Тиристоры


СОДЕРЖАНИЕ:

Современные силовые запираемые тиристоры

Введение

Создание полупроводниковых приборов для силовой электроники началось в 1953 г. когда стало возможным получение кремния высокой чистоты и формирование кремниевых дисков больших размеров. В 1955 г. был впервые создан полупроводниковый управляемый прибор, имеющий четырёхслойную структуру и получивший название «тиристор».

Он включался подачей импульса на электрод управления при положительном напряжении между анодом и катодом. Выключение тиристора обеспечивается снижением протекающего через него прямого тока до нуля, для чего разработано множество схем индуктивно-ёмкостных контуров коммутации. Они не только увеличивают стоимость преобразоваеля, но и ухудшают его массо-габаритные показатели,снижают надёжность.

Поэтому одновременно с созданием тиристора начались исследования, направленные на обеспечение его выключения по управляющему электроду. Главная проблема состояла в обеспечении быстрого рассасывания носителей зарядов в базовых областях.

Первые подобные тиристоры появились в 1960 г. в США. Они получили название Gate Turn Off (GTO). В нашей стране они больше известны как запираемые или выключаемые тиристоры.

В середине 90-х годов был разработан запираемый тиристор с кольцевым выводом управляющего электрода. Он получил название Gate Commutated Thyristor (GCT) и стал дальнейшем развитием GTO-технологии.

Тиристоры GTO

Устройство

Запираемый тиристор — полностью управляемый полупроводниковый прибор, в основе которого классическая четырёхслойная структура. Включают и выключают его подачей положительного и отрицательного импульсов тока на электрод управления. На Рис. 1 приведены условное обозначение (а) и структурная схема (б) выключаемого тиристора. Подобно обычному тиристору он имеет катод K, анод А, управляющий электрод G. Различия в структурах приборов заключается в ином расположении горизонтальных и вертикальных слоёв с n- и р-проводимостями.

Рис. 1. Запираемый тиристор:
а- условное обозначение;
б- структурная схема

Наибольшему изменению подверглось устройство катодного слоя n. Он разбит на несколько сотен элементарных ячеек, равномерно распределённых по площади и соединённых параллельно. Такое исполнение вызвано стремлением обеспечить равномерное снижение тока по всей площади полупроводниковой структуры при выключении прибора.

Базовый слой p, несмотря на то, что выполнен как единое целое, имеет большое число контактов управляющего электрода (примерно равное числу катодных ячеек), также равномерно распределённых по площади и соединённых параллельно. Базовый слой n выполнен аналогично соответствующему слою обычного тиристора.

Анодный слой p имеет шунты (зоны n), соединяющие n-базу с анодным контактом через небольшие распределённые сопротивления. Анодные шунты применяют в тиристорах, не обладающих обратной блокирующей способностью. Они предназначены для уменьшения времени выключения прибора за счёт улучшения условий извлечения зарядов из базовой области n.

Основное исполнение тиристоров GTO таблеточное с четырёхслойной кремниевой пластиной, зажатой через термокомпенсирующие молибденовые диски между двумя медными основаниями, обладающими повышенной тепло- и электропроводностью. С кремниевой пластиной контактирует управляющий электрод, имеющий вывод в керамическом корпусе. Прибор зажимается контактными поверхностями между двумя половинами охладителей, изолированных друг от друга и имеющих конструкцию, определяемую типом системы охлаждения.

Принцип действия

В цикле работы тиристора GTO различают четыре фазы: включение, проводящее состояние, выключение и блокирующее состояние.

На схематичном разрезе тиристорной структуры (рис. 1,б) нижний вывод структуры анодный. Анод контактирует со слоем p.Затем снизу вверх следуют: базовый слой n, базовый слой p (имеющий вывод управляющего электрода), слой n, непосредственно контактирующий с катодным выводом. Четыре слоя образуют три p-n перехода: j1 между слоями p и n; j2 между слоями n и p;j3 между слоями p и n.

Фаза 1 — включение. Переход тиристорной структуры из блокирующего состояния в проводящее (включение) возможен только при приложении прямого напряжения между анодом и катодом. Переходы j1 и j3 смещаются в прямом направлении и не препятствуют прохождению носителей зарядов. Всё напряжение прикладывается к среднему переходу j2, который смещается в обратном направлении. Около перехода j2 образуется зона, обеднённая носителями зарядов, получившая название- область объёмного заряда. Чтобы включить тиристор GTO, к управляющему электроду и катоду по цепи управления прикладывается напряжение положительной полярности UG (вывод «+» к слою p). В результате по цепи протекает ток включения IG.

Запираемые тиристоры предъявляют жёсткие требования к крутизне фронта dIG/dt и амплитуде IGM тока управления. Через переход j3, кроме тока утечки, начинает протекать ток включения IG. Создающие этот ток электроны будут инжектироваться из слоя n в слой p. Далее часть из них будет перебрасываться электрическим полем базового перехода j2 в слой n.

Одновременно увеличится встречная инжекция дырок из слоя p в слой n и далее в слой p, т.е. произойдёт увеличение тока, созданного неосновными носителями зарядов.

Cуммарный ток, проходящий через базовый переход j2, превышает ток включения, происходит открытие тиристора, после чего носители зарядов будут свободно переходить через все его четыре области.

Фаза 2 — проводящее состояние. В режиме протекания прямого тока нет необходимости в токе управления IG, если ток в цепи анода превышает величину тока удержания. Однако на практике для того, чтобы все структуры выключаемого тиристора постоянно находились в проводящем состоянии, всё же необходимо поддержание тока, предусмотренного для данного температурного режима. Таким образом, всё время включения и проводящего состояния система управления формирует импульс тока положительной полярности.

В проводящем состоянии все области полупроводниковой структуры обеспечивают равномерное движение носителей зарядов (электронов от катода к аноду, дырок — в обратном направлении). Через переходы j1, j2 протекает анодный ток, через переход j3 — суммарный ток анода и управляющего электрода.

Фаза 3 — выключение. Для выключения тиристора GTO при неизменной полярности напряжения UT (см. рис. 3) к управляющему электроду и катоду по цепи управления прикладывается напряжение отрицательной полярности UGR. Оно вызывает ток выключения, протекание которого ведёт к рассасыванию основных носителей заряда (дырок) в базовом слое p. Другими словами, происходит рекомбинация дырок, поступивших в слой p из базового слоя n, и электронов, поступивших в этот же слой по управляющему электроду.

По мере освобождения от них базового перехода j2 тиристор начинает запираться. Этот процесс характеризуется резким уменьшением прямого тока IТ тиристора за короткий промежуток времени до небольшой величины IТQT (см. рис. 2). Сразу после запирания базового перехода j2 начинает закрываться переход j3, однако за счёт энергии, запасённой в индуктивности цепей управления он ещё некоторое время находится в приоткрытом состоянии.

Рис. 2. Графики изменения тока анода (iT) и управляющего электрода (iG)

После того, как вся энергия, запасённая в индуктивности цепи управления, будет израсходована, переход j3 со стороны катода полностью запирается. С этого момента ток через тиристор равен току утечки, который протекает от анода к катоду через цепь управляющего электрода.

Процесс рекомбинации и, следовательно, выключения запираемого тиристора во многом зависит от крутизны фронта dIGQ/dt и амплитуды IGQ обратного тока управления. Чтобы обеспечить необходимые крутизну и амплитуду этого тока, на управляющий электрод требуется подать напряжение UG, которое не должно превышать величины, допустимой для перехода j3.

Фаза 4 — блокирующее состояние.В режиме блокирующего состояния к управляющему электроду и катоду остаётся приложенным напряжение отрицательной полярности UGR от блока управления. По цепи управления протекает суммарный ток IGR, состоящий из тока утечки тиристора и обратного тока управления, проходящего через переход j3. Переход j3 смещается в обратном направлении. Таким образом, в тиристоре GTO, находящемся в прямом блокирующем состоянии, два перехода (j2 и j3) смещены в обратном направлении и образованы две области пространственного заряда.

Всё время выключения и блокирующего состояния система управления формирует импульс отрицательной полярности.

Защитные цепи

Использование тиристоров GTO, требует применения специальных защитных цепей. Они увеличивают массо-габаритные показатели, стоимость преобразователя, иногда требуют дополнительных охлаждающих устройств, однако являются необходимыми для нормального функционирования приборов.

Назначение любой защитной цепи — ограничение скорости нарастания одного из двух параметров электрической энергии при коммутации полупроводникового прибора. При этом конденсаторы защитной цепи СВ (рис. 3) подключают параллельно защищаемому прибору Т. Они ограничивают скорость нарастания прямого напряжения dUT/dt при выключении тиристора.

Дроссели LE устанавливают последовательно с прибором Т. Они ограничивают скорость нарастания прямого тока dIT/dt при включении тиристора. Значения dUT/dt и dIТ/dt для каждого прибора нормированы, их указывают в справочниках и паспортных данных на приборы.

Рис. 3. Схема защитной цепи

Кроме конденсаторов и дросселей, в защитных цепях используют дополнительные элементы, обеспечивающие разряд и заряд реактивных элементов. К ним относятся: диод DВ, который шунтирует резистор RВ при выключении тиристора Т и заряде конденсатора СВ, резистор RВ, ограничивающий ток разряда конденсатора СВ при включении тиристора Т.

Система управления

Система управления (СУ) содержит следующие функциональные блоки: включающий контур, состоящий из схемы формирования отпирающего импульса и источника сигнала для поддержания тиристора в открытом состоянии; контур формирования запирающего сигнала; контур поддержания тиристора в закрытом состоянии.

Не для всех типов СУ нужны все перечисленные блоки, но контуры формирования отпирающих и запирающих импульсов должна содержать каждая СУ. При этом необходимо обеспечить гальваническую развязку схемы управления и силовой цепи выключаемого тиристора.

Для управления работой выключаемого тиристора применяются две основные СУ, отличающиеся способами подачи сигнала на управляющий электрод. В случае представленном на рис. 4, сигналы, формируемые логическим блоком St, подвергаются гальванической развязке (разделение потенциалов), после чего производится их подача через ключи SE и SA на управляющий электрод выключаемого тиристора Т. Во втором случае сигналы сначала воздействуют на ключи SE (включения) и SA (выключения), находящиеся под тем же потенциалом, что и СУ, затем через устройства гальванической развязки UE и UA подаются на управляющий электрод.

В зависимости от расположения ключей SE и SA различают низкопотенциальные (НПСУ) и высокопотенциальные (ВПСУ, рис. 4) схемы управления.

Рис. 4. Вариант цепи управления

Система управления НПСУ конструктивно проще, чем ВПСУ, однако её возможности ограничены в отношении формирования управляющих сигналов большой длительности, действующих в режиме в режиме протекания через тиристор прямого тока, а также в обеспечении крутизны импульсов управления. Для формирования сигналов большой длительности здесь приходится использовать более дорогие двухтактные схемы.

В ВПСУ высокая крутизна и увеличенная длительность управляющего сигнала достигается проще. Кроме того, здесь сигнал управления используется полностью, в то время как в НПСУ его величина ограничивается устройством разделения потенциалов (например, импульсным трансформатором).

Информационный сигнал — команда на включение или выключение — обычно подаётся на схему через оптоэлектронный преобразователь.

Тиристоры GCT

В середине 90-х годов фирмами «ABB» и «Mitsubishi» был разработан новый вид тиристоров Gate Commutated Thyristor (GCT). Собственно, GCT является дальнейшим усовершенствованием GTO, или его модернизацией. Однако, принципиально новая конструкция управляющего электрода, а также заметно отличающиеся процессы, происходящие при выключении прибора, делают целесообразным его рассмотрение.

GCT разрабатывался как прибор, лишённый недостатков, характерных для GTO, поэтому сначала необходимо остановится на проблемах, возникающих при работе GTO.

Основной недостаток GTO заключается в больших потерях энергии в защитных цепях прибора при его коммутации. Повышение частоты увеличивает потери, поэтому на практике тиристоры GTO коммутируются с частотой не более 250-300 Гц. Основные потери возникают в резисторе RВ (см. рис. 3) при выключении тиристора Т и, следовательно, разряде конденсатора СВ.

Конденсатор СВ предназначен для ограничения скорости нарастания прямого напряжения du/dt при выключении прибора. Сделав тиристор не чувствительным к эффекту du/dt, создали возможность отказаться от снабберной цепи (цепи формирования траектории переключения), что и было реализовано в конструкции GCT.

Особенность управления и конструкции

Основной особенностью тиристоров GCT, по сравнению с приборами GTO, является быстрое выключение, которое достигается как изменением принципа управления, так и совершенствованием конструкции прибора. Быстрое выключение реализуется превращением тиристорной структуры в транзисторную при запирании прибора, что делает прибор не чувствительным к эффекту du/dt.

GCT в фазах включения, проводящего и блокирующего состояния управляется также, как и GTO. При выключении управление GCT имеет две особенности:

  • ток управления Ig равен или превосходит анодный ток Ia (для тиристоров GTO Ig меньше в 3 — 5 раз);
  • управляющий электрод обладает низкой индуктивностью, что позволяет достичь скорости нарастания тока управления dig/dt, равной 3000 А/мкс и более (для тиристоров GTO значение dig/dt составляет 30-40 А/мкс).

Рис. 5. Распределение токов в структуре тиристора GCT при выключении

На рис. 5 показано распределение токов в структуре тиристора GCT при выключении прибора. Как указывалось, процесс включения подобен включению тиристоров GTO. Процесс выключения отличен. После подачи отрицательного импульса управления (-Ig) равного по амплитуде величине анодного тока (Ia), весь прямой ток, проходящий через прибор, отклоняется в систему управления и достигает катода, минуя переход j3 (между областями p и n). Переход j3 смещается в обратном направлении, и катодный транзистор npn закрывается. Дальнейшее выключение GCT аналогично выключению любого биполярного транзистора, что не требует внешнего ограничения скорости нарастания прямого напряжения du/dt и, следовательно, допускает отсутствие снабберной цепочки.

Изменение конструкции GCT связано с тем, что динамические процессы, возникающие в приборе при выключении, протекают на один — два порядка быстрее, чем в GTO. Так, если минимальное время выключения и блокирующего состояния для GTO составляет 100 мкс, для GCT эта величина не превышает 10 мкс. Скорость нарастания тока управления при выключении GCT составляет 3000 А/мкс, GTO — не превышает 40 А/мкс.

Каждый электрик должен знать:  Взаимокорреляционная функция двух сигналов

Чтобы обеспечить высокую динамику коммутационных процессов, изменили конструкцию вывода управляющего электрода и соединение прибора с формирователем импульсов системы управления. Вывод выполнен кольцевым, опоясывающим прибор по окружности. Кольцо проходит сквозь керамический корпус тиристора и контактирует: внутри с ячейками управляющего электрода; снаружи — с пластиной, соединяющей управляющий электрод с формирователем импульсов.

Сейчас тиристоры GTO производят несколько крупных фирм Японии и Европы: «Toshiba», «Hitachi», «Mitsubishi», «ABB», «Eupec». Параметры приборов по напряжению UDRM : 2500 В, 4500 В, 6000 В; по току ITGQM (максимальный повторяющийся запираемый ток): 1000 А, 2000 А, 2500 А, 3000 А, 4000 А, 6000 А.

Тиристоры GCT выпускают фирмы «Mitsubishi» и «ABB». Приборы рассчитаны на напряжение UDRM до 4500 В и ток ITGQM до 4000 А.

В настоящее время тиристоры GCT и GTO освоены на российском предприятии ОАО «Электровыпрямитель» (г. Саранск).Выпускаются тиристоры серий ТЗ-243, ТЗ-253, ТЗ-273, ЗТА-173, ЗТА-193, ЗТФ-193 (подобен GCT) и др. с диаметром кремниевой пластины до 125 мм и диапазоном напряжений UDRM 1200 — 6000 В и токов ITGQM 630 — 4000 А.

Параллельно с запираемыми тиристорами и для использования в комплекте с ними в ОАО «Электровыпрямитель» разработаны и освоены в серийном производстве быстровостанавливающиеся диоды для демпфирующих (снабберных) цепей и диоды обратного тока, а также мощный импульсный транзистор для выходных каскадов драйвера управления (система управления).

Тиристоры IGCT

Благодаря концепции жёсткого управления (тонкое регулирование легирующих профилей, мезатехнология, протонное и электронное облучение для создания специального распределения контролируемых рекомбинационных центров, технология так называемых прозрачных или тонких эмиттеров, применение буферного слоя в n — базовой области и др.) удалось добиться значительного улучшения характеристик GTO при выключении. Следующим крупным достижением в технологии жёстко управляемых GTO (HD GTO) с точки зрения прибора, управления и применения стала идея управляемых приборов базирующихся на новом «запираемом тиристоре с интегрированным блоком управления (драйвером)» (англ. Integrated Gate-Commutated Thyristor (IGCT)). Благодаря технологии жёсткого управления равномерное переключение увеличивает область безопасной работы IGCT до пределов, ограниченных лавинным пробоем, т.е. до физических возможностей кремния. Не требуется никаких защитных цепей от превышения du/dt. Сочетание с улучшенными показателями потерь мощности позволило найти новые области применения в килогерцовом диапазоне. Мощность, необходимая для управления, снижена в 5 раз по сравнению со стандартными GTO, в основном за счёт прозрачной конструкции анода. Новое семейство приборов IGCT, с монолитными интегрированными высоко мощными диодами было разработано для применения в диапазоне 0,5 — 6 МВ*А. При существующей технической возможности последовательного и параллельного соединения приборы IGCT позволяют наращивать уровень мощности до нескольких сотен мегавольт — ампер.

При интегрированном блоке управления катодный ток снижается до того, как анодное напряжение начинает увеличиваться. Это достигается за счёт очень низкой индуктивности цепи управляющего электрода, реализуемой за счёт коаксиального соединения управляющего электрода в сочетании с многослойной платой блока управления. В результате стало возможным достигнуть значения скорости выключаемого тока 4 кА/мкс. При напряжении управления UGK=20 В. когда катодный ток становится равным нулю, оставшийся анодный ток переходит в блок управления, который имеет в этот момент низкое сопротивление. За счёт этого потребление энергии блоком управления минимизируется.

Работая при «жёстком» управлении, тиристор переходит при запирании из p-n-p-n состояния в p-n-p режим за 1 мкс. Выключение происходит полностью в транзисторном режиме, устраняя всякую возможность возникновения триггерного эффекта.

Уменьшение толщины прибора достигается за счёт использования буферного слоя на стороне анода. Буферный слой силовых полупроводников улучшает характеристики традиционных элементов за счёт снижения их толщины на 30% при том же прямом пробивном напряжении. Главное преймущество тонких элементов — улучшение технологических характеристик при низких статических и динамических потерях. Такой буферный слой в четырёхслойном приборе требует устранения анодных закороток, но при этом сохраняется эффективное освобождение электронов во время выключения. В новом приборе IGCT буферный слой комбинируется с прозрачным анодным эмиттером. Прозрачный анод — это p-n переход с управляемой током эффективностью эмиттера.

Для максимальной помехоустойчивости и компактности блок управления окружает IGCT, формируя единую конструкцию с охладителем, и содержит только ту часть схемы, которая необходима для управления непосредственно IGCT. Как следствие, уменьшено число элементов управляющего блока, снижены параметры рассеяния тепла, электрических и тепловых перегрузок. Поэтому, также существенно снижена стоимость блока управления и интенсивность отказов. IGCT, с его интегрированным управляющим блоком, легко фиксируется в модуле и точно соединяется с источником питания и источником управляющего сигнала через оптоволокно. Путём простого размыкания пружины, благодаря детально разработанной прижимной контактной системе, к IGCT прилагается правильно рассчитанное прижимное усилие, создающее электрический и тепловой контакт. Таким образом, достигается максимальное облегчение сборки и наибольшая надёжность. При работе IGCT без снаббера, обратный диод тоже должен работать без снаббера. Эти требования выполняет высокомощный диод в прижимном корпусе с улучшенными характеристиками, произведённый с использованием процесса облучения в сочетании с классическими процессами. Возможности по обеспечению di/dt определяются работой диода (см. рис. 6).

Рис. 6. Упрощенная схема трёхфазного инвертора на IGCT

Основной производитель IGCT фирма «ABB».Параметры тиристоров по напряжению UDRM: 4500 В, 6000 В; по току ITGQM: 3000 А, 4000 А.

Заключение

Быстрое развитие в начале 90-х годов технологии силовых транзисторов привело к появлению нового класса приборов — биполярные транзисторы с изолированным затвором (IGBT — Insulated Gate Bipolar Transistors). Основными преимуществами IGBT являются высокие значения рабочей частоты, КПД, простота и компактность схем управления (вследствие малости тока управления).

Появление в последние годы IGBT с рабочим напряжением до 4500 В и способностью коммутировать токи до 1800 А привело к вытеснению запираемых тиристоров (GTO) в устройствах мощностью до 1 МВт и напряжением до 3,5 кВ.

Однако новые приборы IGCT, способные работать с частотами переключения от 500 Гц до 2 кГц и имеющие более высокие параметры по сравнению с IGBT транзисторами, сочетают в себе оптимальную комбинацию доказанных технологий тиристоров с присущими им низкими потерями, и бесснабберной, высокоэффективной технологией выключения путём воздействия на управляющий электрод. Прибор IGCT сегодня — идеальное решение для применения в области силовой электроники среднего и высокого напряжений.

Характеристики современных мощных силовых ключей с двусторонним теплоотводом приведены в табл. 1.

Назначение тиристоров

Читайте также:

  1. I. Назначение сроков и вызов к разбору
  2. Автоматический выключатель АВ- 8. Назначение, расположение на вагоне. Работа схем вагона при сработке АВ- 8.
  3. Аккредитованные профессиональные аудиторские объединения. Их назначение и функции.
  4. Аналого-цифровые преобразователи, назначение, структура, принцип действия.
  5. Аудиторская выборка. Сущность и назначение. Применение выборки в процессе аудиторской проверки.
  6. Аудиторский контроль, его сущность и назначение
  7. Базы данных. Назначение и основные функции.
  8. Безбалочные перекрытия, их функциональное назначение.
  9. Бизнес-план предприятия, его назначение.
  10. Брендинг: понятие, сущность, назначение
  11. Буквенные обозначения параметров тиристоров
  12. Бюджетирование на предприятиях туризма: назначение, методы обоснования бюджетов по направлениям.

Тиристор. Устройство, назначение.

Тиристором называется управляемый трехэлектродный полупроводниковый прибор с тремя p–n-переходами, обладающий двумя устойчивыми состояниями электрического равновесия: закрытым и открытым.

Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают три основных свойства тиристора:

1тиристор, как и диод, проводит ток в одном направлении, проявляя себя как выпрямитель;

2тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния.

3управляющий ток, необходимый для перевода тиристора из «закрытого» состояния в «открытое», значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока;

Устройство и основные виды тиристоров

Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n-структура b) Диодный тиристор с) Триодный тиристор.

Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n, содержащий три последовательно соединённых p-n-перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n-прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором. Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором [1] (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как ихВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется такжесимистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов, часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Вольтамперная характеристика тиристора

Рис. 2. Вольтамперная характеристика тиристора

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

· Между точками 0 и (Vвo,IL) находится участок, соответствующий высокому сопротивлению прибора — прямое запирание (нижняя ветвь).

· В точке Vво происходит включение тиристора (точка переключения динистора во включённое состояние).

· Между точками (Vво, IL) и (Vн,Iн) находится участок с отрицательным дифференциальным сопротивлением-неустойчивая область переключения во включённое состояние. При подаче разности потенциалов между анодом и катодом тиристора прямой полярности больше Vно происходит отпирание тиристора (динисторный эффект).

· Участок от точки с координатами (Vн,Iн) и выше соответствует открытому состоянию (прямой проводимости)

· На графике показаны ВАХ с разными токами управления (токами на управляющем электроде тиристора) IG (IG=0; IG>0; IG>>0), причём чем больше ток IG, тем при меньшем напряжении Vbo происходит переключение тиристора в проводящее состояние

· Пунктиром обозначен т. н. «ток включения спрямления» (IG>>0), при котором тиристор переходит в проводящее состояние при минимальном напряжении анод-катод. Для того, чтобы перевести тиристор обратно в непроводящее состояние необходимо снизить ток в цепи анод-катод ниже тока включения спрямления.

· Участок между 0 и Vbr описывает режим обратного запирания прибора.

· Участок далее Vbr — режим обратного пробоя.

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика повторяет участки 0—3 симметрично относительно начала координат.

По типу нелинейности ВАХ тиристор относят к S-приборам.

Дата добавления: 2015-05-06 ; Просмотров: 5348 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Что такое тиристор?

Появление четырехслойных p-n-p-n полупроводниковых элементов совершило настоящий прорыв в силовой электронике. Такие устройства получили название «тиристоров». Кремниевые управляемые вентили являются наиболее распространенным семейством тиристоров.

Данный вид полупроводниковых приборов имеет следующую структуру:

Как видим из структурной схемы тиристор имеет три вывода – катод, управляющий электрод и анод. Подключению к силовым цепям подлежат анод и катод, а управляющий электрод подключается к системе управления (слаботочные сети) для управляемого открытия тиристора.

На принципиальных схемах тиристор имеет такое обозначение:

Вольт-амперная характеристика показана ниже:

Давайте подробнее рассмотрим эту характеристику.

Обратная ветвь характеристики

В третьем квадранте характеристики диодов и тиристоров равны. Если к аноду приложить отрицательный потенциал относительно катода, то к J1 и J3 прикладывается обратное напряжение, а к J2 — прямое, что вызовет протекание тока обратного (он очень мал, как правило несколько миллиампер). Когда же это напряжение увеличится до так называемого напряжения пробоя, произойдет лавинное нарастание тока между J1 и J3. При этом, если данный ток не будет ограничен, то произойдет пробой перехода с последующим выходом из строя тиристора. При обратных же напряжениях, которые не превышают напряжения пробоя, тиристор будет вести себя как резистор с большим сопротивлением.

Зона низкой проводимости

В данной зоне все наоборот. Потенциал катода будет отрицательный по отношению к потенциалу анода. Поэтому к J1 и J3 будет приложено прямое, а к J2 – обратное напряжение. Результатом чего станет весьма малый анодный ток.

Зона высокой проводимости

Если напряжение на участке анод – катод достигнет значения, так называемого напряжением переключения, то произойдет лавинный пробой перехода J2 и тиристор будет переведен в состояние высокой проводимости. При этом Ua снизится от нескольких сотен до 1 — 2 вольт. Оно будет зависеть от типа тиристора. В зоне высокой проводимости ток, протекающий через анод, будет зависеть от нагрузки внешней элемента, что дает возможность рассматривать его в этой зоне как замкнутый ключ.

Если пропустить ток через управляющий электрод, то напряжение включения тиристора уменьшится. Оно напрямую зависит от тока управляющего электрода и при достаточно большом его значении практически равно нулю. При выборе тиристора для работы в схеме, то его подбирают таким образом, чтоб напряжения обратное и прямое не превышали паспортных значений напряжений пробоя и переключения. Если эти условия выполнить трудно, или имеется большой разброс в параметрах элементов (например необходим тиристор на 6300 В, а его ближайшие значения 1200 В), то иногда применяют последовательное или параллельное включение элементов.

Каждый электрик должен знать:  Вопрос по точке в цепи по разделению PEN проводника.

В нужный момент времени с помощью подачи импульса на управляющий электрод можно перевести тиристор с закрытого состояния в зону высокой проводимости. Ток УЭ, как правило, должен быть выше минимального тока открытия и он составляет порядка 20-200 мА.

Когда анодный ток достигнет определенного значения, при котором запирания тиристора невозможно (ток переключения), управляющий импульс может быть снят. Теперь тиристор сможет перейти обратно в закрытое состояние только при уменьшении тока ниже, чем ток удержания, или прикладыванием к нему напряжения обратной полярности.

Видео работы и графики переходных процессов тиристора можно посмотреть здесь.

Преобразователи энергии — Тиристоры / Тиристоры

Тиристорами называются полупроводниковые приборы с тремя (и более) р-п-переходами, предназначенными для использования в качестве электронных ключей в схемах переключения электрических токов. Они переключают электрические цепи, регулируют напряжение, преобразуют постоянный ток в переменный. По устройству и принципу работы он очень похож на полупроводниковый диод, но в отличие от него тиристор управляемый.

«Ключевой» характер действия тринистора позволяет использовать его для переключения электрических цепей там, где для этой цели до этого служили только электромагнитные реле. Полупроводниковые переключатели легче, компактнее и во много раз надежнее в работе, чем электромагнитные реле с механически замыкаемыми контактами. В отличие от таких реле они производят переключение с очень большой скоростью — сотни и тысячи раз в секунду, а если нужно — еще быстрее. Тринисторы используют в современной аппаратуре электрической связи, в быстродействующих системах дистанционного управления, в вычислительных машинах и в энергетических устройствах.

В зависимости от конструктивных особенностей и свойств тиристоры делят на диодные и триодные. В диодных тиристорах различают:

тиристоры, запираемые в обратном направлении;

проводящие в обратном направлении;

Триодные тиристоры подразделяют:

на запираемые в обратном направлении с управлением по аноду или катоду;

проводящие в обратном направлении с управлением по аноду или катоду;


Наиболее распространены динисторы — тиристоры с двумя выводами и тринисторы — приборы с тремя выводами. Кроме того, различают группу включаемых тиристоров.

Простейшие диодные тиристоры, запираемые в обратном направлении, обычно изготовляются из кремния и содержат четыре чередующихся р- и п-области (рис.2.2). Область р1, в которую попадает ток из внешней цепи, называют анодом, область п2катодом; области п1, р2базами.

Рис.2.2. Структура тиристора.

III. Принцип действия

Если к аноду р1 подключить плюс источника напряжения, а к катоду п2 – минус, то переходы П1 и П3 окажутся открытыми, а переход П2 – закрытым. Его называют коллекторным переходом.

Так как коллекторный р-п-переход смещен в обратном направлении, то до определенного значения напряжения почти все приложенное падает на нем. Такая структура легко может быть представлена в виде двух транзисторов разной электропроводности, соединенных между собой так, как показано на рис. 2.3, а,б.

Рис. 2.3. Структура (а) и схема двухтранзисторного эквивалента тиристора (б).

Ток цепи определяется током коллекторного перехода П2. Он однозначно зависит от потока дырок из эмиттера транзистора р-пр — типа и потока электронов из эмиттера транзистора прп— типа, а также от обратного тока р-п-перехода.

Так как переходы П1 и П3 смещены в прямом направлении, из них в области баз инжектируются носители заряда: дырки из области р1, электроны – из области п2. Эти носители заряда, диффундируя в областях баз п1, р2, приближаются к коллекторному переходу и его полем перебрасываются через р-п-переход. Дырки, инжектированные из р1-области, и электроны из п2 движутся через переход П2 в противоположных направлениях, создавая общий ток I.

При малых значениях внешнего напряжения все оно практически падает на коллекторном переходе П2. Поэтому к переходам П13, имеющим малое сопротивление, приложена малая разность потенциалов и инжекция носителей заряда невелика. В этом случае ток I мал и равен обратному току через переход П. При увеличении внешнего напряжения ток в цепи сначала меняется незначительно. При дальнейшем возрастании напряжения, по мере увеличения ширины перехода П2, все большую роль начинают играть носители заряда, образовавшиеся вследствие ударной ионизации. При определенном напряжении носители заряда ускоряются настолько, что при столкновении с атомами в области р-п-перехода ионизируют их, вызывая лавинное размножение носителей заряда.

Образовавшиеся при этом дырки под влиянием электрического поля переходят в область р2, а электроны – в область п1. Ток через переход П2 увеличивается, а его сопротивление и падение напряжения на нем уменьшаются. Это приводит к повышению напряжения, приложенного к переходам П1, П3, и увеличению инжекции через них, что вызывает дальнейший рост коллекторного тока и увеличение токов инжекции. Процесс протекает лавинообразно и сопротивление перехода П2 становится малым.

Носители заряда, появившиеся в областях вследствие инжекции и лавинного размножения, приводят к уменьшению сопротивления всех областей тиристора, и падение напряжения на приборе становится незначительным. На ВАХ этому процессу соответствует участок 2 с отрицательным дифференциальным сопротивлением (рис.2.4). После переключения ВАХ аналогична ветви характеристики диода, смещенного в прямом направлении (участок 3). Участок 1 соответствует закрытому состоянию тиристора.

Выключение тиристора осуществляется за счет уменьшения напряжения внешнего источника до значения, при котором ток меньше (участок 3).

Рис. 2.4. Вольтамперная характеристика динистора

Если параллельно с тиристором включить диод, который открывается при обратном напряжении, то получится тиристор, проводящий в обратном направлении.

Триодные тиристоры (рис. 2.5,а) отличаются от диодных тем, что одна из баз имеет внешний вывод, который называют управляющим электродом.

Рис. 2.5. Триодный тиристор:

Изменяя ток можно менять напряжение, при котором происходит переключение тиристора, и тем самым управлять моментом его включения.

Для того, чтобы запереть тиристор, нужно либо уменьшить рабочий ток до значения путем понижения питающего напряжения до значения , либо задать в цепи управляющего электрода импульс тока противоположной полярности.

Процесс включения и выключения тиристора поясняет рис.2.5,в. Если к нему через резистор R приложено напряжение U1 и ток в цепи управляющего электрода равен нулю, то тиристор заперт. Рабочая точка находится в положении а. Пи увеличении тока управляющего электрода рабочая точка перемещается по линии нагрузки 1. Когда ток управляющего электрода достигнет значения Iy1, тиристор включится, и рабочая точка его переместится в точку b. Для выключения (Iy = 0) необходимо уменьшить напряжение питания до значения . При этом рабочая точка из b1 перейдет в а2 и при восстановлении напряжения – в точку а.

Выключить тиристор можно также путем подачи на управляющий электрод напряжения противоположной полярности и создания в его цепи противоположно направленного тока.

Недостатком такого включения является большое значение обратного тока управляющего электрода, которое приближается к значению коммутируемого тока тиристора. Отношение амплитуды тока тиристора к амплитуде импульса выключающего тока управляющего электрода называется коэффициентом запирания: . Он характеризует эффективность включения тиристора с помощью управляющего электрода. В ряде разработок

Тиристоры с повышенным коэффициентом запирания часто называют выключаемыми или запираемыми.

IV. Основные параметры тиристоров

Напряжение переключения (постоянное — , импульсное — , десятки – сотни В).

Напряжение в открытом состоянии — падение напряжения на тиристоре в открытом состоянии

Обратное напряжение — напряжение, при котором тиристор может работать длительное время без нарушения его работоспособности (единицы – тысячи В).

Постоянное прямое напряжение в закрытом состоянии — максимальное значение прямого напряжения, при котором не происходит включения тиристора (единицы – сотни В).

Неотпирающее напряжение на управляющем электроде — наибольшее напряжение, не вызывающее отпирания тиристора (доли В).

Запирающее напряжение на управляющем электроде — напряжение, обеспечивающее требуемое значение запирающего тока управляющего электрода (единицы – десятки В).

Ток в открытом состоянии — максимальное значение тока открытого тиристора (сотни мА – сотни А).

Ток удержания (десятки – сотни мА).

Обратный ток (доли мА).

Отпирающий ток управления — наименьший ток управления электрода, необходимый для включения тиристора (десятки мА).

Скорость нарастания напряжения в закрытом состоянии – максимальная скорость нарастания напряжения в закрытом состоянии (десятки – сотни В/мкс).

Время включения — время с момента подачи отпирающего импульса до момента, когда напряжение на тиристоре уменьшится до 0,1 своего начального значения (мкс – десятки мкс).

Время выключения — минимальное время, в течение которого к тиристору должно прикладываться запирающее напряжение (десятки – сотни мкс).

Рассеиваемая мощность (единицы – десятки Вт).

Обозначения тиристоров в соответствии с ГОСТ 10862 – 72 состоят из шести элементов. Первый элемент – буква К, указывающая исходный материал полупроводника; второй – буква Н для диодных тиристоров и У для триодных; третий – цифра, определяющая назначение прибора; четвертый и пятый – порядковый номер разработки; шестой – буква, определяющая технологию изготовления, например КУ201А, КН102И и т.д.

Тиристоры: устройство и основные физические процессы

Тиристорами называют полупроводниковые приборы с двумя устойчивыми режимами работы (включен, выключен), имеющие три или более p-n-переходов.

Тиристор по своему принципу — прибор ключевого действия. Во включенном состоянии он подобен замкнутому ключу, а в выключенном — разомкнутому ключу. Те тиристоры, которые не имеют специальных электродов для подачи сигналов с целью изменения состояния, а имеют только два силовых электрода (анод и катод), называют неуправляемыми, или диодными, тиристорами (динисторами). Иначе тиристоры называют управляемыми тиристорами, или просто тиристорами.

Они являются основными элементами в силовых устройствах электроники, которые называют также устройствами преобразовательной техники. Типичными представителями таких устройств являются управляемые выпрямители (преобразуют переменное напряжение в однонаправленное) и инверторы (преобразуют постоянное напряжение в переменное). Динисторы, как правило, используются в слаботочных импульсных устройствах.

Существует большое количество различных тиристоров. Для определенности вначале обратимся к так называемому управляемому по катоду незапираемому тиристору с тремя выводами (два силовых и один управляющий), который проводит ток только в одном направлении.

Дадим упрощенное изображение структуры тиристора (рис. 1.109) и его условное графическое обозначение (рис. 1.110).

Обратимся к простейшей схеме с тиристором (рис. 1.111), где использованы следующие обозначения:

ia — ток анода (силовой ток в цепи анод-катод тиристора);

uак— напряжение между анодом и катодом;

iy — ток управляющего электрода (в реальных схемах используют импульсы тока);

uук— напряжение между управляющим электродом и катодом;

Предположим, что напряжение питания меньше так называемого напряжения переключения uпеp(uпит uпеp или что после подключения источника питания (даже при выполнении условия uпит

Можно заметить, что такая структура соответствует схеме на двух транзисторах (рис. 1.113).

Вначале рассмотрим процесс включения тиристора при uак=uпеp и iy = 0 (так называемое включение по аноду), однако такой способ включения не рекомендуется использовать на практике.

Имеют место соотношения:

i к1=αст1·iэ1+iко1iк2=αст2·iэ2+iко2 где αст1,αст2,iко1,iко2— соответственно статические коэффициенты передачи токов эмиттеров и обратные токи коллекторов транзисторов Т1 и Т2.

Обозначим через iко общий обратный ток p-n-перехода П2, тогда iко =iко1+iко2 Получим iа=iэ1=iэ2=iк1+iк2 Откуда iа=αст1·iа+αст2·iа+iкоiа=iко/ [ 1- (αст1+αст2) ]

Как уже отмечалось, коэффициенты передачи токов транзисторов изменяются при изменении режимов работы транзисторов.

При малых токах αст1+αст2 0), и он будет выключенным до подачи импульса управления.

Тиристор выключается также в случае, когда обратное напряжение не подается, но ток ia уменьшается до некоторой малой величины, называемой током удержания iуд. При этом напряжение на тиристоре увеличивается скачкообразно. Такой способ выключения на практике используется редко, так как время выключения при этом оказывается значительным.

Существуют так называемые запираемые тиристоры, которые могут быть выключены с помощью тока управления.

Если на тиристор подано обратное напряжение uак

Тиристор – принцип работы, устройство и схема управления

Перед тем как разбираться с темой «тиристор – принцип работы», необходимо понять, что собой представляет этот небольшой прибор. По сути, это силовой ключ, только он всегда находится в открытом состоянии. Поэтому его часто называют не полностью управляемый ключ.

Необходимо отметить, что по своему устройству тиристор напоминает обыкновенный транзистор или диод. Правда, есть и существенные отличия. К примеру, диод – это полупроводниковый двухслойный элемент на кремневой основе (PN), транзистор – трехслойный (PNP или NPN), тиристор – четырехслойный (PNPN). То есть, у него три перехода p-n. Именно поэтому диодные выпрямители перед тиристорными являются менее эффективными. Это хорошо видно на схеме управления тиристорами.

Где применяются тиристоры

Область применения тиристоров обширна. К примеру, из них можно собрать инвертор для сварки или зарядное автомобильное устройство. Некоторые умельцы своими руками собирают даже генераторы. Самое важное, что тиристоры могут через себя пропускать токи и высокочастотные, и низкочастотные. Поэтому, собрав мост из этих приборов, можно изготовить трансформатор и для сварочного аппарата.

Cхема управления тиристором

Конструкция и принцип действия

Состоит тиристорный ключ из трех частей:

Последний состоит из трех переходов p-n. При этом переключение переходов производится с очень большой скоростью. Вообще, принцип работы тиристора можно объяснить лучше, если рассмотреть схему связки двух транзисторов, связанных параллельно, как выключатели комплементарно регенеративного действия.

Итак, самая простейшая схема двух транзисторов, совмещенных так, чтобы при пуске ток коллектора поступал на NPN второго прибора через каналы NPN первого. А в это же время ток проходит обратный путь через первый транзистор на второй. По сути, получается достаточно простая связка, где база-эмиттер одного из транзисторов, в нашем случае второго, получает ток от коллектора-эмиттера другого прибора, то есть, первого.

Каждый электрик должен знать:  Как установить розетку в гипсокартон инструкция, видео

Цепь постоянного тока

В цепи постоянного тока тиристор работает по принципу подачи импульса положительной полярности, конечно, относительно катода. На длительность перехода из одного состояния в другое оказывает большое воздействие ряд характеристик. А именно:

  • Вид нагрузки (индуктивный, активный и прочее).
  • Скорость нарастания импульса и его амплитуда, имеется в виду ток нагрузки.
  • Величина самой токовой нагрузки.
  • Напряжение в цепи.
  • Температура самого прибора.

Здесь самое важное, чтобы в сети, где установлен данный прибор, не произошло резкое возрастание напряжения. В этом случае может произойти самопроизвольное включение тиристора, а сигнал управления будет в это время отсутствовать.

Цепь переменного тока

В этой сети тиристорный ключ работает немного по-другому. Этот прибор дает возможность проводить несколько видов операций. К примеру:

  • Включение и отключение цепи, в которое действует активная или активно-реактивная нагрузки.
  • Можно изменять значение действующей нагрузки и ее средней величины за счет возможности изменять (регулировать) подачу самого сигнала управления.

Тиристор в цепи переменного тока.

Но имейте в виду, что тиристорный ключ может пропускать сигнал только в одном направлении. Поэтому сами тиристоры устанавливаются в цепь, так сказать, во встречно-параллельном включении.

Управление тиристорами

В силовых электронных аппаратах чаще всего используется или фазное, или широтно-импульсное управление тиристором.

В первом случае регулировать токовую нагрузку можно за счет изменения углов или α, или θ. Это относится к принудительной нагрузке. Искусственную нагрузку можно регулировать только с помощью управляемого тиристора, который также называется запираемый.

При ШИМ (широтно-импульсной модуляции) во время Тоткр сигнал подается, а, значит, сам прибор находится в открытом состоянии, то есть, ток подается с напряжением Uн. В период времени Тзакр сигнал отсутствует, а сам прибор находится непроводящем состоянии.

Тиристорные светодиоды

Обычно тиристор и светодиод в одном светильнике не устанавливаются. Его место заменяет диод, который работает и на включение, и на отключение, как обычный ключ. Это связано с разными причинами, где основная – это конструкция и принцип действия самого прибора, который всегда находится в открытом состоянии. В настоящее время ученые изобрели так называемый тиристорный светодиод.

Во-первых, тиристорный светодиод в своем составе кроме кремния имеет: галлий, алюминий, индий, мышьяк и сурьму. Во-вторых, спектр излучения при n-переходах между материалами создает волну длиною 1,95 мкм. А это достаточно большая оптическая мощность, если ее сравнивать с диодным элементом, который производит световые волны в том же диапазоне.

Что такое тиристор

Содержание статьи

  • Что такое тиристор
  • Как рабоатет тиристор
  • Что такое генератор

Характеристика тиристоров

Данный прибор можно рассматривать и применять в качестве электронного выключателя или ключа, которые управляются с помощью нагрузки слабыми сигналами, а также могут переключаться из одного режима в другой. Общее количество современных тиристоров разделяется по способу управления и по степени проводимости, что означает одно направление или два (такие приборы также называют симисторами).

Тиристоры также характеризуются нелинейной вольтамперной особенностью с наличием участка отрицательного дифференциального сопротивления. Эта особенность делает подобные приборы схожими с транзисторными ключами, но имеются между ними и различия. Так в тиристорах переход из одного состояния в другое в цельной электрической цепи происходит путем лавинообразного скачка, а также методом внешнего воздействия на сам прибор. Последнее осуществляется двумя вариантами – токовым напряжением или воздействием света фототиристора.

Применение и типы тиристоров

Сфера применения данных приборов довольно разнообразна – это электронные ключи, современные системы CDI, механически управляемые выпрямители, диммеры или регуляторы мощности, а также инверторные преобразователи.

Как уже говорилось выше, подобные приборы разделяются на диодные и триодные. Первый тип также называют динисторами с двумя выводами, он разделяется на приборы, не имеющие возможность осуществлять проводимость в обратном направлении, на тип с проводимостью в обратном направлении и на симметричные приборы. Второй включает в себя триодные тиристоры с проводимостью в обратном направлении, приборы с отсутствием проводимости в обратном направлении, симметричные тиристоры, ассиметричные приборы и запираемые тиристоры.

Между ними, кроме количества выводов, нет существенных и принципиальных различий. Но, если в динисторе открытие происходит после достижения между анодом и катодом напряжения, зависящего от типа устройства, то в тиристоре имеющееся напряжение может быть в разы снижено или вовсе снято с помощью подачи токового импульса.

Существуют различия между триодными тиристорами и запираемыми приборами. Так у первого типа переключение в режим закрытого состояния происходит после снижения тока или после изменения полярности, а у запираемых устройств переход в открытое осуществляется путем воздействия тока на управляющий электрод.

Основы электроакустики

  • а) динистор,
  • б) тиристор,
  • в) симистор

Рис.5.2. Схема простейшего регулятора на тиристоре

Рис.5.3. Временные диаграммы работы регулятора

Тиристор идеально подходит для регулирования мощности переменного напряжения во всем, кроме одного: он является однополупериодным устройством, а это означает, что даже при полной проводимости используется только половина мощности. Можно включить параллельно два тиристора навстречу друг другу, чтобы обеспечить двухполупериодный режим работы, однако для этого требуется подавать импульсы запуска на управляющие электроды от двух изолированных, но синхронных источников.

Рис.5.4. Простое «твердотельное реле» на симисторе

Имеется большое число различных симисторов и тиристоров. Как и в случае выпрямительных диодов, для того, чтобы выбрать прибор с нужным номинальными напряжением и током, можно обратиться к каталогам и справочным данным. Большинство производителей выпускают подходящие динисторы, но имеются также приборы, называемые quadrac, в которых объединены симистор и динистор

Тиристоры 414

Тиристоры — это полупроводниковые приборы с тремя p — n переходами и обычно с тремя выводами (анод, катод и управляющий электрод), предназначенные для регулировки и коммутации больших токов. Тиристор можно рассматривать как своеобразный ключ, имеющий два устойчивых состояния: закрытое и открытое. Особенностью работы тиристора является то, что если подключить положительное напряжение к аноду относительно катода, то тиристор не будет проводить ток в отличие от диода. Для включения тиристора необходимо подать положительный импульсный сигнал к выводу управления. Для выключения тиристора нужно снять напряжение с анода — это является недостатком по сравнению с транзисторами, но этот недостаток компенсируется сверхмалыми токами управления. Купить тиристоры можно на токи от 1мА до 10кА, на напряжения от нескольких вольт, до нескольких киловольт. Выпускаются в пластмассовых и металлических корпусах. Цена тиристора зависит от его мощности.

Наиболее известными брендами в области производства тиристоров являются следующие компании: NXP, ON Semiconductor, STMicroelectronics, Vishay, завод Электровыпрямитель, завод Протон-Электротекс, Запорожский завод Преобразователь.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Волгоград, Воронеж, Екатеринбург, Ижевск, Казань, Калуга, Краснодар, Красноярск, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Пермь, Ростов-на-Дону, Рязань, Самара, Саратов, Тверь, Томск, Тула, Тюмень, Уфа, Челябинск. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Евросеть» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Ярославль, Владивосток, Махачкала, Томск, Оренбург, Кемерово, Новокузнецк, Астрахань, Пенза, Липецк, Киров, Чебоксары, Калининград, Курск, Улан-Удэ, Ставрополь, Сочи, Иваново, Брянск, Белгород, Сургут, Владимир, Нижний Тагил, Архангельск, Чита, Смоленск, Курган, Орёл, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и др.

Товары из группы «Тиристоры» вы можете купить оптом и в розницу.

Что такое тиристор и как он работает?

Открытие свойств переходов полупроводников по праву можно назвать одним из важнейших в ХХ веке. В результате появились первые полупроводниковые приборы — диоды и транзисторы. А также схемы, в которых они нашли применение. Одной из таких схем является соединение двух биполярных транзисторов противоположных типов — p-n-p c n-p-n. Эта схема показана далее на изображении (б). Она иллюстрирует, что такое тиристор и принцип его действия. В ней присутствует положительная обратная связь. В результате каждый транзистор увеличивает усилительные свойства другого транзистора.

Транзисторный эквивалент

При этом любое изменение проводимости транзисторов в любом направлении лавинообразно нарастает и завершается одним из граничных состояний. Они либо заперты, либо отперты. Этот эффект называется триггерным. А по мере развития микроэлектроники оба транзистора объединили в 1958 году на одной подложке, обобщив одноименные переходы. В результате появился новый полупроводниковый прибор, названный тиристором. На взаимодействии двух транзисторов и зиждется принцип работы тиристора. В результате объединения переходов у него такое же количество выводов, как и у транзистора (а).

На схеме управляющий электрод — это база транзистора структуры n-p-n. Именно ток базы транзистора изменяет проводимость между его коллектором и эмиттером. Но управление может быть выполнено также и по базе p-n-p транзистора. Таково устройство тиристора. Выбор управляющего электрода определяют его особенности, в том числе выполняемые задачи. Например, в некоторых из них вообще не используются какие-либо управляющие сигналы. Поэтому, зачем же использовать управляющие электроды.

Динистор

Это задачи, где применяются двухэлектродные разновидности тиристоров — динисторы. В них присутствуют резисторы, соединенные с эмиттером и базой каждого транзистора. Далее на схеме это R1 и R3. Для каждого электронного прибора есть ограничения по величине приложенного напряжения. Поэтому до некоторой его величины упомянутые резисторы удерживают каждый из транзисторов в запертом состоянии. Но при дальнейшем увеличении напряжения через переходы коллектор–эмиттер появляются токи утечки.

Они подхватываются положительной обратной связью, и оба транзистора, то есть динистор, отпираются. Для желающих поэкспериментировать далее показано изображение со схемой и номиналами компонентов. Можно ее собрать и проверить рабочие свойства. Обратим внимание на резистор R2, отличающийся подбором нужного номинала. Он дополняет эффект утечки и, соответственно, напряжение срабатывания. Следовательно, динистор — это тиристор, принцип работы которого определен величиной питающего напряжения. Если оно относительно велико, он включится. Естественно интересно также узнать, как же его выключить.

Трудности выключения

С выключением тиристоров дело обстояло, как говорится, туго. По этой причине довольно длительное время виды тиристоров ограничивались только двумя выше упомянутыми структурами. До середины девяностых годов ХХ века применяются тиристоры только этих двух типов. Дело в том, что выключение тиристора может произойти лишь при запирании одного из транзисторов. Причем на определенное время. Оно определено скоростью исчезновения зарядов соответствующих отпертому переходу. Наиболее надежный способ «прибить» эти заряды — полностью отключить ток, протекающий через тиристор.

Большинство из них так и работают. Не на постоянном токе, а на выпрямленном, соответствующем напряжению без фильтрации. Оно изменяется от нуля до амплитудного значения, а затем вновь уменьшается до нуля. И так далее, соответственно частоте переменного напряжения, которое выпрямляется. В заданный момент между нулевыми значениями напряжения на управляющий электрод поступает сигнал, и тиристор отпирается. А при переходе напряжения через ноль вновь запирается.

Чтобы выключить его на постоянном напряжении и токе, при котором значение нуля отсутствует, необходим шунт, действующий определенное время. В простейшем варианте это либо кнопка, присоединенная к аноду и катоду, либо соединенная последовательно. Если прибор отперт, на нем присутствует остаточное напряжение. Нажатием кнопки оно обнуляется, и ток через него прекращается. Но если кнопка не содержит специального приспособления, и ее контакты разомкнутся, тиристор непременно снова включится.

Этим приспособлением должен быть конденсатор, подключаемый параллельно тиристору. Он ограничивает скорость нарастания напряжения на приборе. Этот параметр вызывает набольшее сожаление при использовании этих полупроводниковых приборов, поскольку понижается рабочая частота, с которой тиристор способен коммутировать нагрузку, и, соответственно, коммутируемая мощность. Происходит это явление из-за внутренних емкостей, характерных для каждой из моделей этих полупроводниковых приборов.

Конструкция любого полупроводникового прибора неизбежно образует группу конденсаторов. Чем быстрее нарастает напряжение, тем больше токи, их заряжающие. Причем они возникают во всех электродах. Если такой ток в управляющем электроде превысит некоторое пороговое значение, тиристор включится. Поэтому для всех моделей приводится параметр dU/dt.

Многообразие модельного ряда

Эти варианты выключения усложняют тиристорные коммутаторы и уменьшают их надежность. Но развитие тиристорного разнообразия получилось очень плодотворным.

В наше время освоено промышленное производство большого числа разновидностей тиристоров. Область их применения — не только мощные силовые цепи (в которых работают запираемый и диод-тиристор, симистор), но и цепи управления (динистор, оптотиристор). Тиристор на схеме изображается, как показано далее.

Среди них есть модели, у которых рабочие напряжения и токи самые большие среди всех полупроводниковых приборов. Поскольку промышленное электроснабжение немыслимо без трансформаторов, роль тиристоров в его дальнейшем развитии является основополагающей. Запираемые высокочастотные модели в инверторах обеспечивают формирование переменного напряжения. При этом его величина может достигать 10 кВ с частотой 10 килогерц при силе тока 10 кА. Габариты трансформаторов при этом уменьшаются в несколько раз.

Включение и выключение запираемого тиристора происходит исключительно от воздействия на управляющий электрод специальными сигналами. Полярность соответствует определенной структуре этого электронного прибора. Это одна из простейших разновидностей, именуемая как GTO. Кроме нее применяются более сложные запираемые тиристоры со встроенными управляющими структурами. Эти модели называются GCT, а также IGCT. Использование в этих структурах полевых транзисторов относит запираемые тиристоры к приборам семейства MCT.

Мы постарались сделать наш обзор информативным не только для начитанных посетителей нашего сайта, но также и для чайников. Теперь, когда мы ознакомились с тем, как работает тиристор, можно найти применение этим знаниям для практического использования. Например, в несложном ремонте бытовых электроприборов. Главное — увлекаясь работой, не забывайте о технике безопасности!

Добавить комментарий