или электронов от коллектора к эмит­теру.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Каждый электрик должен знать:  Можно ли подключить духовой шкаф и стиралку на один кабель
Добавить комментарий
Название: Полупроводниковые приборы
Раздел: Рефераты по коммуникации и связи
Тип: реферат Добавлен 07:32:06 19 марта 2011 Похожие работы
Просмотров: 22700 Комментариев: 18 Оценило: 23 человек Средний балл: 3.9 Оценка: 4 Скачать