Соединения в звезду и треугольник, фазные и линейные напряжения и токи

СОДЕРЖАНИЕ:

Чем подключение 3 фаз звездой отличается от подключения треугольником?

Если быть точнее, то подключаются не фазы, а нагрузки, обмотки трансформаторов и генераторов. В трехфазной линии электропередач при включении обмоток источника электроэнергии треугольником линейное напряжение равно фазному. При включении обмоток источника электроэнергии звездой линейное напряжение больше фазного примерно в 1,73 раза. Кроме того, при включении питающего трансформатора звездой нулевая точка его обмоток заземляется на подстанции, что важно с точки зрения схемных решений по обеспечению электробезопасности.

105. Соединение треугольником

Кроме соединения звездой, генераторы или потребители трехфазного тока могут включаться треугольником.

На фиг. 187 представлена несвязанная трехфазная система. Объединяя попарно провода несвязанной шестипроводной системы и соединяя фазы, переходим к трехфазной трехпроводной системе, соединенной треугольником.

Как видно из фиг. 188, соединение треугольником выполняется таким образом, чтобы конец фазы А был соединен с началом фазы В, конец фазы В соединен с началом фазы С и конец фазы С соединен с началом фазы А. К местам соединения фаз подключаются линейные провода.

Если обмотки генератора соединены треугольником, то, как видно из фиг. 188, линейное напряжение создает каждая фазная обмотка. У потребителя, соединенного треугольником, линейное напряжение подключается к зажимам фазного сопротивления. Следовательно, при соединении треугольником фазное напряжение равно линейному:

Определим зависимость между фазными и линейными токами при соединении треугольником, если нагрузка фаз будет одинакова по величине и характеру. Составляем уравнения токов

Отсюда видно, что линейные токи равны геометрической разности фазных токов. При равномерной нагрузке фазные токи одинаковы по величине и сдвинуты один относительно другого на 120°. Производя вычитание векторов фазных токов согласно полученным уравнениям, получаем линейные токи (фиг. 189). Зависимость между фазными и линейными токами при соединении в треугольник показана на фиг. 190.

Следовательно, при равномерной нагрузке, соединенной треугольником, линейный ток в раз больше фазного тока.

На фиг. 191 дана векторная диаграмма токов н напряжений при равномерной активно индуктивной нагрузке, соединенной треугольником. Построение диаграммы производится следующим образом. В выбранном масштабе строим равносторонний треугольник линейных напряжений сети UАB , UBC, и UАС, : которые равны фазным напряжениям потребителя. В сторону отставания под углами к линейным напряжениям UАB , UBC, и UCA строим в масштабе векторы фазных токов IАB , I BC, и I CA • Затем, как было указано раньше, определяем линейные токи IА , I B, и I C

Пример 2. Линейное напряжение, подводимое к трехфазному электродвигателю, равно 220 в. Обмотка двигателя имеет полное сопротивление г, равное 10 ом. Определить токи в линейных проводах и в обмотке двигателя, если последняя соединена треугольником (фиг. 192, а).

Так как при соединении треугольником UЛ = Uф , то

Изоляция фазы двигателя рассчитана на напряжение 220 в, а сечение фазной обмотки рассчитано по нагреву на ток 22 а.

При соединении треугольником =22-1,73=38 а.

Тот же двигатель можно включить и на линейное напряжение 380 в, переключив обмотки двигателя звездой (фиг. 192, б).

В двигателях и других потребителях трехфазного тока в большинстве случаев наружу выводят все шесть концов трех обмоток, которые по желанию можно соединять либо звездой, либо треугольником. Обычно к трехфазной машине крепится доска из изоляционного материала (клеммная доска), на которую и выводят все шесть концов.

На фиг. 193 показана схема присоединения контактов на клеммной доске к концам обмоток трехфазной машины. Медные перемычки позволяют легко менять схему включения обмоток.

Если у нас есть двигатель, на паспорте которого написано 127/220 в, значит этот двигатель можно использовать на два на пряжения: 127 и 220 в.

Если линейное напряжение равно 127 в, то обмотки двигателя необходимо включить треугольником (фиг. 193, б). Тогда обмотка фазы двигателя попадает под напряжение 127 в. При напряжении 220 в обмотки двигателя нужно включить звездой (фиг. 193, а), тогда обмотка фазы также будет под напряжением 127 в.

Подключение звезда и треугольник — в чем разница

Для работы электрического прибора, двигателя, трансформатора в трехфазной сети необходимо соединить обмотки по определенной схеме. Наиболее распространенными схемами соединения являются треугольник и звезда, хотя могут применяться и другие способы соединения.

Что представляет собой соединение обмоток звездой?

Трехфазный двигатель или трансформатор имеет 3 рабочих, независимых друг от друга обмоток. Каждая обмотка имеет два вывода — начало и конец. Соединение «звезда» подразумевает собой, что все концы трех обмоток соединяются в один узел, часто называемый нулевой точкой. Отсюда выходит и понятие — нулевая точка.

Начало каждой обмотки соединяются непосредственна с фазами питающей сети. Соответственно начало каждой обмотки соединяется с одной из фаз А, В, С. Между любыми двумя началами обмоток прилаживается фазное напряжение питающей сети, зачастую 380 или 660 В.

Что представляет собой соединение обмоток в треугольник?

Соединение обмоток в треугольник заключается в соединении конца каждой обмотки с началом следующей. Конец первой обмотки, соединяется с началом второй. Конец второй — с начало третей. Конец третей обмотки создает электрический контур, поскольку замыкает электрическую цепь.

При таком соединении к каждой обмотки прилаживается линейное напряжение, обычно равное 220 или 380 В. Такое соединение физически реализуется с помощью металлических перемычек, которые должны быть предусмотрены заводской комплектацией электрического оборудования.

Разница между соединением обмотки в треугольник и звезду

Основная разница заключается в том, что, используя одну питающую сеть, можно достигать разных параметров электрического напряжения и тока в приборе или аппарате. Конечно, данные способы соединения отличаются реализацией, но важна именно физическая составляющая отличия.

Применение способа соединения треугольник, зачастую используется в случаях мощных механизмов и больших пусковых нагрузок. Имея большие показатели тока, протекающего по обмотки, двигатель получает большие показатели ЕДС самоиндукции, что в свою очередь гарантирует больший вращающий момент. Имея большие пусковые нагрузки и одновременно используя схему соединения звезда, можно нанести урон двигателю. Это связано с тем, что двигатель имеет меньшие значение тока, что приводит к меньшим показателям величины вращающегося момента.

Момент пуска такого двигателя и выход его на номинальные параметры может быть продолжительным, что может привести к тепловому воздействию тока, которые во время коммутации может превышать номиналы тока в 7-10 раз.

Преимущества соединения обмоток в звезду

Основные преимущества соединения обмоток в звезду заключаются в следующем:

  • Понижения мощности оборудования с целью повышения надежности.
  • Устойчивый режим работы.
  • Для электрического привода такое соединение дает возможность плавного пуска.

Преимущества соединения обмоток в треугольник

Основными преимуществами соединения обмоток в треугольник являются:

  1. Повышения мощности оборудования.
  2. Меньшие пусковые токи.
  3. Большой вращающийся момент.
  4. Увеличенные тяговые свойства.

Оборудование с возможностью переключения типа соединения со звезды на треугольник

Зачастую электрическое оборудование имеет возможность работать как на звезде, так и на треугольнике. Каждый пользователь должен самостоятельно определить необходимость соединения обмоток в звезду или треугольник.

В особо мощных и сложных механизмах, может применяться электрическая схема с комбинированием треугольника и звезды. В таком случае, в момент пуска, обмотки электрического двигателя соединяются в треугольник. После выхода двигателя на номинальные показатели, с помощью релейно-контакторной схемы треугольник переключается на звезду. Таким способом достигается максимальная надежность и продуктивность электрической машины, без риска нанести ей урон или вывести её из строя.

Посмотрите так-же интересное видео на эту тему:

Преимущества схемы соединения резисторных цепей в треугольник

Схемы соединения источников питания и обмоток потребляющих приборов применяют для разных целей. С их помощью увеличивают мощность передачи напряжения, снижают перепады и сбои. А также они позволяют не использовать большого количества проводов для подключения нагрузки к сети. В физике используют несколько способов подключения резисторов: параллельное, последовательное, комбинированное, соединение в треугольник и звезду.

Особенности схем

Последовательное, параллельное и смешанное соединение чаще всего используют для однофазной сети. Обмотки потребляющих приборов и источника питания в трехфазной сети подключают звездой или треугольником. Цепи отличаются нагрузкой по электричеству, поэтому перед использованием нужно выяснить сильные и слабые стороны каждого вида подключения.

В схемах с параллельным соединением начала и концы резисторов привязаны к разным точкам, и по каждому компоненту проходит отдельный ток.

При последовательном соединении составляющие находятся на одной линии, к концу первого подключают начало второго компонента. В смешанных цепях используют оба вида подключения. Но отдельно необходимо разобрать особенности треугольных схем.

Звезда и треугольник

Резисторы в схеме звезды подключают к одной точке — нулевой или нейтральной. Её соединяют с такой же точкой на источнике питания. Но такое подключение не всегда возможно. Цепь называют четырехпроводной в том случае, если соединение возможно, и трехпроводной тогда, когда у автоматического устройства подачи тока нет нейтральной точки.

При подключении в виде треугольника концы резисторов не объединяют в одной точке, а соединяют с концами других обмоток. Цепь внешне напоминает равносторонний треугольник, а компоненты в ней подключены последовательно.

Главное отличие от схемы в форме звезды — это отсутствие нулевой точки. Поэтому цепь является трехпроводной.

В трехфазных сетях выделяют два вида напряжения и электричества — линейные и фазные. Последний тип высчитывают как разницу между концом и началом фазы потребителя. Такой ток проходит только в одной фазе прибора. Особенности величин в разных цепях:

  • в звезде фазные напряжения — Ua, Ub, Uc;
  • фазная сила электричества — Ia, Ib, Ic;
  • напряжения при применении схемы треугольника — Uab, Ubc, Uca;
  • показатели тока — Iab, Ibc, Ica.

Между началами фаз или линейных проводников находятся соответствующие величины. Электричество проходит в компонентах между нагрузкой и его источником. В цепи звезды токи равны фазным, а линейные напряжения приравнивают к Uab, Ubc, Uca. У треугольной схемы все наоборот: фазные напряжения равны величинам другого типа, а электричество — Ia, Ib, Ic.

Также необходимо учитывать электродвижущую силу напряжения, т. к. без неё не получится провести расчёты и анализ в трехфазной сети. Эта величина влияет на векторное отношение в диаграммах.

Преимущества цепи

Обе схемы имеют существенные отличия и на практике применяются по-разному. Когда запускают электрический мотор, ток будет больше своего номинального показателя. Защита может не включиться в том случае, если у механизма низкий уровень мощности. В обратном случае защитное устройство сработает, но при этом питание отключится, напряжение упадёт, а некоторые предохранители сгорят. Из-за такого количества проблем нужно снижать величину электричества.

Для этого к электродвигателю подключают дроссель, трансформатор или реостат. Дополнительно можно изменить схему соединения резисторов ротора, что осуществить на практике довольно просто. Эффективным будет переключение цепей на звезду или треугольник. То есть при включении мотора резисторы будут соединены в виде первой фигуры, а после набора оборотов подключение меняют на треугольное. В условиях промышленного производства изменение соединений происходит автоматически.

Можно одновременно использовать оба типа цепей. К нейтральной точке мотора подсоединяют ноль электрической сети. Это предохраняет от риска возникновения перекосов фазных амплитуд. Нейтраль источника питания восстанавливает асимметрию, возникающую из-за разных индуктивных сопротивлений резисторов.

У схемы звезды есть несколько преимуществ:

  • мотор запускается плавно;
  • двигатель работает с мощностью, которая заявлена в его паспорте;
  • рабочий режим сохраняется при перепадах напряжения или перегрузках;
  • корпус устройства не перегревается при эксплуатации.

Треугольник позволяет выжать из электродвигателя максимально возможную мощность. Но режимы нужно поддерживать согласно условиям эксплуатации. Использование этой цепи позволяет повысить возможности мотора в три раза по сравнению со звездой. Разные подключения концов резисторов дают возможность получить два номинала напряжения. Нагрузка по электричеству при запуске электроприбора снижается благодаря переключению соединений.

мтомд.инфо

Соединение трехфазной цепи звездой

Соединение обмоток генератора и приемников энергии звездой представляет собой схему, когда концы фаз соединяются в общий узел, а их начала присоединяются к линейным проводам

Схема соединения звезда

Провод OO’ называется нулевым или нейтральным, остальные — линейными. Введем следующие понятия:

  • Iллинейный ток — это ток протекающий по линейному проводу;
  • Uллинейное напряжение — это напряжение между линейными проводами;
  • Iффазный ток — это ток, протекающий от начала к концу фазной обмотки или приемника энергии (или наоборот: от конца — к началу);
  • Uффазное напряжение — это напряжение между началом и концом фазной обмотки или приемника энергии. Другими словами можно сказать: фазное напряжение — это напряжение между линейным и нулевым проводами.

При симметричной нагрузке нулевой провод практически не нужен, так как ток Io в нем равен нулю. Поэтому, в этих случаях применяют трехпроводные системы (соединение треугольником). При несимметричной трехфазной нагрузке нулевой провод обеспечивает постоянство напряжений на фазах.

По рисунку может показаться, что линейное напряжение вдвое больше фазного. Но это не так. Линейное напряжение равно не алгебраической сумме, а геометрической разности.

Для того чтобы получить вектор линейного напряжения, например Uл (АВ), нужно к концу вектора UфА подстроить вектор UфВ с обратным знаком. Вектор, соединяющий начало координат с концом вектора UфВ, и будет вектором линейного напряжения Uл (АВ). Аналогично ведется построение векторов линейных напряжений Uл (ВС) и Uл (АС).

Векторная диаграмма линейных и фазных напряжений

В результате построений образовалась трехлучевая звезда линейных напряжений, повернутых относительно звезды фазных напряжений на угол 30° против часовой стрелки. Из полученных таким образом треугольников с тупым углом в 120° следует:

Для симметричной системы:

Если линейное напряжение, например, равно 380 В, то фазное будет:

Если же фазное напряжение Uф = 127В, то линейное будет:

sibay-rb.ru

Конструкция трехфазного электродвигателя представляет собой электрическую машину, для нормальной работы которой необходимы трехфазные сети переменного тока. Основными частями такого устройства являются статор и ротор. Статор оборудован тремя обмотками, сдвинутыми между собой на 120 градусов. Когда в обмотках появляется трехфазное напряжение, на их полюсах происходит образование магнит ных потоков. За счет этих потоков, ротор двигателя начинает вращаться.

В промышленном производстве и в быту практикуется широкое применение трехфазных асинхронных двигателей. Они могут быть односкоростными, когда производится соединение звездой и треугольником обмоток электродвигателя или многоскоростными, с возможностью переключения с одной схемы на другую.

Соединение обмоток звездой и треугольником

У всех трехфазных электродвигателей обмотки соединяются по схеме звезды или треугольника.

При подключении обмоток по схема звезда, их концы соединяются в одной точке в нулевом узле. Поэтому, получается еще один дополнительный нулевой вывод. Другие концы обмоток соединяются с фазами сети 380 В.

Соединение треугольником заключается в последовательном соединении обмоток. Конец первой обмотки соединяется с начальным концом второй обмотки и так далее. В конечном итоге, конец третьей обмотки, соединится с началом первой обмотки. Подача трехфазного напряжения осуществляется в каждый узел соединения. Подключение по схеме треугольник отличается отсутствием нулевого провода.

Каждый электрик должен знать:  Заземление крыши в частном доме своими руками

Оба вида соединений получили примерно одинаковое распространение и не имеют между собой значительных отличительных особенностей.

Существует и комбинированное подключение, когда используются оба варианта. Такой способ применяется достаточно часто, его целью является плавный запуск электродвигателя, которого не всегда можно добиться при обычных подключениях. В момент непосредственного пуска, обмотки находятся в положении звезда. Далее, используется реле, которое обеспечивает переключение в положение треугольника. За счет этого происходит уменьшение пускового тока. Комбинированная схема, чаще всего, применяется во время пуска электродвигателей, обладающих большой мощностью. Для таких двигателей требуется и значительно больший пусковой ток, превышающий номинальное значение примерно в семь раз.

Электродвигатели могут подключаться и другими способами, когда применяется двойная или тройная звезда. Такие подключения используются для двигателей с двумя и более регулируемыми скоростями.

Запуск трехфазного электродвигателя с переключением со звезды на треугольник

Данный способ применяется для того, чтобы снизить пусковой ток, который может примерно в 5-7 раз превышать номинальный ток электродвигателя. Агрегаты со слишком большой мощностью имеют такой пусковой ток, при котором легко перегорают предохранители, отключаются автоматы и, целом, значительно понижается напряжение. При таком уменьшении напряжения снижается накаливание ламп, происходит снижение вращающего момента других электродвигателей, самопроизвольно отключаются и контакторы. Поэтому, применяются разные способы, с целью уменьшения пускового тока.

Общим для всех способов является необходимость снижения напряжения в обмотках статора на время непосредственного пуска. Чтобы уменьшить пусковой ток, цепь статора на время пуска может дополняться дросселем, реостатом или автоматическим трансформатором.

Наибольшее распространение получило переключение обмотки из звезды в положение треугольника. В положении звезды напряжение становится в 1,73 раза меньше, чем номинальное, поэтому и ток будет меньше, чем при полном напряжении. Во время пуска частота вращения электродвигателя увеличивается, происходит снижение тока и обмотки переключаются в положение треугольника.

Такое переключение допускается в электродвигателях, имеющих облегченный режим пуска, так как происходит снижение пускового момента, примерно в два раза. Данным способом переключаются те двигатели, которые конструктивно могут соединяться в треугольник. У них должны быть обмотки, способные работать при .

Когда нужно переключаться с треугольника в звезду

Когда необходимо выполнить соединение звездой и треугольником обмоток электродвигателя, следует помнить о возможности переключения с одного вида на другой. Основным вариантом является схема переключения звезда треугольник. Однако, при необходимости, возможен и обратный вариант.

Всем известно, что у электродвигателей, загруженных не полностью, происходит снижение коэффициента мощности. Поэтому, такие двигатели желательно заменять устройствами с меньшей мощностью. Однако, при невозможности замены и большом запасе мощности, производится переключение треугольник-звезда. Ток в цепи статора не должен превышать номинала, иначе произойдет перегрев электродвигателя.

При создании любого прибора важно не только подобрать необходимые детали, но и верно их все соединить. И в рамках данной статьи будет рассказано про соединение звездой и треугольником. Где это применяется? Как схематически данное действие выглядит? На эти, а также другие вопросы и будут даны ответы в рамках статьи.

Что собой представляет трёхфазная система электроснабжения?

Она является частным случаем многофазных систем построения электрических цепей для переменного тока. В них действуют созданные с помощью общего источника энергии синусоидальные ЭДС, обладающие одинаковой частотой. Но при этом они сдвинуты относительно друг друга на определённую величину фазового угла. В трехфазной системе он равняется 120 градусам. Шестипроводная (часто ещё называемая многопроводной) конструкция для переменного тока была изобретена в своё время Николой Теслой. Также значительный вклад в её развитие внёс Доливо-Добровольский, который первым предложил делать трёх- и четырепроводные системы. Также он обнаружил ряд преимуществ, которые имеют трехфазные конструкции. Что же собой представляют схемы включения?

Схема звезды

Так называют соединение, при котором концы фаз обмоток генератора соединяют в общую точку. Её называют нейтралью. Концы фаз обмоток потребителя также соединяются в одну общую точку. Теперь к проводам, которые их соединяют. Если он находится между началом фаз потребителя и генератора, его называют линейным. Провод, который соединяет нейтрали, обозначают как нейтральный. Также от него зависит название цепи. Если есть нейтральный, схема называется четырёхпроводной. В ином случае она будет трёхпроводной.

Треугольник

Это тип соединения, в котором начало (Н) и конец (К) схемы находятся в одной точке. Так, К первой фазы подсоединён у Н второй. Её К соединяется с Н третьей. А её конец соединён с началом первой. Такую схему можно было бы назвать кругом, если не особенность её монтирования, когда более эргономичным является размещение в виде треугольника. Чтобы узнать все особенности соединения, ознакомитесь с ниже приведёнными видами соединений. Но до этого ещё немного информации. Чем отличается соединение звездой и треугольником? Разница между ними заключается в том, что по-разному соединяются фазы. Также существуют определённые отличия в эргономичности.

Как можно понять из рисунков, существует довольно много вариантов реализации включения деталей. Сопротивления, которые возникают в таких случаях, называют фазами нагрузки. Выделяют пять видов соединений, по которым может быть подключен генератор к нагрузке. Это:

  1. Звезда-звезда. Вторая используется с нейтральным проводом.
  2. Звезда-звезда. Вторая используется без нейтрального провода.
  3. Треугольник-треугольник.
  4. Звезда-треугольник.
  5. Треугольник-звезда.

А что это за оговорки в первом и втором пунктах? Если вы уже успели задаться этим вопросом, прочитайте информацию, которая идёт к схеме звезды: там есть ответ. Но здесь хочется сделать небольшое дополнение: начала фаз генераторов обозначаются с применением заглавных букв, а нагрузки — прописными. Это относительно схематического изображения. Теперь по опыту использования: когда выбирают направление протекания тока, в линейных проводах делают так, чтобы он был направлен со стороны генератора к нагрузке. С нулевыми поступают полностью наоборот. Посмотрите, как выглядит схема соединения звезда-треугольник. Рисунки очень хорошо наглядно показывают, как и что должно быть. Схема соединения обмоток звезда/треугольник представлены в разных ракурсах, и проблем с их пониманием быть не должно.

Преимущества

Каждая ЭДС работает в определённой фазе периодического процесса. Для обозначения проводников используют латинские буквы A, B, C, L и цифры 1, 2, 3. Говоря про трехфазные системы, обычно выделяют такие их преимущества:

  1. Экономичность при передаче электричества на значительные расстояния, которое обеспечивает соединение звездой и треугольником.
  2. Малая материалоёмкость трехфазных трансформаторов.
  3. Уравновешенность системы. Данный пункт является одним из самых важных, поскольку позволяет избежать неравномерной механической нагрузки на электрогенерирующую установку. Из этого вытекает больший срок службы.
  4. Малой материалоёмкостью обладают силовые кабели. Благодаря этому при одинаковой потребляемой мощности в сравнении с однофазными цепями уменьшаются токи, которые необходимы, чтобы поддерживать соединение звездой и треугольником..
  5. Можно без значительных усилий получить круговое вращающееся магнитное поле, что необходимо для работоспособности электрического двигателя и целого ряда других электротехнических устройств, работающих по похожему принципу. Это достигается благодаря возможности создания более простой и одновременно эффективной конструкции, что, в свою очередь, вытекает из показателей экономичности. Это ещё один значительный плюс, который имеет соединение звездой и треугольником.
  6. В одной установке можно получить два рабочих напряжения — фазное и линейное. Также можно сделать два уровня мощности, когда присутствует соединение по принципу «треугольника» или «звезды».
  7. Можно резко уменьшать мерцание и стробоскопический эффект светильников, работающих на люминесцентных лампах, пойдя по пути размещения в нём устройств, питающихся от разных фаз.

Благодаря вышеуказанным семи преимуществам трехфазные системы сейчас являются наиболее распространёнными в современной электронике. Соединение обмоток трансформатора звезда/треугольник позволяет подобрать оптимальные возможности для каждого конкретного случая. К тому же неоценимой является возможность влиять на напряжение, передающееся по сетям к домам жителей.

Заключение

Данные системы соединения являются самыми популярными благодаря своей эффективности. Но следует помнить, что работа идёт с высоким напряжением, и необходимо соблюдать крайнюю осторожность.

Типичные случаи соединений в звезду и треугольник генераторов, трансформаторов и электроприемников рассмотрены в статьях «Схема соединения «Звезда » и «Схема соединения «Треугольник «. Остановимся теперь на важнейшем вопросе о мощности при соединениях в звезду и треугольник, так как для работы каждого механизма, приводимого в действие электродвигателем или получающего питание от генератора или трансформатора, в конечном итоге важна именно мощность .

При определении мощности генераторов в формулы входят э. д. с, при определении мощности электроприемииков – напряжения на их зажимах. При определении мощности электродвигателей учитывают также коэффициент полезного действия, так как на табличке электродвигателя указывается мощность на его валу.

Если мощности фаз S a (P a , Q a); S b (P b , Q b); S c (P c , Q c) одинаковы и соответственно равны S ф, P ф и Q ф, то мощность трехфазной системы, выраженная через фазные величины, равна сумме мощностей трех фаз и составляет:
полная S = 3 × S ф;
активная P = 3 × P ф;
реактивная Q = 3 × Q ф.

Мощность при соединении в звезду

При соединении в звезду линейные токи I и фазные токи I ф равны, а между фазными
и линейными напряжениями существует соотношение U = √3 × U ф, откуда U ф = U / √3.

Сопоставляя эти формулы, видим, что выраженные через линейные величины при соединении в звезду мощности равны:
полная S = 3 × S ф = 3 × (U / √3) × I = √3 × U × I ;
активная P = √3 × U × I × cos φ ;
реактивная Q = √3 × U × I × sin φ .

Мощность при соединении в треугольник

При соединении в треугольник линейные U и фазные U ф напряжения равны, а между фазными и линейными токами существует соотношение I = √3 × I ф, откуда I ф = I / √3.

Поэтому выраженные через линейные величины при соединении в треугольник мощности равны:
полная S = 3 × S ф = 3 × U × (I / √3) = √3 × U × I ;
активная P = √3 × U × I × cos φ ;
реактивная Q = √3 × U × I × sin φ .

Важное замечание. Одинаковый вид формул мощности для соединений в звезду и треугольник иногда служит причиной недоразумений, так как наталкивает недостаточно опытных людей на неправильный вывод, будто вид соединений всегда безразличен. Покажем на одном примере, насколько ошибочен такой взгляд.

Электродвигатель был соединен в треугольник и работал от сети 380 В при токе 10 А с полной мощностью

S = 1,73 × 380 × 10 = 6574 В×А.

Затем электродвигатель пересоединили в звезду. При этом на каждую фазную обмотку пришлось в 1,73 раза более низкое напряжение, хотя напряжение в сети осталось тем же. Более низкое напряжение привело к тому, что ток в обмотках уменьшился в 1,73 раза. Но и этого мало. При соединении в треугольник линейный ток был в 1,73 раза больше фазного, а теперь фазный и линейный токи равны.

Таким образом, линейный ток при пересоединении в звезду уменьшился в 1,73 × 1,73 = 3 раза.

Иными словами, хотя новую мощность нужно вычислять по той же формуле , но подставлять в нее следует иные величины , а именно:

S 1 = 1,73 × 380 × (10 / 3) = 2191 В×А.

Из этого примера следует, что при пересоединении электродвигателя с треугольника в звезду и питании его от той же электросети мощность, развиваемая электродвигателем, снижается в 3 раза .

Что происходит при переключении со звезды в треугольник и обратно в наиболее распространенных случаях?

Оговариваем, что речь идет не о внутренних пересоединениях (которые выполняют в заводских условиях или в специализированных мастерских), а о пересоединениях на щитках аппаратов, если на них выведены начала и .
1. При переключении со звезды в треугольник обмоток генераторов или вторичных напряжение в сети понижается в 1,73 раза, например с 380 до 220 В. Мощность генератора и трансформатора остается такой же. Почему? Потому что напряжение каждой фазной обмотки остается таким же и ток в каждой фазной обмотке такой же, хотя ток в линейных проводах возрастает в 1,73 раза.

При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника в звезду происходят обратные явления, то есть линейное напряжение в сети повышается в 1,73 раза, например с 220 до 380 В, токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Значит, и генераторы и вторичные обмотки трансформаторов, если у них выведены все шесть концов, пригодны для сетей на два напряжения, отличающихся в 1,73 раза.

2. При переключении ламп со звезды в треугольник (при условии их присоединения к той же сети, в которой лампы, включенные звездой, горят нормальным накалом) лампы перегорят.

При переключении ламп с треугольника в звезду (при условии, что лампы при соединении в треугольник горят нормальным накалом) лампы будут давать тусклый свет. Значит, лампы, например, на 127 В в сеть напряжением 127 В должны включаться треугольником. Если же их приходится питать от сети 220 В, необходимо с (подробнее смотрите статью «Схема соединения «Звезда «). Соединять в звезду без нулевого провода можно только лампы одинаковой мощности, равномерно распределенные между , как, например, в театральных люстрах.

3. Все сказанное о лампах относится и к сопротивлениям , электрическим печам и тому подобным электроприемникам.

4. Конденсаторы , из которых собирают батареи для повышения cos φ , имеют номинальное напряжение, которое указывает напряжение сети, к которой должен присоединяться. Если напряжение сети, например, 380 В, а номинальное напряжение конденсаторов 220 В, их следует соединять в звезду. Если напряжение сети и номинальное напряжение конденсаторов одинаковы, конденсаторы .

5. Как объяснено выше, при переключении электродвигателя с треугольника в звезду мощность его снижается примерно втрое. И наоборот, если электродвигатель переключить со звезды в треугольник , мощность резко возрастает, но при этом электродвигатель, если он не предназначен для работы при данном напряжении и соединении в треугольник, сгорит .

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник

применяют для снижения пускового тока, который в 5 – 7 раз превышает рабочий ток двигателя. У двигателей сравнительно большой мощности пусковой ток настолько велик, что может вызвать перегорание , отключение автомата и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент , может вызвать отключение контакторов и магнитных пускателей. Поэтому стремятся уменьшить пусковой ток, что достигается несколькими способами. Все они в итоге сводятся к понижению напряжения в цепи статора на пуска. Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор либо переключают обмотку со звезды в треугольник. Действительно, перед пуском и в первый период пуска обмотки соединены в звезду. Поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает вращения и ток снижается. Тогда обмотки переключают в треугольник.

Предупреждения:
1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят .
2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos φ . Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos φ . Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока; в противном случае электродвигатель перегреется.

1 Активная мощность измеряется в ваттах (Вт), реактивная – в вольт-амперах реактивных (вар), полная – в вольт-амперах (В×А). Величины в 1000 раз большие соответственно называют киловатт (кВт), киловар (квар), киловольт-ампер (кВ×А).
2 Вращающий момент электродвигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения на 20% вращающий момент снижается не на 20, а на 36% (1² — 0,82² = 0,36).

Каждый электрик должен знать:  Проверка чередования фаз силовых кабелей

Обмотки генераторов, трансформаторов, электродвигателей и других электрических приемников при их подключении к трехфазной сети соединяются двумя способами: звездой или треугольником. Эти схемы подключения сильно отличаются друг от друга и несут на себе разные токовые нагрузки. Поэтому есть необходимость разобраться в вопросе, как производится подключение звезда и треугольник – в чем разница?

Что собой представляют схемы

Подключение обмоток звездой – это их соединение в одной точке, которая носит название нулевая точка или нейтральная. Она обозначается буквой «О».

Схема подключения треугольником – это последовательное соединение концов рабочих обмоток, в которых начало одной обмотки соединяется с концом другой.

Разница очевидна. Но какую цель преследуют эти виды соединения, почему звезда треугольник применяются в разных электрических установках, в чем эффективность той и другой. Вопросов по данной теме возникает немало, с ними и надо разобраться.

Начнем с того, что при запуске того же электродвигателя ток, который называется пусковым, обладает высоким значением, который превышает номинальную его величину раз в шесть или восемь. Если это маломощный агрегат, то защита такую силу тока может выдержать, а если это электродвигатель большой мощности, то никакие защитные блоки не выдержат. И это вызовет обязательно «проседание» напряжения и выход из строя предохранителей или автоматических выключателей. Сам же двигатель начнет вращаться с небольшой скоростью, отличающуюся от паспортной. То есть, проблем с пусковым током немало.

Поэтому его надо просто снизить. Есть несколько для этого способов:

  • установить в систему подключения электрического двигателя один из перечисленных приборов: трансформатор, дроссель, реостат;
  • изменяется схема подключения обмоток ротора.

Именно второй вариант используется на производстве, как самый простой и эффективный. Просто производится преобразование схемы звезда в треугольник. То есть, во время пуска двигателя его обмотки соединяются по схеме звезда, затем как только мотор наберет обороты, переключается на треугольник. Процесс переключения звезды на треугольник производится автоматически.

Рекомендуется в электродвигателях, где используются одновременно два варианта соединения – звезда-треугольник, к соединению обмоток по схеме звезда, то есть, к их общей точке подключения, подсоединить нейтраль от сети питания. Для чего это необходимо делать? Все дело в том, что во время работы по данному варианту подсоединения появляется высокая вероятность асимметрии амплитуд разных фаз. Именно нейтраль будет компенсировать данную асимметрию, которая обычно появляется за счет того, что обмотки статора могут иметь разное индуктивное сопротивление.

Преимущества двух схем

У схемы звезда достаточно серьезные достоинства:

  • плавный запуск электрического двигателя;
  • номинальная его мощность будет соответствовать паспортным данным;
  • двигатель будет работать нормально и при кратковременных высоких нагрузках, и при долгосрочных небольших перегрузов;
  • в процессе работы корпус мотора не будет перегреваться.

Что касается схемы треугольник, то основное ее преимущество – это достижение электрическим двигателем в процессе его работы максимальной мощности. Но при этом рекомендуется строго придерживаться эксплуатационных режимов, которые расписаны в паспорте мотора. Тестирование электродвигателей, соединенных по схеме треугольник, показало, что его мощность в три раза больше, чем соединенных по схеме звезда.

Если говорить о генераторах, которые выдают ток в питающую сеть, то схемы соединения звезда и треугольник по своим техническим параметрам точно такие же. То есть, выдаваемое напряжение треугольником будет больше, правда, не в три раза, но не менее 1,73 раза. По сути, получается, что напряжение генератора при звезде, равное 220 вольт, преобразуется в 380 вольт, если провести переключение с одного варианта на другой. Но необходимо отметить, что мощность самого агрегата при этом остается неизменной, потому что все подчиняется закону Ома, в котором напряжение и сила тока находятся в обратной пропорциональности. То есть, увеличение напряжения в 1,73 раза, снижает ток точно на такую же величину.

Отсюда вывод: если в клеммной коробке генератора располагаются все шесть концов обмоток, то можно будет получить напряжение двух номиналов, отличающихся друг от друга коэффициентом 1,73.

Делаем выводы

Почему соединения треугольником и звездой сегодня присутствуют во всех современных мощных электродвигателях? Из всего вышесказанного становится понятным, что основное требование ситуации – это снизить токовую нагрузку, которая возникает в процессе пуска самого агрегата.

Если расписать формулы такого подключения, то они будут выглядеть вот так:

Uф=Uл/1,73=380/1,73=220, где Uф – напряжение на фазах, Uл – на питающей линии. Это соединение звездой.

После того, как электрический агрегат разгонится, то есть, скорость его вращения станет соответствовать паспортным данным, произойдет переход на треугольник со звезды. Отсюда фазное напряжение станет равным линейному.

Здравствуйте, уважаемые гости и посетители сайта «Заметки электрика».

В прошлой статье я рассказал Вам про применение и его устройство, а также подробно познакомились с двумя разновидностями асинхронного двигателя.

Сегодня я расскажу Вам про соединение звездой и треугольникомобмоток асинхронных двигателей, т.к. это один из распространенных вопросов, который мне задают на личную почту.

Вспомним вкратце . Питание такого двигателя осуществляется от сети трехфазного переменного напряжения. В статоре имеются 3 обмотки, которые сдвинуты относительно друг друга на 120 электрических градуса. Это сделано с целью создания вращающегося магнитного поля.

Обозначаются вывода обмоток статора асинхронных двигателей следующим образом:

С1, С2, С3 – начала обмоток, С4, С5, С6 – конец обмоток. Но сейчас все чаще применяется новая маркировка выводов по ГОСТу 26772-85. U1, V1, W1 — начала обмоток, U2, V2, W2 – конец обмоток.

Выводы фазных обмоток асинхронного двигателя выводятся на клеммник или колодку и располагаются таким образом, чтобы соединения звездой или треугольником было удобно выполнить без перекрещивания с помощью специальных перемычек.

Клеммник, его еще называют «борно», чаще всего устанавливается сверху, реже – сбоку. Некоторые клеммники можно разворачивать на 180 градусов, для удобства подводки питающих кабелей.

Всего на клеммник может быть выведено 3 или 6 выводов фазных обмоток статора.

Пример

Если в клеммник выведено 6 выводов обмоток статора, то асинхронный двигатель можно подключить в сеть на 2 разных уровня напряжения, отличающихся на величину в 1,73 раза (√3).

Для наглядности рассмотрим пример. Допустим, у нас имеется , на табличке которого указано напряжение 220/380 (В).

А это значит, что если в сети уровень линейного напряжения составляет 380 (В), то обмотки статора необходимо соединить в схему звезды.

Соединение звездой фазных обмоток статора асинхронного двигателя выполняется следующим образом. Концы всех трех обмоток нужно соединить в одну точку с помощью специальной перемычки, о которой я говорил чуть выше. А на их начала подать трехфазное напряжение сети.

Из рисунка выше видно, что напряжение на фазной обмотке составляет 220 (В), а линейное напряжение между двумя фазными обмотками составляет 380 (В).

На клеммнике соединение звездой обмоток будет выглядеть следующим образом.

Если в сети уровень линейного напряжения составляет 220 (В), то обмотки статора необходимо соединить в схему треугольника.

Соединение треугольником фазных обмоток статора асинхронного двигателя выполняется следующим образом.

  • конец обмотки фазы «А» C4 (U2) необходимо соединить с началом обмотки фазы «В» С2 (V1)
  • конец обмотки фазы «В» С5 (V2) необходимо соединить с началом обмотки фазы «С» С3 (W1)
  • конец обмотки фазы «С» С6 (W2) необходимо соединить с началом обмотки фазы «А» С1 (U1)

Места их соединения подключаются к соответствующим фазам питающего трехфазного напряжения.

Из рисунка видно, что при линейном напряжении сети 220 (В) напряжение на фазной обмотке составляет тоже 220 (В).

На клеммнике при соединении треугольником обмоток статора асинхронного двигателя специальные перемычки нужно установить следующим образом:

В нашем примере при соединении звездой и треугольником напряжение на каждой фазной обмотке асинхронного двигателя будет 220 (В).

Частный случай

Бывают ситуации, когда на клеммник асинхронного двигателя выведено всего 3 вывода, вместо 6. В этом случае соединение звездой или треугольником выполняется внутри двигателя на лобной (торцевой) его части.

Такой асинхронный двигатель можно включать в сеть только на одно напряжение, указанное на табличке с техническими данными.

В нашем примере обмотки статора асинхронного двигателя соединяются по схеме звезда и его можно включать в сеть напряжением 380 (В).

Выводы

В конце данной статьи про соединение звездой и треугольником сделаю вывод, основанный на опыте эксплуатации электродвигателей.

При соединении звездой обмоток асинхронного электродвигателя наблюдается более мягкий запуск и плавная его работа, а также возможность кратковременной перегрузки.

При соединении треугольником обмоток асинхронного электродвигателя происходит достижение его максимальной мощности, но во время пуска пусковые токи имеют большое значение. Также замечено, что при соединении треугольником двигатель больше нагревается (выявлено опытным путем с помощью тепловизора при одной и той же нагрузке).

В связи с вышесказанным, принято асинхронные двигатели средней мощности и выше запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника. Эту схему мы с Вами рассмотрим в ближайших статьях. Следите за обновлениями на сайте.

Трёхфазная цепь, при соединении треугольником

Соединение трехфазной цепи треугольником

При соединении обмоток генератора и приемников энергии треугольником конец предыдущей фазы соединяется с началом последующей, образуя замкнутую систему. К линейным проводам в этом случае подключаются узловые точки.

Схема соединения треугольник

Векторная диаграмма линейных и фазных токов

Вектор фазного тока располагается рядом с вектором соответствующего фазного напряжения под углом ц. Последний определяется характером нагрузки. Если, например, нагрузка активная, то ц = 0о, а при индуктивной нагрузке ц = 90о.

Для построения векторов линейных токов из каждого фазного тока геометрически вычитают соседний. Нетрудно доказать, что в этом случае линейный ток равен:

Расчёт мощностей в трехфазных цепях

Цепь трехфазного переменного тока состоит из трехфазного источника питания, трехфазного потребителя и проводников линии связи между ними.

Симметричный трехфазный источник питания можно представить в виде трех однофазных источников, работающих на одной частоте с одинаковым напряжением и имеющих временной угол сдвига фаз 120?. Эти источники могут соединяться звездой или треугольником.

При соединении звездой условные начала фаз используют для подключения трех линейных проводников A, B, C, а концы фаз объединяют в одну точку, называемую нейтральной точкой источника питания (трехфазного генератора или трансформатора). К этой точке может подключаться нейтральный провод N. Схема соединения фаз источника питания звездой приведена на рисунке 1, а.

Рис. 1. Схемы соединения фаз источника питания: а — звездой; б — треугольником

Напряжение между линейным и нейтральным проводами называется фазным, а между линейными проводами — линейным.

В комплексной форме записи выражения для фазных напряжений имеют вид:

Соответствующие им линейные напряжения при соединении звездой:

Здесь Uф — модуль фазного напряжения источника питания, а Uл — модуль линейного напряжения. В симметричной трёхфазной системе, при соединении фаз источника звездой, между этими напряжениями есть взаимосвязь:

При включении фаз треугольником фазные источники питания соединяют последовательно в замкнутый контур (рисунок 1, б).

Из точек объединения источников между собой выводятся три линейных провода A, B, C, идущие к нагрузке. Из рисунка 1, б видно, что выводы фазных источников подключены к линейным проводникам, а следовательно, при соединении фаз источника треугольником фазные напряжения равны линейным. Нейтральный провод в этом случае отсутствует.

К трехфазному источнику может подключаться нагрузка. По величине и характеру трёхфазная нагрузка бывает симметричной и несимметричной.

В случае симметричной нагрузки комплексные сопротивления всех трёх фаз одинаковы, а если эти сопротивления различны, то нагрузка несимметричная. Фазы нагрузки могут соединяться между собой звездой или треугольником (рисунок 2), независимо от схемы соединения источника.

Рис. 2. Схемы соединения фаз нагрузки

Соединение звездой может быть с нейтральным проводом (см. рисунок 2, а) и без него. Отсутствие нейтрального провода устраняет жёсткую привязку напряжения на нагрузке к напряжению источника питания, и в случае несимметричной нагрузки по фазам эти напряжения не равны между собой. Чтобы их отличить, условились в индексах буквенных обозначений напряжений и токов источника питания применять прописные буквы, а в параметрах, присущих нагрузке, — строчные.

Алгоритм анализа трёхфазной цепи зависит от схемы соединения нагрузки, исходных параметров и цели расчёта.

Для определения фазных напряжений при несимметричной нагрузке, соединённой звездой без нейтрального провода, используют метод двух узлов. В соответствии с этим методом расчёт начинают с определения напряжения UN между нейтральными точками источника питания и нагрузки, называемого напряжением смещения нейтрали:

где ya , yb , yc — полные проводимости соответствующих фаз нагрузки в комплексной форме

Напряжения на фазах несимметричной нагрузки находят из выражений:

В частном случае несимметрии нагрузки, когда при отсутствии нейтрального провода происходит короткое замыкание одной из фаз нагрузки, напряжение смещения нейтрали равно фазному напряжению источника питания той фазы, в которой произошло короткое замыкание.

Напряжение на замкнутой фазе нагрузки равно нулю, а на двух других оно численно равно линейному напряжению. Например, пусть произошло короткое замыкание в фазе В. Напряжение смещения нейтрали для этого случая UN = UB. Тогда фазные напряжения на нагрузке:

Фазные токи в нагрузке, они же и токи линейных проводов при любом характере нагрузки:

В задачах при проведении расчётов трёхфазных цепей рассматривают три варианта соединения трёхфазных потребителей звездой: соединение с нейтральным проводом при наличии потребителей в трёх фазах, соединение с нейтральным проводом при отсутствии потребителей в одной из фаз и соединение без нейтрального провода с коротким замыканием в одной из фаз нагрузки.

В первом и втором вариантах на фазах нагрузки находят соответствующие фазные напряжения источника питания и фазные токи в нагрузке определяются по приведенным выше формулам.

В третьем варианте напряжение на фазах нагрузки не равно фазному напряжению источника питания и определяется с помощью зависимостей

Токи, в двух незакороченных фазах, определяют по закону Ома, как частное от деления фазного напряжения на полное сопротивление соответствующей фазы. Ток в закороченной фазе определяют с помощью уравнения на основании первого закона Кирхгофа, составленного для нейтральной точки нагрузки.

Для рассмотренного выше примера с коротким замыканием фазы В:

При любом характере нагрузки трёхфазная активная и реактивная мощности равны соответственно сумме активных и реактивных мощностей отдельных фаз. Для определения этих мощностей фаз можно воспользоваться выражением

где Uф,Iф, — комплекс напряжения и сопряжённый комплекс тока на фазе нагрузки; Pф, Qф — активная и реактивная мощности в фазе нагрузки.

Трёхфазная активная мощность: P = Pа + Pb + Pс

Трёхфазная реактивная мощность: Q = Qа + Qb + Qс

Трёхфазная полная мощность:

При подключении потребителей треугольником схема приобретает вид, изображённый на рисунке 2, б. В этом режиме схема соединения фаз симметричного источника питания не играет роли.

На фазах нагрузки находят линейные напряжения источника питания. Фазные токи в нагрузке определяют с помощью закона Ома для участка цепи Iф = Uф/zф, где Uф — фазное напряжение на нагрузке (соответствующее линейное напряжение источника питания); zф — полное сопротивление соответствующей фазы нагрузки.

Токи в линейных проводах определяют через фазные на основании первого закона Кирхгофа для каждого узла (точки a,b,c) схемы, изображённой на рисунке 2, б:

Схемы соединения трехфазных цепей

Самым простым способом соединения генератора с нагрузкой является соединение каждой фазной обмотки и соответствующей нагрузки с помощью двух проводов. В этом случае для трехфазной цепи понадобится шесть проводов. Количество проводов можно уменьшить, если использовать связывание трехфазной цепи. Основными способами соединения (связывания) фаз являются соединения звездой и треугольником, которые используются как для соединения фаз генераторов, так и для соединения фаз нагрузки.

Схема соединения фаз генератора и приемника звездой приведена на рис. 3.2.

Рис. 3.2. Соединение трехфазной цепи по схеме «звезда-звезда»

с нулевым проводом

В данной схеме начала фазных обмоток генератора соединяются в нейтральную точку N генератора. Провод, соединяющий нейтральные точки N генератора и n нагрузки, называют нейтральным проводом, а провода, идущие от концов фаз (A,B,C) генератора к нагрузке (a,b,c), − линейными проводами. Очевидно, что нулевой провод и линейные провода обладают конечным сопротивлением. Поскольку сопротивления линейных проводов одинаковые, то для упрощения рассмотрения соотношений между напряжениями и токами в трехфазных системах ими можно пренебречь. Но при этом сохраняются обозначения соответствующих узлов генератора и нагрузки (например, A и a). Сопротивление нулевого провода также примем равным нулю, сохранив обозначения нейтральных точек N генератора и n нагрузки. Влияние сопротивления нулевого провода на работу трехфазной цепи будет рассмотрено ниже.

Каждый электрик должен знать:  Dauken DW600 обзор характеристик и возможностей пылесоса

За положительное направление токов в линейных проводах принимают направление от источника к приемнику. Если сопротивления нагрузки одинаковые (симметричная нагрузка), то линейные токи одинаковы по величине, разность фаз между ними равна 120 град., а их сумма и ток в нулевом проводе в соответствии с ЗТК равны нулю. В этом случае необходимость в нулевом проводе отпадает, и энергию от генератора приемнику можно передавать с помощью только трех проводов. В экономии меди на проводах, соединяющих генератор и нагрузку, и заключается одно из преимуществ связывания трехфазной системы.

Схема соединения фаз генератора и приемника треугольником приведена на рис. 3.3.

Рис. 3.3. Соединение трехфазной цепи

по схеме «треугольник-треугольник»

В данной схеме конец каждой фазной обмотки генератора соединяется с началом обмотки следующей фазы. Поскольку в симметричной системе сумма фазных ЭДС равна нулю, то в образованном фазными обмотками контуре суммарная ЭДС в соответствии с (3.1) равна нулю, и в режиме холостого хода (при отсутствии токов нагрузки) токи в обмотках генератора равны нулю. Как видно из схемы рис. 3.3, данный способ соединения генератора с нагрузкой требует только три провода.

Следует заметить, что способы соединения фаз генератора и нагрузки независимы друг от друга, если не предусматривается нулевой провод. Возможны соединения по схемам: «звезда-треугольник», «треугольник-звезда». Чаще всего генератор соединяют звездой. Это обусловлено тем, что в реальных конструкциях генераторов в случае различия в величине фазных напряжений, обусловленного, например, несимметрией магнитной цепи и возможными технологическими погрешностями, при соединении фазных обмоток генератора треугольником даже при холостом ходе возникают уравнительные токи, что может привести к дополнительным потерям и снижению надежности системы. При соединении обмоток по схеме «звезда» уравнительных токов не возникает ввиду отсутствия контура для их замыкания.

Напряжения на зажимах отдельных фаз генератора и нагрузки называют фазными напряжениями, напряжения между линейными проводами − линейными напряжениями. Токи в фазах генератора и нагрузки называют фазными токами, токи в линейных проводах − линейными токами. Фазные напряжения и токи обозначаются с индексом «ф», линейные − с индексом «л».

Как следует из рис. 3.2 и 3.3, при соединении звездой фазные токи равны линейным, а при соединении треугольником фазные напряжения равны линейным:

Аналогичные соотношения справедливы и для других фаз.

Для установления соотношений между фазными и линейными напряжениями при соединении по схеме «звезда» обратимся к рис.3.4.

Рис. 3.4. Соединение нагрузки по схеме звезда:

а) схема соединения; б) векторная диаграмма напряжений

Рассматривается случай симметричной нагрузки:

Фазные напряжения образуют симметричную звезду векторов (рис. 3.4,б).

В соответствии с ЗНК связь между линейными и фазными напряжениями в соответствии с принятыми положительными направлениями на рис. 3.4,а определяется соотношениями:

Из векторной диаграммы видно, что линейные напряжения образуют равносторонний треугольник. Угол между фазными и линейными напряжениями равен π/6. Тогда очевидно соотношение между действующими значениями фазных и линейных напряжений:

Аналогичные соотношения имеют место между фазными и линейными токами для симметричной нагрузки при соединении фаз треугольником.

Рассмотрим рис. 3.5.

Поскольку векторы фазных напряжений образуют симметричную звезду, то при симметричной нагрузке фазные токи также образуют симметричную звезду (рис. 3.5,б).

Рис. 3.5. Соединение нагрузки треугольником:

а) схема соединения; б) векторная диаграмма токов

В соответствии с ЗТК связь между линейными и фазными токами в соответствии с принятыми положительными направлениями на рис. 3.5,а определяется соотношениями:

Соотношения (3.3) справедливы не только для симметричной нагрузки. Если сложить линейные токи в (3.3), то получим важный вывод: в любой трехпроводной системе всегда сумма линейных токов равна нулю. Для соединения по схеме «звезда» данное утверждение очевидно.

Из векторной диаграммы рис. 3.5,б видно, что линейные токи образуют равносторонний треугольник. Угол между фазными и линейными токами равен π/6. Тогда очевидно соотношение между действующими значениями фазных и линейных токов:

В последующих разделах будут рассматриваться конкретные трехфазные схемы, где принадлежность к фазным и линейным напряжениям и токам будет очевидной. Поэтому для упрощения обозначений индексы «ф» и «л» указывать не будем.

Трехфазный переменный ток. Соединения «звездой» и «треугольником».

Генератор 3-х фазного тока отличается от генератора однофазного тока, тем, что на статоре расположены три отдельных обмотки (фазы), которые сдвинуты одна относительно другой на угол 120 градусов. Ротор генератора представляет собой постоянный магнит или электромагнит, который вращается каким-либо первичным двигателем с определенной скоростью.

При вращении ротора с постоянной скоростью в трёх обмотках статора индуктируются синусоидальные ЭДС одной и той же частоты, имеющие одинаковые амплитуды, но сдвинутые одна относительно другой по фазе на 1/3 периода. Такая система 3–х фазных ЭДС называется симметричной. Особенность – сумма ЭДС всех фаз в любой момент времени = .

Трехфазный переменный ток (ЭДС, напряжение) – это совокупность трех синусоидальных токов одной частоты и сдвинутых по фазе один относительно другого на 1/3 периода.

Обмотки 3-х фазного генератора и потребители 3-х фазного тока соединяют «звездой» и «треугольником».

«Звезда» — концы трёх обмоток соединяют в одну точку ноль, которую называют нулевой точкой или нейтральную генератора.

Напряжение между линейным проводом и нулевым называют фазовым (фазным) Uф = 220 В. Напряжение между линейными проводами – называется линейным Uл = 380 В.

Uл = Uл = 1,73Uф

-«звезда» с нулевым проводом даёт возможность подключить потребители на два напряжения.

«Звезда» без нулевого провода:

— если R1 = R2 = R3, Х1 = Х2 = Х3, то нулевой провод можно удалить то Iл = Iф.

«Звезда» без нулевого провода применяют только при равномерной нагрузке фаз.

-при изменении нагрузки на одной из фаз меняется напряжение на остальных. Нулевой провод обеспечивает выравнивание напряжений на фазах потребителей при любой нагрузке.

«Треугольник» — конец первой обмотки соединяется с началом В второй, конец второй обмотки соединяется с началом C третьей обмотки и конец третьей обмотки с началом А первой.

В схеме «треугольник» Uф = Uл и не зависит от R фаз потребителей.

Достоинство «треугольника» — что при изменении нагрузки в отдельных фазах напряжения во всех фазах в отличие от схемы «звезда» остаются неизменными.

Применяется широко и для включения электродвигателей.

Если линейное напряжение сети равно 380 В, то обмотки двигателя включенные звездой будут находится под напряжением 220 В, а включенные треугольником – под напряжением 380 В.

Активная мощность при равномерной нагрузке

где — коэффициент мощности ( — угол сдвига фаз между фазовым током и фазовым напряжением).

Кажущаяся мощность при равномерной нагрузке фаз

Дата добавления: 2020-11-21 ; просмотров: 1367 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Соединения в звезду и треугольник, фазные и линейные напряжения и токи

Электрические цепи трехфазного синусоидального тока

Трехфазной системой называется совокупность трехфазного источника и трехфазного приемника, электрически связанных между собой. Трехфазная система по сравнению с однофазной намного сложней, однако, она имеет и ряд преимуществ.

Экономичность производства и передачи энергии по сравнению с однофазной

Возможность сравнительно простого получения вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя- одного из самых распространенных двигателей переменного тока

Возможность получения в одной установке двух эксплуатационных напряжений – фазного и линейного.

Элементы трехфазной системы

Трехфазным источником называется совокупность трех однофазных источников одинаковой частоты с суммарным фазовым сдвигом равным 2 p .

Если амплитуды ЭДС в каждой фазе одинаковые и сдвиг по фазе между двумя любыми смежными ЭДС равен 2 p /3, то система ЭДС называется симметричной. При несоблюдении любого из этих условий система ЭДС называется несимметричной.

Выражения для мгновенных значений ЭДС симметричной трехфазной системы можно представить в следующем виде:

e A = E m sin ωt , e B = E m sin( ωt — 2 p /3), e C = E m sin( ωt — 4 p /3).

При переходе к комплексным амплитудам имеем

mA = E m , mB = E m e — j 2 p /3 , mC = E m e — j 4 p /3 = E m e + j 2 p /3 .

Важным свойством симметричной трехфазной системы является равенство нулю суммы мгновенных значений фазных ЭДС , т.е.

e A + e B + e C = 0.

Справедливым является и равенство

mA + mB + mC = E m (1 + e — j 2 p /3 + e + j 2 p /3 ) = 0,

что легко показать и на векторной диаграмме.

Чтобы уменьшить число проводов, которыми соединяются трехфазные источники и трехфазные приемники, и тем самым сократить стоимость линии электропередачи, отдельные фазы источников соединяют между собой по схеме “звезда” или “ треугольник”.

Соединение источников по схеме “звезда”

При соединении звездой концы X,Y,Z трех фаз (рис.9.1, а ), соединяют в один общий узел. Этот общий узел “О”называется нейтралью или нулевой точкой. За положительные направления ЭДС источников е А , е B , е C принимают направления от концов фаз к их началам (A,B,C). Для характеристики трехфазного источника используют понятия фазных и линейных напряжений.

Фазными напряжениями источника называют напряжения A , B , C между началами и концами фаз источника ( генератора или трансформатора) .

Провода, соединяющие зажимы А,В,С источника с приемниками, называются линейными. Токи А , B , C , протекаюшие в линейных проводах, называются линейными. Напряжения между линейными проводами называются линейными. На рис. 9.1,а эти напряжения обозначены как AB , BC , , CA .. Видно, что

AB = A — B , BC = B — C , CA = C — A .

Векторная диаграмма, соответствующая полученным уравнениям, представлена на рис. 9.1,б. Анализ этой диаграммы показывает, что

а) если равны действующие значения фазных напряжений источника, т.е.

U A = U B = U C = U Ф ,

то равны и действующие значения линейных напряжений источника, т.е.

U AB = U BC = U CA = Uл;

б) из геометрических соотношений легко установить, что U л = Ц 3U ф ;

в) если фазные напряжения образуют симметричную трехфазную систему, то и линейные напряжения образуют симметричную трехфазную систему, т.е.

Наиболее распространены номинальные напряжения промышленных электрических сетей 380 В, 220 В, 127 В. При соединении звездой при U л =380 В U ф =380/ Ц 3=220 В, при U л =220 В U ф =220/ Ц 3=127 В.

Это дает возможность включать однофазные приемники, рассчитанные на 2 напряжения к одному трехфазному источнику.

Соединение фаз источника треугольником

При соединении фаз источника треугольником конец X фазы АX соединяется с началом B фазы BY, конец Y фазы BY соединяется с началом C фазы CZ и конец Z последней – с началом A фазы АX. Такая схема представлена на рис. 9.2,а, а векторная диаграмма – на рис. 9.2,б.

Анализируя схему и векторную диаграмму легко установить, что

а) линейные напряжения источника равны соответствующим фазным напряже-ниям, т.е. AВ = A , BC = B ,, CA = C ;

б) для симметричной трехфазной системы ЭДС действующие значения линейных и фазных напряжений одинаковы, т.е

U A = U B = U C = U AB = U BC = U CA = U л = U ф .

в) в замкнутом контуре, образованном источниками, не возникает тока только при идеальной симметриии источников, когда выполняется равенство e A + e B + e C = 0. При наличии несимметрии ток в этом контуре возникает даже при отсутствии нагрузки.

Трехфазные приемники (нагрузки)

Трехфазные приемники, как и источники, могут быть соединены звездой или треугольником, как показано на рис.9.3,а,б.

Если комплексные сопротивления фаз равны между собой, то нагрузка фаз называется симметричной. Если комплексные сопротивления фаз отличны друг от друга, то нагрузка называется несимметричной. Если пренебречь сопротивлениями линейных проводов, то в обоих случаях линейные напряжения трехфазных приемников равны соотвествующим линейным напряжениям источников, т.е.

AВ = ab , BC = bc ,, CA = ca

Для нагрузки, фазы которой Z a , Z b и Z c соединены звездой (рис.9.3,а), токи в фазах всегда равны соответствующим линейным токам, т.е. A = a , B = b , C = c . Напряжения на фазах нагрузки зависят от способа соединения с источником ( трехпроводной или четырехпроводной) и от параметров нагрузки.

При соединении треугольником ( рис.9.3,б) нагрузка каждой фазы включается непосредственно между линейными проводами и поэтому всегда фазные напряжения на нагрузке равны соответствующим линейным напряжениям источника. Токи в фазах нагрузки находятся по закону Ома как

ab = Y ab AB , bc = Y bc BC , ca = Y ca CA ,

где Y ab , Y сb , Y сa – комплексные проводимости фаз.

Применяя первый закон Кирхгофа к узлам цепи, получим линейные токи, выраженные через фазные токи:

A = ab — ca , B = bc — ab , C = ca — bc

Векторная диаграмма, соответствующая общему несимметричной нагрузки приведена на рис.9.4,а . Диаграмма на рис. 9.4,б соответствует симметричной нагрузке.

Для симметричной нагрузки справедливы равенства

I ab =I bc =I ca =I ф

Важной особенностью соединения приемников треугольником является независимость режима работы каждой фазы от других фаз. При изменении сопротивления в одной из фаз будут меняться ток данной фазы и линейные токи в проводах, соединенных с этой фазой. Токи в двух других фазах при этом не изменятся. Поэтому схема соединения приемников треугольником широко используется при несимметричной нагрузке фаз.

Расчет и анализ различных схем трехфазных цепей

Четырехпроводная схема “звезда-звезда” (рис. 9.5,а).

Здесь источник и нагрузку связывают не только три линейных провода, но и провод, соединяющий нулевые точки источника и приемника (нулевой провод). Ток в этом проводе называется нулевым и обозначается 0 .

В этой схеме фазные напряжения источника и приемника одинаковы, т.е.

A = a , B = b , C = c .

Линейные токи находятся на основании закона Ома как

A = Y a A , B = Y b B , C = Y c C .

Ток в нулевом проводе находится на основании узлового уравнения Кирхгофа как сумма линейных токов

При симметричной нагрузке токи в фазах образуют симметричную систему токов и потому ток в нулевом проводе равен 0, т.е. 0 = A + B + C =0. Этому случаю соответствует векторная диаграмма, представленная на рис. 9.5,б.

При несимметричной нагрузке ток в нулевом проводе не равен 0, т.е. 0 = A + B + C № 0. Этому случаю соответствует векторная диаграмма, представленная на рис. 9.5,в. В этом случае изменение сопротивления одной из фаз нагрузки влияет на ток только данной фазы и ток в нулевом проводе.

Трехпроводная схема “звезда-звезда” (рис. 9.6,а).

В общем случае в этой схеме из-за отсутствия нулевого провода фазные напряжения приемника не равны фазным напряжениям источника и могут быть найдены на основании второго закона Кирхгофа по формулам

a = A — 0 , b = B — 0 , c = C — 0 ,

где 0 –напряжение смещения нейтрали. В свою очередь последнее определяется как

Фазные и соответствующие им линейные токи, а так же ток в нулевом проводе находим из следующих соотношений

A = Y a a , B = Y b b , C = Y c c .

При симметричной нагрузке, когда Y a =Y b =Y c напряжение смещения нейтрали 0 =0 и фазные напряжения источника и приемника одинаковы, как и в четырехпроводной схеме (см. векторную диаграмму на рис. 9.6,б).

При несимметричной нагрузке, когда Y a № Y b № Y c напряжение смещения нейтрали 0 № 0 и фазные напряжения источника и приемника различны (см. векторную диаграмму на рис. 9.6,в).

Как видно при отсутствии нулевого провода изменение сопротивления одной из фаз приемника приводит к изменению напряжения 0 и, как следствие, к изменению фазных напряжений и токов других фаз.

Заметим, что при обрыве нулевого провода в четырехпроводной схеме несимметрия нагрузки приводит к несимметрии фазных напряжений и к взаимовлиянию фаз. Вот почему предохранители никогда не ставят в нулевой провод.

Мощность в трехфазной цепи

Трехфазная цепь является совокупностью трех однофазных цепей, поэтому ее мощность может быть определена как сумма мощностей фаз.

При соединении звездой активную P и реактивную Q мощности системы в общем случае можно определить как

P = P a + P b + P c = U a I a cos j a + U b I b cos j b + U c I c cos j c = I a 2 R a + I b 2 R b + I c 2 R c ,

Q = Q a + Q b + Q c = U a I a sin j a + U b I b sin j b + U c I c sin j c = I a 2 X a + I b 2 X b + I c 2 X c .

Если нагрузка соединена треугольником, то активная и реактивная мощности будут равны

P = P ab + P bc + P ca = U ab I ab cos j ab + U bc I bc cos j bc + U ca I ca cos j ca =

= I ab 2 R ab + I bc 2 R bc + I ca 2 R ca ,

Q = Q ab + Q bc + Q ca = U ab I ab sin j ab + U bc I bc sin j bc + U ca I ca sin j ca =

= I ab 2 X ab + I bc 2 X bc + I ca 2 X ca .

В частном случае симметричной нагрузки эти мощности равны соответственно

P = 3 U ф I ф cos j ф = Ц 3 U л I л cos j ф , Q = 3 U ф I ф sin j ф = Ц 3 U л I л sin j ф

Полную мощность можно определить из треугольника мощностей как

В частном случае симметричной нагрузки полную мощность можно найти по формуле

Следует обратить внимание на то, что полная мощность трехфазной цепи не является суммой полных мощностей фаз .

Добавить комментарий