Сравнение нанолитографических методов

3.9. Сравнение нанолитографических методов

Возможности различных литографических процессов, пригодных для создания резистивных масок с размерами элементов в диапазоне 10…1000 нм, показаны на рис.3.15, где координатами являются разрешение и скорость экспонирования.

Рис. 3.15. Соотношение между разрешением и скоростью экспонирования при различных литографических методах

Если при создании наноэлектронных приборов разрешающая способность литографии имеет принципиальное значение для воспроизводимого формирования элементов с требуемыми нанометровыми размерами, то скорость экспонирования – это ключевая характеристика пригодности литографического процесса для массового производства. С точки зрения эффективности производства производительность этого процесса должна быть более 50 подложек в час, что предполагает скорость экспонирования не менее 1 см 2 /с. Этот критический барьер отмечен (см. рис. 3.15) для сравнения различных литографических методов.

Оптическая литография с типичными скоростями экспонирования 10…100см 2 /с полностью удовлетворяет требованиям массового производства. Однако по разрешающей способности она имеет существенные ограничения на минимальный воспроизводимый размер элемента, что главным образом связано с длиной волны излучения, используемого для экспонирования резистов. Повышение разрешающей способности и соответствующее уменьшение критических размеров формируемых элементов в этой группе методов идет по пути уменьшения длины волны излучения. Это использование g-линии (436 нм) и I-линии (365 нм) ртути, излучения эксимерных лазеров: KrF (248 нм), ArF (197 нм), F2 (157 нм). При этом достижимый минимальный размер составляет 100 нм. Дальнейшее уменьшение до 50 нм представляется физиче

Каждый электрик должен знать:  Стабилизатор напряжения на 10 кВт и вводной автомат на 16А

ски возможным, но требует существенного прогресса в технологии создания резистивных масок и повышения чувствительности фоторезистов с высоким разрешением.

Фотолитография в глубоком ультрафиолете является естественным развитием оптической литографии с применением коротковолнового излучения. Для этих целей применяется синхротронное излучение и излучение плазменных лазерных источников. Они обеспечивают формирование элементов размерами до 100 нм и могут быть усовершенствованы для создания элементов с размером 30 нм. Несмотря на физические преимущества, использование синхротронного излучения не находит широкого технологического применения в полупроводниковой электронике из-за сложности, энергоемкости и громоздкости синхротронов. Плазменные лазерные источники во многом лишены этих недостатков, что делает их более перспективными для практической нанолитографии.

Рентгеновская литография, использующая излучение с длиной волны около 1нм, представляет собой последнюю ступень на пути уменьшения длины волны экспонирующего электромагнитного излучения для литографии. При этом в отсутствие подходящей рентгеновской оптики приходится вести прямое экспонирование (1:1). Достаточную для практических целей интенсивность рентгеновского излучения получают в синхротронах и с помощью плазменных лазерных источников. Достижимые минимальные размеры составляют 50…70 нм. Преимуществами рентгеновской литографии являются возможность использования однослойных резистивных масок и высокая воспроизводимость. Недостатки же аналогичны тем, которые отмечены для литографии в глубоком ультрафиолете.

Электронно-лучевая литография является наиболее подходящей основой для массового производства наноструктур. С использованием одиночного луча она обеспечивает скорости экспонирования (10 -3 …10 -2 ) см 2 /с, а в режиме модульного экспонирования – на два-три порядка выше. Типичное разрешение составляет 30 нм с возможностью опуститься до 5 нм при использовании неорганических резистов. Основным недостатком является невысокая производительность, которая определяется плотностью электронного тока и чувствительностью резиста. Повышение плотности тока в электронном луче помимо технических ограничений имеет и физические ограничения. При высоких плотностях тока взаимодействие между электронами приводит к внутреннему расширению луча, которое пропорционально силе тока, что ухудшает разрешение. Для приемлемой производительно
сти необходимы резисты с порогом чувствительности ниже 10мКл/см 2 . Чувствительность к вариациям экспозиционной дозы и глубины фокуса (деформации маски) намного меньше, чем в оптической литографии.

Каждый электрик должен знать:  В комнате нет света после замены обоев - что делать

Ионно-лучевая литография по своим технологическим принципам близка к электронно-лучевой литографии. Она используется для экспонирования резистов толщиной до 20 нм. Ионы могут также использоваться для безмасочного создания рисунка элементов интегральных схем прямой модификацией свойств материала подложки. Установки для ионно-лучевой обработки материалов имеют приемлемые скорости экспонирования. Сравнивая эффективность экспонирования резиста ионами и электронами одного энергетического диапазона – 50…100 кэВ, следует отметить, что ионы полностью передают свою энергию резистивному слою, а электроны проходят глубже, в подложку. Это ведет к существенным отличиям в пороговой чувствительности резистов, которая ниже для ионного экспонирования. Между тем, процесс последовательного экспонирования ионным лучом остается слишком медленным для массового производства.

Каждый электрик должен знать:  Расстояние между силовыми и слаботочными кабелями

Нанопечать является многообещающей технологией литографии, хотя необходимы дополнительные исследования, прежде чем она могла бы полноправно войти в промышленное производство. Одним из сдерживающих факторов остается сравни

тельно большое время обработки одной подложки, что связано с необходимостью ее нагрева и охлаждения в контакте со штампом, хотя имеются определенные резервы для интенсификации этого процесса.

Литография сканирующими зондами дает наиболее высокое разрешение, обеспечивая возможность манипулирования отдельными атомами. Типичное же разрешение лежит в пределах 30…50 нм. Основным недостатком этой группы методов является низкая скорость экспонирования одиночным зондом. Решение этой проблемы может быть осуществлено параллельным экспонированием с использованием многозондовых устройств с независимым управлением каждым зондом.

Для обеспечения приемлемой производительности количество зондов, интегрированных в одной головке, должно составлять 10 4 …10 6 . Положение каждого зонда относительно поверхности подложки должно задаваться индивидуально. Несмотря на существующие практические проблемы, формирование рисунка наноразмерных элементов интегральных микросхем с использованием сканирующих зондов рассматривается как наиболее перспективное направление с потенциальными возможностями для массового производства.

В заключение следует отметить, что имеющиеся нанолитографические методы обеспечивают разрешение в пределах 10…100 нм, чего вполне достаточно для создания большинства наноэлектронных приборов. Однако производительность методов должна быть повышена для соответствия уровню требований промышленного производства.

Добавить комментарий