Трансформаторы и электрические машины 0

Электрические машины и трансформаторы

Опыты холостого хода и короткого замыкания трансформатора и их значение. Сущность напряжения короткого замыкания. Средства улучшения коммутации в машинах постоянного тока. Устройство и принцип действия автотрансформатора, его достоинства и недостатки.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 09.10.2020
Размер файла 903,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МЕЖРЕГИОНАЛЬНЫЙ ЗАОЧНЫЙ ЭНЕРГЕТИЧЕСКИЙ ТЕХНИКУМ

(МЗЭТ ГОУ СПО ИЭК)

По теме «Электрические машины и трансформаторы»

Деркач Николай Николаевич шифр Д—2170

3 курса, специальности 140206-01 .

Вопрос № 1 Опыты холостого хода и короткого замыкания трансформатора. Значение опытов. Напряжение короткого замыкания

Электрическая схема замещения позволяет с достаточной точностью исследовать свойства трансформаторов в любом режиме. Использование этой схемы при определении характеристик имеет наибольшее практическое значение для трансформаторов мощностью 50 кВ-А и выше, так как исследование таких трансформаторов методом непосредственной нагрузки связано с некоторыми техническими трудностями: непроизводительным расходом электроэнергии, необходимостью в громоздких и дорогостоящих нагрузочных устройствах.

Определение параметров схемы замещения Z1 = r1+jx1; Zm = rm+jxm‘, Z2 / =r2 / +jx2 / возможно либо расчетным (в процессе расчета трансформатора), либо опытным путем. Ниже излагается порядок определения параметров схемы замещения трансформатора опытным путем, сущность которого состоит в проведении опыта холостого хода (х. х.) и опыта короткого замыкания (к. з.).

Опыт холостого хода. Холостым ходом называют режим работы трансформатора при разомкнутой вторичной обмотке (zн=бесконечности, I2=0). В этом случае уравнения ЭДС и токов (1.34) принимают вид

Так как полезная мощность при работе трансформатора вхолостую равна нулю, мощность на входе трансформатора в режиме х. х. Pq расходуется на магнитные потери в магнитопроводе Рм (потери на перемагничивание магнитопровода и вихревые токи) и электрические потери в меди I 2 r1 (потери на нагрев обмотки при прохождении по ней тока) одной лишь первичной обмотки. Однако ввиду небольшого значения тока I, который обычно не превышает 2—10% I1ном, электрическими потерями I 2 r1 можно пренебречь и считать, что вся мощность х. х. представляет собой мощность магнитных потерь в стали магнитопровода. Поэтому магнитные потери в трансформаторе принято называть потерями холостого хода.,

Опыт х. х. однофазного трансформатора проводят по схеме, изображенной на рис. 1.29, а. Комплект электроизмерительных приборов, включенных в схему, дает возможность непосредственно измерить напряжение U1, подведенное к первичной обмотке; напряжение U20 на выводах вторичной обмотки; мощность х.х. Р и ток Х.Х. Iо.

Напряжение к первичной обмотке трансформатора обычно подводят через регулятор напряжения РН, позволяющий плавно повышать напряжение от 0 до 1,15 U1ном-

При этом через приблизительно одинаковые интервалы тока х.х. снимают показания приборов,- а затем строят характеристики х.х.: зависимость тока х.х. I,» мощности х.х. Pq и коэффициента мощности х.х. соs ф0 от первичного напряжения U1 (рис. 1.30).

Криволинейность этих характеристик обусловлена состоянием магнитного насыщения магнито-провода, которое наступает при некотором значении напряжения U1.

В случае трехфазного трансформатора опыт х.х. проводят по схеме, показанной на рис. 1.29, б. Характеристики х.х. строят по средним фазным значениям тока и напряжения для трех фаз:

где P0 и P0″ — показания однофазных ваттметров; U1 и I0 — фазные значения напряжения и тока.

Каждый электрик должен знать:  Термины ПУЭ приемник электрической энергии

По данным опыта х. х. можно определить: коэффициент трансформации

ток х.х. при U 1ном (в процентах от номинального первичного тока)

В трехфазном трансформаторе токи х.х. в фазах неодинаковы и образуют несимметричную систему

поэтому мощность Р0 следует измерять двумя ваттметрами по схеме, изображенной на рис. 1.29, б. Падение напряжения в первичной ветви схемы замещения в режиме х.х. Io(r1+jx1) (рис. 1.31) составляет весьма незначительную величину, поэтому, не допуская заметной ошибки, можно пользоваться следующими выражениями для расчета параметров ветви намагничивания:

Обычно в силовых трансформаторах общего применения средней и большой мощности при номинальном первичном напряжении ток х. х. i0=10/0,6%.

Если же фактические значения тока х. х. Iном и мощности х. х. Р0 ном, соответствующие номинальному значению первичного напряжения U1 ном, заметно превышают величины этих параметров, указанные в каталоге на данный тип трансформатора, то это свидетельствует о неисправности этого трансформатора: наличии корот-козамкнутых витков в обмотках либо замыкании части пластин магнитопровода.

Опыт короткого замыкания. Короткое замыкание трансформатора — это такой режим, когда вторичная обмотка замкнута накоротко (zH=0), при этом вторичное напряжение U2=0. В условиях эксплуатации, когда к трансформатору подведено номинальное напряжение U1ном, короткое замыкание является аварийным режимом и представляет собой большую опасность для трансформатора.

При опыте к.з. вторичную обмотку однофазного трансформатора замыкают накоротко (рис. 1.32, а), а к первичной обмотке подводят пониженное напряжение, постепенно повышая его регулятором напряжения РН до некоторого значения Uк ном, при котором токи к. з. в обмотках трансформатора становятся равными номинальным токам в первичной (I1к =I1ном) и вторичной (I2к =I2ном) обмотках. При этом снимают показания приборов и строят характеристики к. з., представляющие собой зависимость тока к. з. I1K, мощности к. з. Рк и коэффициента мощности cos срк от напряжения к. з. UK (рис. 1.33).

В случае трехфазного трансформатора опыт проводят по схеме, показанной на рис. 1.32, б, а значения напряжения к.з. и тока к.з. определяют как средние для трех фаз:

В случае трехфазного трансформатора активную мощность измеряют методом двух ваттметров. Тогда мощность к. з.

В (1.52) Рк и Рк» — показатели однофазных ваттметров, Вт.

Напряжение, при котором токи в обмотках трансформатора при опыте равны номинальным значениям, называют номинальным напряжением короткого замыкания и обычно выражают его в процентах от номинального напряжения:

Вопрос №2 Средства улучшения коммутации в машинах постоянного тока

Таблица 13.1. Степень искрения (класс коммутации) электрических машин постоянного тока

Большое практическое значение * при эксплуатации машин постоянного тока имеют вопросы улучшения коммутации. Основной причиной неудовлетворительной коммутации является возникновение в коммутирующих секциях добавочного тока коммутации

1. Выбор вдетак, С точки зрения обеспечения удовлетворительной коммутации целесообразно применение щеток с большим падением напряжения в переходном контакте и собственно щетке, т.е. щетки с большим сопротивлением rщ, что привело бы к уменьшению тока iд. Однако допустимая плотность тока в щеточном контакте таких щеток невелика, поэтому их применение в машинах со значительным током якоря ведет к необходимости увеличения площади щеточного контакта, что требует увеличения площади коллектора за счет его длины. В связи с этим щетки с большим rш используют преимущественно в машинах с относительно высоким напряжением, а следовательно, с небольшим током якоря.

2. Уменьшение реактивной ЭДС в коммутирующих секциях. Снижению реактивной ЭДС, индуцируемой в коммутирующих секциях, способствует уменьшение коэффициентов взаимной индуктивности М и самоиндукции Lс.. Понижение коэффициента М достигается применением обмоток якоря с укороченным шагом (у1 I1. Из этого следует, что в этом трансформаторе ток I12 в общей части витков аХ равен разности вторичного и первичного токов:

Каждый электрик должен знать:  Устройство и принцип работы солнечных элементов

Если коэффициент трансформации автотрансформатора немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить часть аХ обмотки автотрансформатора из провода меньшего сечения.

Введем понятие проходной мощности автотрансформатора, пред- ставляющей собой всю передаваемую мощность Sпp=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Sрасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. Но в автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр=I2U2 на составляющие. Воспользуемся для этого выражением (3.7), из которого следует, что I2=I1+I12. Подставив это выражение в формулу проходной мощности, получим

Здесь SэU2I1 — мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе Sрас= U2I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магни-топровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка_обмотки также становится меньше; следовательно, уменьшается расход меди на выполнение» обмотки авто-трансформйтораГ Одновременно уменьшаются магнитные и электрические потери, а КПД автотрансформатора повышается^

Таким образом, автотрансформатор по сравнению с трансформатором равной мощности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротёх»ничё-ская сталь), более высоким КПД, меньшими размерами и стоимостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность SЭ, а следовательно, чем меньше расчетная часть проходной мощности.

Мощность SЭ, передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

т. е. величина мощности Sэ обратно пропорциональна коэффициенту трансформации автотрансформатора kA.

Из графика, изображенного на рис. 3.3, видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при kA=\ вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (Sэ/Sпр=1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации kA 2. При большой величине коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и X (см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з., поэтому токи к.з. должны ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для питания цепей НН от сети ВН.

Выберите тип обмотки и рассчитайте её шаги. Обоснуйте свой выбор. Начертите развёрнутую схему и схему параллельных ветвей обмотки якоря машины постоянного топка.

Число пар полюсов Р = 1

Число элементарных пазов Zэ = 15

Число секций S = 15

Число коллекторных пластин. К = 15

Ток в якоре Ia = 600А

Ток параллельной ветви должен ограничивается значением. ia = ( 300 — 350) А

2a — число параллельных ветвей обмотки якоря

ia — ток одной параллельной ветви

2а = 2Р ia = Ia/2a = 600/2*1 = 300A

Выбираем простую петлевую обмотку.

Генератор постоянного тока с параллельным возбуждением работает в номинальном режиме с мощностью Р ном при напряжении Uном и токе Iном. Ток в обмотке возбуждения — Iв, в обмотке якоря — Iа. Сопротивление обмотки возбуждения при tхол = 20 °С — RВ 20°С, а обмотки якоря — Ra 20°С. ЭДС генератора- Е. КПД генератора — rном, а суммарные потери мощности в генераторе ? р.

По заданным в таблице 2 значениям величин определить все остальные, отмеченные в таблице прочерками. Начертите схему такого генератора и поясните назначение каждого элемента схемы.

Трехфазный трансформатор имеет номинальную мощность SHQM. номинальные (линейные) напряжения обмоток U1ном и U2ном — номинальные токи I 1ном и I 2ном и коэффициент трансформации k. В сердечнике трансформатора сечением Q создается магнитная индукция Втах при частоте тока = 50 Гц. Обе обмотки соединены в-звезду. Числа виткоз первичной и вторичной обмоток — w1 и w2. ЭДС в обмотках (фазные величины) составляют Е1ф и Е2ф. По заданным в таблице 3 значениям величин определить все остальные, отмеченные в таблице прочерками.

Подобные документы

Проект трансформатора, электрические параметры: мощность фазы, значение тока и напряжения; основные размеры. Расчет обмоток; характеристики короткого замыкания; расчет стержня, ярма, веса стали, потерь, тока холостого хода; определение КПД трансформатора.

учебное пособие [576,7 K], добавлен 21.11.2020

Устройство и принцип действия трансформатора. Частное напряжений второй и первой обмоток. Проведение опытов холостого хода, короткого замыкания и с нагрузкой. Построение зависимости КПД трансформатора от нагрузки. Электрические потери в трансформаторе.

лабораторная работа [42,3 K], добавлен 07.03.2020

Исследование трансформатора методом холостого хода и короткого замыкания. Расчет тока холостого хода в процентах от номинального первичного, коэффициента мощности в режиме холостого хода. Порядок построения характеристики холостого хода трансформатора.

лабораторная работа [19,0 K], добавлен 12.01.2020

Исследование назначения машин переменного тока, их места в системе энергоснабжения. Анализ принципа действия трансформатора. Характеристика его работы в режиме холостого хода и короткого замыкания. Оценка качества работы магнитной системы трансформатора.

презентация [254,5 K], добавлен 21.10.2020

Расчет обмоточного трансформатора с медными обмотками на чашечном магнитопроводе. Нахождение тока холостого хода и короткого замыкания. Определение показателей трансформатора, выполненного на торроидальном магнитопроводе. Обзор напряжения питающей сети.

контрольная работа [1,3 M], добавлен 11.09.2009

Устройство, назначение и принцип действия трансформаторов. Расчет электрических величин трансформатора и автотрансформатора. Определение основных размеров, расчет обмоток НН и ВН, параметров и напряжения короткого замыкания. Расчет системы охлаждения.

реферат [1,6 M], добавлен 10.09.2020

Требования по технике безопасности. Трехфазная цепь при соединении потребителей по схемам «звезда» и «треугольник». Однофазного счетчика электрической энергии. Опыт холостого хода трансформатора, короткого замыкания. Работа люминесцентной лампы.

методичка [721,6 K], добавлен 16.05.2020

Определение геометрических параметров трансформатора. Выбор схемы магнитопровода. Расчет обмоток высокого и низкого напряжения, потерь мощности короткого замыкания, тока холостого хода трансформатора, бака и радиаторов. Размещение отводов и вводов.

курсовая работа [926,2 K], добавлен 09.05.2020

Определение значения сверхпереходного и ударного тока в точке короткого замыкания, а также наибольшего значения полного тока симметричного трехфазного и несимметричного двухфазного замыкания. Зависимость изменения тока короткого замыкания для генератора.

курсовая работа [1,2 M], добавлен 13.01.2020

Определение основных электрических величин и размеров трансформатора. Выбор конструкции магнитной системы, толщины листов стали и типа изоляции пластин. Расчет обмоток, потерь и напряжения короткого замыкания, тока холостого хода. Тепловой расчет бака.

курсовая работа [1,5 M], добавлен 23.11.2020

Каждый электрик должен знать:  Формирование пускотормозных режимов асинхронных двигателей при тиристорном регулировании
Добавить комментарий