Трехфазный мостовой выпрямитель — принцип работы и схемы


Мостовая схема выпрямления

Мостовая схема выпрямления ( рис. 113, а) состоит из силового трансформатора Тр с двумя обмотками и четырех вентилей B 1 — В 4 , соединенных по схеме моста. Одна диагональ моста подсоединена ко вторичной обмотке силового трансформатора, другая диагональ — к нагрузке R н .

При включении первичной обмотки трансформатора в сеть во вторичной обмотке возникает переменная э. д. с. е II .

Во время положительного полупериода, когда точка 1 имеет более высокий потенциал, чем точка 2, в цепи вентилей В 1 и В 3 (точка 1, В 1 , В 2 , точка 2) пройдет полуволна тока ( рис. 113, б ). К вентилям В 2 и В 4 при этом приложено обратное напряжение, они заперты. Во время следующего полупериода пройдет полуволна тока в цепи вентилей В 1 и В 4 (точка 2, В 2 , В 4 точка1); вентили В 1 и В 3 заперты.

Рис. 113. Мостовая однофазная схема выпрямления (а) и временные диаграммы токов и э. д. с. (б).

Таким образом, мостовая схема представляет собой схему двухполупериодного выпрямления . Конец диагонали моста с соединенными катодами вентилей является положительным полюсом выпрямителя, а конец диагонали моста с соединенными анодами — отрицательным полюсом выпрямителя. Если напряжение сети соответствует величине заданного напряжения, которое должно быть приложено к мосту, то мостовая схема может включаться в сеть переменного тока без трансформатора.

Отличие мостовой схемы выпрямителя от рассмотренной ранее двухполупериодной схемы заключается в следующем:

  • а) вторичная обмотка не имеет вывода от средней точки;
  • б) выпрямленный ток протекает по всей вторичной обмотке в течение обоих полупериодов то в одном, то в другом направлении, поэтому отсутствует намагничивание
    сердечника трансформатора;
  • в) для получения такого же выпрямленного напряжения, как и от двухполупериодной схемы с выводом средней точки трансформатора, для вторичной обмотки в мостовой схеме требуется в 2 раза меньшее число витков;
  • г) токи вторичной и первичной обмоток — синусоидальны, поэтому расчетные мощности обмоток одинаковы:
    (205)
    т. е. габаритная мощность примерно на 20% ниже габаритной мощности трансформатора с выводом средней точки;
  • д) обратное напряжение меньше. Действительно, напряжение вторичной обмотки приложено к двум парам последовательно включенных вентилей (один из которых открыт, а другой закрыт).

Поэтому обратное напряжение, приложенное к одному из последовательно включенных вентилей, равно напряжению на вторичной обмотке трансформатора, уменьшенному на величину прямого падения напряжения на другом, последовательно включенном, вентиле:

E mII = U обр + U пр

Если пренебречь прямым падением напряжения по сравнению с обратным, то получим

в то время как в однополупериодной и двухполупериодной схемах , рассмотренных ранее, напряжение U обр = 3,14 U ср , в 2 раза больше, чем в мостовой схеме выпрямления.

Частота пульсации и коэффициент пульсации во всех схемах одинаковы.

При сравнительном анализе схем следует учесть, что в мостовой схеме выпрямления , однако, используются четыре вентиля, а не два, как это имело место в двухполупериодной схеме с выводом средней точки. Если в качестве вентилей использовать приборы с накаливаемыми катодами, то потребуется минимум три макальных обмотки, что резко удорожает и усложняет конструкцию.

Поэтому в мостовых схемах выпрямления для повышения к. п. д. установки целесообразно применять безнакальные вентили с малым внутренним сопротивлением. Мостовые схемы выпрямления изготовляют мощностью, не превышающей 1 квт. Выпрямленное напряжение может быть очень большим (вплоть до десятков тысяч вольт).

Расчет мостовой схемы выпрямления

Заданными или известными величинами являются напряжение на нагрузке (U ср.зад , ток через нагрузку I ср , коэффициент пульсации выпрямленного напряжения K п.зад на выходе, напряжение и частота питающей сети.

Расчетные величины определяются по формулам:

Из справочника выбирается вентиль с допустимым обратным напряжением

и током через вентиль

Далее рассчитываются электрические величины, характеризующие вторичную обмотку трансформатора:

U II =(1,1÷1,3)U ср.р
I I I = 0,8I ср ;
P I I =U I I I I I

С целью получения пологой внешней характеристики, желательно выбирать фильтр, начинающийся с индуктивности.

Коэффициент пульсаций напряжения на входе фильтра

При токе нагрузки до 200 ма величина емкости звена фильтра не превышает 8—12 мкф. Задавшись емкостью звена фильтра С ф , можно определить индуктивность дросселя фильтра

Емкость конденсатора C 1 , шунтирующего дроссель, рассчитывается по формуле

Конденсатор С 1 должен быть рассчитан на рабочее напряжение

U раб = 4πƒL др I ср

В заключение нужно определить расчетную (габаритную) мощность силового трансформатора, используя формулу (204 ).

Выпрямительные диоды, диодные мосты и области их применения

Структура, принцип работы

Выпрямитель электрического тока — механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.

Диодный мост — электронная схема, предназначенная для преобразования («выпрямления») переменного тока в пульсирующий постоянный. Такое выпрямление называется двухполупериодным.

Выделим два варианта включения мостовых схем однофазную и трехфазную.

Однофазная мостовая схема:

На вход схемы подается переменное напряжение (для простоты будем рассматривать синусоидальное), в каждый из полупериодов ток проходит через два диода, два других диода закрыты (рис.1 а, б).

Рис. 1 а) Выпрямление положительной полуволны Рис. 1 б) Выпрямление отрицательной полуволны

В результате такого преобразования на выходе мостовой схемы получается пульсирующее напряжение вдвое большее частоты напряжения на входе (рис.2 а, б, с)

Рис. 2. а) исходное напряжение (напряжение на входе), б) однополупериодное выпрямление, с) двухполупериодное выпрямление

Трехфазная мостовая схема:

В схеме трехфазного выпрямительного моста в результате получается напряжение на выходе с меньшими пульсациями, чем в однофазном выпрямителе (рис.3).

Рис. 3. Напряжение на выходе трехфазного выпрямителя

Для выпрямления трехфазных напряжений так же широко используются диодные выпрямители. Очень распространены схемы выпрямителей на полумостовых диодных выпрямителях рис. 4.

Рис. 4. Трехфазная схема выпрямителя на полумостах

Как правило, для сглаживания пульсирующего напряжения на выходе выпрямителя применяется фильтр в виде конденсатора или дросселя, к тому же для стабилизации выходного напряжения устанавливается стабилитрон рис. 5.

Рис. 5. Схема диодного выпрямителя с фильтром

Рис. 6. Диодный мост на дискретных элементах

Конструкция диодных мостов может быть выполнена из отдельных диодов, или в виде монолитной конструкции (диодной сборки). Монолитная конструкция, как правило, предпочтительней — она дешевле и меньше по объему. Диоды в ней подобраны на заводе изготовителе и параметры максимально аналогичны друг другу, в отличие от отдельных диодов, где параметры могут отличаться друг от друга, к тому же в рабочем состоянии диоды в диодной сборке работают в одинаковом тепловом режиме, что уменьшает вероятность выхода из строя элемента. Еще одним преимуществом диодной сборки является ее простота монтирования на плате. Основным недостатком монолитной конструкции является не возможность замены одного диода, вышедшего из строя другим, в этом случае необходимо менять всю сборку, но происходит это крайне редко, если рабочие режимы диодного моста подобраны правильно.

Рис. 7. Диодная сборка

Область применения выпрямительных мостов обширна, например:

  • приборы освещения (люминесцентные лампы, ЭПРА, модули солнечных батарей);
  • счетчики электроэнергии;
  • блоки питания и управления бытовой техники (телевизоров, миксеров, стиральных машин, пылесосов, set-top-box, компьютеров, холодильников, электроинструмента и др.), зарядные устройства мобильных телефонов и ноутбуков, AC/DC-DC/DC преобразователи;
  • промышленное (блоки питания, зарядные устройства, блоки управления электродвигателями, регуляторы мощности и др.), автомобильные выпрямители.

Diotec в электронике

Рассмотрим области применения выпрямительных диодов Diotec.

Компания Diotec Semiconductor AG (Diotec) — была образована в 1973 году в городе Хайтерсхайм (Германия). На сегодняшний день компания является ведущим производителем стандартных и силовых полупроводниковых диодов и выпрямителей, вся продукция выполнена на новейшем оборудовании с высоким уровнем качества по безсвинцовой технологии. Благодаря применению собственной уникальной технологии Plasma EPOS не имеющей аналогов в мире призванной обеспечить не только высокое качество производимой продукции, но и полностью исключить применение агрессивных кислот в процессе производства и свести к минимуму вредное влияние на окружающую среду, компания заняла одно из лидирующих мест на рынке электронных компонентов.

Как известно сердцем полупроводникового элемента является кремниевый кристалл. В отличие от многих других производителей, которые приобретают кристаллы у сторонних компаний, фирма Diotec владеет собственной полной технологической цепочкой полупроводникового производства — от создания кристаллов до сборки (корпусирования), тестирования и упаковки.

Diotec для приборов освещения

Одним из самых распространенных элементов для применения в устройствах осветительной техники является выпрямитель серии 1N4007, рассчитанный на ток до 1 А и напряжение до 1000 В.

Рис. 8. Выпрямители серии 1N4007 в сравнении с MS500 на печатной плате

Этот диод занял достойную нишу на рынке светотехнических устройств, но прогресс не стоит на месте и многие компании устремились найти рентабельную замену 1N4007 в виде эквивалентного устройства для поверхностного монтажа. Компания Diotec предложила свое решение в виде выпрямительного моста серии MS (рис.8). Устройство MS500 рассчитанное на рабочее напряжение до 1000 В на сегодняшний день наиболее популярное для применения в осветительных приборах. Диодный мост MS500 имеет выводы с шагом 2,5 мм наибольшим образом соответствует промышленным стандартам, площадь занимаемая мостом на печатной плате уменьшена со 140 мм 2 до 30 мм 2 , высота составляет 1,6 мм. Таким образом, экономится до 80% площади на плате и до 90% веса электронных компонентов, что влияет на транспортные расходы при перевозке элементов. Такие конструктивные особенности моста обеспечивают гибкость при изготовлении устройств и экономят средства. Кроме того, все четыре кристалла диодного моста устанавливаются одновременно (используется технология QuattroChip), что позволяет улучшить «выравнивание» диодного моста, повысить теплостойкость, а так же снизить количество выходов из строя, вызванных неравномерностью параметров диодов (при дискретной установке) и скачками входного тока.

Рис. 9. Внешний вид миниатюрной люминесцентной лампы и схемы балласта

Большинство конструкций балластных устройств потребляет небольшой ток. Поэтому требования к номинальным параметрам по току выпрямителей не очень высоки. Основной проблемой для осветительных устройств является высокая температура окружающего воздуха.

Рис. 10. Характеристика диодного моста B250S2A в режиме повышенной температуры

Высокая температура вызывает появление проблем, связанных со снижением номинальных параметров по току, и во многих случаях инженера избегают применения мостовых выпрямителей предназначенных для поверхностного монтажа (SMD), в балластных схемах мощных осветительных приборов. Они предпочитают использовать четыре дискретных элемента для поверхностного монтажа (например, серии S1M) или компоненты с осевым расположением. Серия диодных мостов B250S2A решает данную проблему. Этот мостовой выпрямитель рассчитан на номинальный ток до 2,3 А и способен пропускать ток 0,7 А при температуре 125 °С. Кроме того, он способен обеспечивает прямое падение напряжения VF = 0,95 В при токе 2 А, что на 15-20% лучше, чем у мостовых выпрямителей других производителей. При изготовлении диодных мостов серии BxxxS2A так же был применена технология QuattroChip, позволяющая повысить устойчивость вольтамперной характеристики мостового выпрямителя к выбросам.

В осветительной технике зачастую требуются выпрямители, рассчитанные на работу с напряжениями до 2000 В. Такие выпрямители применяются в некоторых типах ламп, где необходимо высокое напряжение для поджига разряда. Применяемые в промышленности технологии пассивации диодных переходов, для изготовления элементов в корпусах, предназначенных для поверхностного монтажа, представляют определенную трудность.

Рис. 11. Общий вид ЭПРА

Запатентованная компанией Diotec система Plasma EPOS позволяет применять технологии пассивации подложки на напряжения до 2000 В. Диодные переходы, полученные с помощью этих процессов, могут монтироваться в корпуса MELF или плоские корпуса для поверхностного монтажа (SMD). Такой технологический процесс привел к появлению диодных выпрямителей серии SM513…SM2000 в корпусах MELF рассчитанных на рабочий ток до 1 А и напряжение 1300-2000 В.

Рис. 12. Общий вид миниатюрной люминесцентной лампы

Здесь же стоит отметить одни из последних выпущенных компанией Diotec в серийное производство выпрямителей серии S1T…S1Y, которые являются логическим продолжением промышленного стандарта серии S1 рассчитанных на напряжение до 2000 В и ток до 1 А, выпрямители этой серии выпускаются в корпусе SMA. А так же версии S2x и S3x рассчитанные на токи до 2 и 3 А в корпусах SMB и SMC соответственно.

Рис. 13. Серия высоковольтных выпрямителей в SMD исполнении

В российской промышленности в настоящее время многие производители светотехнического оборудования активно применяют диодные мосты конкурирующих производителей для поверхностного монтажа серии DB10xS рассчитанных на рабочий ток до 1 А и напряжение до 1000 В. Компания Diotec выпускает аналогичные диодные мосты серии BxxxS, преимуществом которых является сохранение номинальных параметров от температуры, благодаря применению передовой технологии изготовления элементов и тщательному контролю качества, ударный прямой ток достигает 40 А, против 30 А у конкурентов, к тому же корпус диодных мостов серии BxxxS SO-DIL (SMD) имеет меньшие габариты аналогичных элементов других производителей.

Рассмотрим одну из интересных схем применения диодного моста в электронном пускорегулирующем аппарате (ЭПРА) рис.14.

Рис. 14. ЭПРА на базе UBA2021, с входной цепью на B380C1500A

Основой схемы ЭПРА является 630-вольтовая микросхема UBA2021 предназначенная для управления и контроля люминесцентной лампой. Входная цепь выполнена на диодном мосту серии B380C1500A рассчитанное на рабочий ток до 2,3 А и напряжение до 800 В.

Для управления люминесцентными лампами можно использовать микросхемы серии UBA2014, UBA2021, UBA2024.

Еще одним из применений диодных мостов являются, например бытовые регуляторы освещения для ламп накаливания.

Рассмотрим несколько простых схем регуляторов.

Рис. 15. Регулятор освещения лампы накаливания

Схема регулятора на рис.15 позволяет выполнять две функции: автоматически поддерживать заданный уровень освещенности вне зависимости от изменения уровня внешней освещенности и плавно регулировать задаваемый уровень освещенности.

При монтаже устройства необходимо учесть, что бы светочувствительный элемент (фоторезистор) располагался таким образом, что бы свет от лампы накаливания напрямую не попадал на рабочую площадку фоторезистора.

При необходимости данный регулятор освещенности может быть преобразован в регулятор других параметров, например в терморегулятор.

На рис.16 показан другой вариант построения регулятора. Этот регулятор так же может быть использован для различных вариантов применения, регулятор освещенности, температуры, напряжения, тока и др.

Рис. 16. Регулятор температуры на основе регулятора освещенности

Выпрямительная часть построена на дискретных диодах серии 1N4007, так же можно использовать диодный мост серии B500S. Симистор BT136B-600E в корпусе D2PAK, применен в целях экономии места, подойдет другой симистор из этой серии.

При небольшой доработке данных схем можно разработать датчик автоматического включения света, например на основе звукового эффекта, с включением на звук, или используя оптический датчик на ИК-лучах, а так же можно создать схему дистанционного управления освещением.

Таблица 1. Характеристики выпрямителей

P/N Корпус Импульсное обратное напряжение, VRRM (В) Средний ток прямой макс, IFAV (А) Ударный прямой ток, IFSM (А) Напряжение прямое Ток утечки
VF(В) IF (А) IR (мкА) VR (В)
Выпрямители
1N4001 DO-41 50 1 50 1.1 1 5 50
1N4002 DO-41 100 1 50 1.1 1 5 100
1N4003 DO-41 200 1 50 1.1 1 5 200
1N4004 DO-41 400 1 50 1.1 1 5 400
1N4005 DO-41 600 1 50 1.1 1 5 600
1N4006 DO-41 800 1 50 1.1 1 5 800
1N4007 DO-41 1000 1 50 1.1 1 5 1000
1N4007-13 DO-41 1300 1 50 1.1 1 5 1300
EM513 DO-41 1600 1 50 1.1 1 5 1600
EM516 DO-41 1800 1 50 1.1 1 5 1800
EM518 DO-41 2000 1 50 1.1 1 5 2000
S1A SMA 50 1 30 1.1 1 5 50
S1B SMA 100 1 30 1.1 1 5 100
S1D SMA 200 1 30 1.1 1 5 200
S1G SMA 400 1 30 1.1 1 5 400
S1J SMA 600 1 30 1.1 1 5 600
S1K SMA 800 1 30 1.1 1 5 800
S1M SMA 1000 1 30 1.1 1 5 1000
S1T SMA 1300 1 30 1.1 1 5 1300
S1W SMA 1600 1 30 1.1 1 5 1600
S1X SMA 1800 1 30 1.1 1 5 1800
S1Y SMA 2000 1 30 1.1 1 5 2000
S2A SMB 50 2 50 1.1 1.15 5 50
S2B SMB 100 2 50 1.1 1.15 5 100
S2D SMB 200 2 50 1.1 1.15 5 200
S2G SMB 400 2 50 1.1 1.15 5 400
S2J SMB 600 2 50 1.1 1.15 5 600
S2K SMB 800 2 50 1.1 1.15 5 800
S2M SMB 1000 2 50 1.1 1.15 5 1000
S2T SMB 1300 2 50 1.1 1.15 5 1300
S2W SMB 1600 2 50 1.1 1.15 5 1600
S2X SMB 1800 2 50 1.1 1.15 5 1800
S2Y SMB 2000 2 50 1.1 1.15 5 2000
S3A SMC 50 3 110 1.15 3 5 50
S3B SMC 100 3 110 1.15 3 5 100
S3D SMC 200 3 110 1.15 3 5 200
S3G SMC 400 3 110 1.15 3 5 400
S3J SMC 600 3 110 1.15 3 5 600
S3K SMC 800 3 110 1.15 3 5 800
S3M SMC 1000 3 110 1.15 3 5 1000
S3T SMC 1300 3 110 1.15 3 5 1300
S3W SMC 1600 3 110 1.15 3 5 1600
S3X SMC 1800 3 110 1.15 3 5 1800
S3Y SMC 200 3 110 1.15 3 5 2000
Мосты выпрямительные
MS40 Micro-DIL 80 0.5 20 1.2 0.5 10 80
MS80 Micro-DIL 160 0.5 20 1.2 0.5 10 160
MS125 Micro-DIL 250 0.5 20 1.2 0.5 10 250
MS250 Micro-DIL 600 0.5 20 1.2 0.5 10 600
MS380 Micro-DIL 800 0.5 20 1.2 0.5 10 800
MS50 Micro-DIL 1000 0.5 20 1.2 0.5 10 1000
B40S2A SO-DIL 80 2.3 65 0.95 2 10 80
B80S2A SO-DIL 160 2.3 65 0.95 2 10 160
B125S2A SO-DIL 250 2.3 65 0.95 2 10 250
B250S2A SO-DIL 600 2.3 65 0.95 2 10 600
B380S2A SO-DIL 800 2.3 65 0.95 2 10 800
B40S SO-DIL 80 1 40 1.1 1 10 80
B80S SO-DIL 160 1 40 1.1 1 10 160
B125S SO-DIL 250 1 40 1.1 1 10 250
B250S SO-DIL 600 1 40 1.1 1 10 600
B380S SO-DIL 800 1 40 1.1 1 10 800
B500S SO-DIL 1000 1 40 1.1 1 10 100

Diotec для счетчиков электроэнергии

Счетчики электроэнергии для переменного тока начинают свою историю с конца 19 века, когда в 1888 году был разработан первый счетчик электроэнергии Оливером Б. Шелленбергом.

Существуют три вида электросчетчиков:

  • индукционные (механические) наиболее простые и дешевые, имеют ряд недостатков: большая погрешность вычисления, отсутствие тарификации измерений, нет возможности дистанционного снятия показаний.
  • цифровые (электронные) эти счетчики дороже индукционных, но имеют ряд преимуществ, они обладают высокой точностью измерений, удобный в использовании интерфейс (ЖКИ) и набор функций для пользователей, средний срок службы таких счетчиков составляет 30 лет. В цифровых счетчиках есть возможность установки нескольких тарифов, и возможность включения таких счетчиков в общую систему с возможностью дистанционного снятия показаний (АСКУЭ), как правило, такие счетчики обладают автоматической корректировкой по температуре, где могут быть применены цифровые термодатчики серии LM75, NE16, SE95.
  • гибридные счетчики электроэнергии — наиболее редко встречающийся вариант счетчиков, где используется цифровой интерфейс, индукционная или электрическая измерительная часть и механическое вычислительное устройство.

Счетчики электроэнергии необходимо разделять на несколько функциональных узлов: блок питания, схема счетчика, корректирующие цепи и др. Блок питания преобразует высокое переменное входное напряжение в низкое прямое и обеспечивает питание всех цепей счетчика. Схема счетчика измеряет ток, потребляемый нагрузкой, посредством трансформатора тока, через который протекает ток. Другие блоки электросчетчика выполняют целый ряд различных функций: вывод показаний и управление через проводные (Ethernet), или беспроводные (Wi-Fi, WiMax, ZeegBee) сети, управление ЖКИ дисплеем, коррекция точности, термокомпенсация счетчика и др.

Рассмотрим вариант применения диодного моста в счетчике электроэнергии, для примера возьмем схему наиболее простого однофазного счетчика рис.17.

Счетчик состоит из микросхемы обработки, трех трансформаторов тока, цепи питания, электромеханического счетного устройства и дополнительных цепей.

В качестве регистра электроэнергии используется простое электромеханическое отсчетное устройство, в котором применен двухфазный шаговый двигатель.

Рис. 17. Схема однофазного счетчика

Электропитание счетчика обеспечивается источником, построенным на токовом трансформаторе и двухполупериодном выпрямителе, в качестве выпрямительных диодов здесь применены наиболее популярные выпрямительные диоды серии 1N4007, которые можно заменить диодными мостами серии MS250, B500S предназначенные для поверхностного монтажа или аналогичными диодами серии S1M в SMD исполнении.

Diotec для блоков питания и AC/DC-DC/DC преобразователей

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора, с первичной и вторичной обмоткой, выпрямитель, преобразующий переменное напряжение в постоянное. В большинстве случаев выпрямитель состоит из одного диода, например серии 1N400x, или четырех диодов, включенных по мостовой схеме и образующих диодный мост на дискретных элементах. Но как уже рассматривалось ранее, такое включение диодов имеет ряд недостатков по сравнению с диодным мостом в виде монолитной конструкции. Как правило, после выпрямителя устанавливается фильтр, сглаживающий пульсации, обычно для этого применяется конденсатор большой емкости. Так же могут быть установлены фильтры высокочастотных помех (дроссель), всплесков (TVS-диоды, например серии BZW04-xxx, P4KExx, 1.5KExx), защиты от короткого замыкания, стабилизаторы напряжения и тока (стабилитроны, например серии ZPDxx, ZPYxx, 1N53xx, BZVxx, BZXxx).

Рассмотрим одну из простых схем трансформаторного блока питания, схема которого приведена на рис.18.

Выходное напряжение плавно регулируется резистором R7от 0 до 30 В. К тому же данный блок питания имеет плавную регулировку ограничения по току.

Напряжение с трансформатора выпрямляется диодным мостом серии GBU6B и подается на схему стабилизации и далее схемы регулирования тока напряжения и защиты.

Рис. 18. Трансформаторный блок питания

В настоящее время больший интерес представляют импульсные источники питания, т.к. они имеют ряд преимуществ, таких как: небольшой вес, высокий КПД, низкая стоимость, повышенная пиковая мощность при сравнимых габаритах, широкий диапазон питающего напряжения, система защиты.

В импульсных блоках питания переменное напряжение сначала выпрямляется. Полученное постоянное напряжение используется для питания широтно-импульсного модулятора (ШИМ), контроллера, драйверов и преобразователя, с помощью которого постоянное напряжение преобразуется в прямоугольные импульсы c заданной частотой и скважностью, подаваемые на трансформатор. В таких блоках питания могут применяться малогабаритные трансформаторы — это объясняется тем, что с ростом частоты питающего напряжения уменьшаются требования к габаритам сердечника. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

Одна из выходных обмоток трансформатора используется для обратной связи. В зависимости от напряжения на ней (например, при изменении тока нагрузки) изменяется частота или скважность импульсов на выходе ШИМ контроллера. Таким образом, с помощью этой обратной связи блок питания поддерживает стабильное выходное напряжение.

Рассмотрим одну из простейших принципиальных схем импульсного источника питания, показанную на рис.19.

Источники питания представляет собой обратноходовой (FlyBack) ИИП.

Рис. 19. Схема импульсного источника питания

Источник питания имеет два выхода и обеспечивает напряжение 36 В и ток до 3 А общей мощностью до 220 Вт. Выпрямление входного напряжения обеспечивается диодным мостом KBU6M, TVS-диоды серии P6KE200A ограничивают выбросы напряжения. Микросхема AD1 выполняет функцию управления и ключа. Блок питания имеет гальваническую развязку входа и выхода, в том числе и цепи обратной связи. Имеется возможность плавной подстройки выходного напряжения резистором R7.

Рассмотрим еще одну интересную схему импульсного источника питания, показанную на рис.20.

Блок питания обеспечивает выходное напряжение до 5 В и ток до 1,2 А.

Рис. 20. Схема импульсного источника питания на основе TEA1522

Сердцем этого источника питания является микросхема TEA1522, которая представляет собой законченное решение для построения электронной части ИИП (управляющая схема и ключ в одном корпусе).

Входная часть блока питания выполнена на хорошо известных дискретных диодах серии 1N4007, которые как рассматривалось ранее можно заменить диодным мостом, выполненным в едином монолитном корпусе серии MS250, B500S.

Рассмотрим еще одно из применений диодных выпрямителей в бытовой технике, на примере блока управления холодильником для этого рассмотрим простую схему приведенную на рис.21.

Рис. 21. Схема блока управления холодильником

В схеме блока управления состоит из блока терморегулировки, таймера задержки включения, узла контроля напряжения сети.

Для выпрямления входного напряжения в данной схеме применен диодный мост российского производства серии КЦ407, который может быть заменен четырьмя дискретными диодами серии 1N4002-1N4007 или диодным мостом серии MS250, B500S.

Diotec для зарядных устройств

Рассмотрим простой пример применения диодных мостов в зарядных устройствах, на примере некоторых простых схем.

Рис. 22. Схема зарядного устройства

В схеме на рис.22 диодный мост выполнен на одном из распространенных диодов серии 1N4004, который можно заменить диодным мостом в виде монолитного блока серии MS250.

На схеме рис.23 представлен простейший вариант применения такого зарядного устройства на примере электрического карманного фонаря работающего от аккумулятора.

Принцип работы фонаря простой, при подключении сети переменного тока аккумулятор начинает заряжаться.

Рис. 23. Схема карманного фонаря

Переменное напряжение сети преобразуется мостовой схемой на диодах серии 1N4004, регулятор напряжения на микросхеме серии 7805 обеспечивает постоянное напряжение схемы.

Такой вариант исполнения карманного фонаря очень удобен, в схеме используется минимум элементов и вся конструкция может быть выполнена в корпусе самого фонаря с выводом контактов для подключения к сети переменного тока.

Diotec для сварочных аппаратов

Рассмотрим еще одно из наиболее популярных устройств, где применяются диодные мосты — это сварочные аппараты. На рис.24 приведена схема простейшего бытового сварочного аппарата.

Рис. 24. Схема бытового сварочного аппарата

Данная схема сварочного аппарата напоминает схему любого зарядного устройства для аккумуляторов, за исключением наличия понижающего трансформатора, который позволяет выбрать потребляемый устройством ток.

Выпрямителем здесь является диодный мост серии KBPC5012 (50 А, 1200 В).

Для преобразования зарядного устройства в недорогой сварочный аппарат необходимо сделать несколько доработок: добавить электромагнитное реле для управления током сварки, установить вентилятор для охлаждения трансформатора, а так же поставить систему автоматического регулирования мощности.

На рис.25 приведен еще один вариант построения сварочного аппарата выполненного на базе Pic-микроконтроллера серии PIC16F628. Схема позволяет управлять скоростью подачи проволоки, регулируемая потенциометром.

Рис. 25. Схема бытового сварочного аппарата на PIC16F628

Выпрямитель выполнен на четырех диодах серии 1N5403 (3 А, 300 В). Для индикации параметров сварочного аппарата применен семисегментный светодиодный индикатор с общим анодом управляемый Pic-микроконтроллером.

Diotec для блоков управления электродвигателем

Электродвигатели бывают постоянного тока и переменного тока, одно, двух и трехфазные, многофазные, коллекторные и бесколлекторные, синхронные и асинхронные, шаговые, вентильные и другие. На базе этих двигателей строятся электроприводные системы с различными вариантами управления, в настоящее время самыми распространенными являются микропроцессорные электроприводы. Электроприводы с цифровым микропроцессорным управлением очень широко применяются не только в промышленных областях, таких как станкостроение, автомобильная промышленность, но и в бытовой технике, медицинской технике, электроинструменте.

Рассмотрим некоторые простые схемы управления электродвигателем.

Схема на рис.26 позволяет управлять электромотором мощностью до 5 кВт, здесь применен двигатель постоянного тока, и простая схема с применением реле. Схема обеспечивает плавный запуск и ручную установку нужной частоты вращения электромотором.

Рис. 26. Схема управления электродвигателем

В схеме управления применен диодный мост серии B125S (1 А, 125 В) в корпусе SO-DIL. Генератора импульсов, выполненный на транзисторе BD238, синхронизирован с периодом пульсации сетевого напряжения. Схема управления подает сигнал на управляющие выводы тиристоров, здесь применены тиристоры серии BT145-R (25 А, 800 В) в корпусе TO220AB. Вместо выпрямительных диодов серии P1000G на ток до 10 А и напряжение 400 В можно применить диодные мосты серии KBPC2512F (800 В, 25 А).

Схемы управления маломощными электродвигателями

Регулировать частоту вращения маломощного коллекторного электродвигателя можно, включая последовательно с ним резистор. Однако такой вариант дает низкий КПД, и не дает возможности делать плавную регулировку вращения. Главное, что такая мера приводит к остановке вращения вала: электродвигатель «зависает» при малом напряжении питания в некотором положении ротора. Схема ШИМ-регулятора оборотов маломощного коллекторного двигателя приведенная на рис.27 свободна от таких недостатков. Такую схему можно так же применять для регулировки яркости свечения ламп накаливания.

Рис. 27. ШИМ-регулятор оборотов маломощного коллекторного электродвигателя

Данная схема выполнена на интегральном таймере серии ICM7555 и позволяет регулировать частоту вращения в пределах от 2 до 98% периода повторения импульсов.

Входная часть регулятора выполнена на диодном мосту серии MS250 (250 В, 0,5 А) в корпусе SuperMicroDIL.

Диодные выпрямители для одно- и трехфазных приложений

Для применения в источниках бесперебойного питания и схемах управления электродвигателем, инверторах и промышленных источниках питания компания Diotec предлагает полупроводниковые диоды и диодные выпрямительные модули. Компания имеет большой портфолио диодных выпрямителей, для построения одно- и трехфазных схем.

Входной выпрямитель можно интегрировать в состав инвертора или использовать как самостоятельный блок. При выборе того или иного элемента схемы необходимо учитывать тепловые характеристики и стоимость схем.

Как инвертор, так и диодный мост рассеивают некоторую мощность. Инвертор и диодный мост, расположенные в одном корпусе имеют ряд ограничений при использовании, т.к. рассеиваемая мощность должны быть отведена с достаточно небольшой площади, в этом случае необходимо ставить радиатор, следствием этого является удорожание схемы. Применение дискретных модулей выпрямителя и инвертора в этом случае может оказаться более целесообразным. Компания Diotec предлагает компромиссное решение в виде отдельного модуля выпрямителя. Такое решение обеспечивает наилучший отвод тепла, а значит и лучше стабильность и срок службы элемента. Серия трехфазных мостов DB с терминалами типа Fast-On и серия DBI в корпусах собственной разработки Diotec с односторонним расположением выводов, наилучшим образом подходит для схем малой и средней мощности.

Трехфазные выпрямители серии DB рассчитаны на ток 15-35 А при напряжении до 1600 В, выпрямители серии DBI рассчитаны на ток до 25 А при напряжении до 1600 В.

В портфолио диодных выпрямителей компании Diotec насчитывается большой перечень однофазных выпрямителей, таких серий как B40, B80, B125/250/380, CS рассчитанных на ток до 7А при напряжении до 1000 В, GBS, GBI, GBU, KBU, KBPC, PB на ток 4-35 А и напряжение до 1600 В. В таблице 2 приведены некоторые наименования диодных выпрямителей этих серий и их краткие характеристики.

Таблица 2. Характеристики одно- и трехфазных диодных выпрямителей

P/N Упаковка, мм Импульсное обратное напряжение, VRRM В Средний ток прямой макс, IFAV А Ударный прямой ток 50/60 Гц, IFSM А Напряжение прямое Ток утечки
VF В IF А IR мкА VR В
Выпрямители 3-х фазные
DB15/25-005 28,5х28,5х10 50 15/25 275/385 1.05 7.5 10 50
DB15/25-01 28,5х28,5х10 100 15/25 275/385 1.05 7.5 10 100
DB15/25-02 28,5х28,5х10 200 15/25 275/385 1.05 7.5 10 200
DB15/25-04 28,5х28,5х10 400 15/25 275/385 1.05 7.5 10 400
DB15/25-06 28,5х28,5х10 600 15/25 275/385 1.05 7.5 10 600
DB15/25-08 28,5х28,5х10 800 15/25 275/385 1.05 7.5 10 800
DB15/25-10 28,5х28,5х10 1000 15/25 375/385 1.05 7.5 10 1000
DB15/25-12 28,5х28,5х10 1200 15/25 275/385 1.05 7.5 10 1200
DB15/25-14 28,5х28,5х10 1400 15/25 275/385 1.05 7.5 10 1400
DB15/25-16 28,5х28,5х10 1600 15/25 275/385 1.05 7.5 10 1600
DB35-005 28,5х28,5х10 50 35 500 1.02 17.5 10 50
DB35-01 28,5х28,5х10 100 35 500 1.05 17.5 10 100
DB35-02 28,5х28,5х10 200 35 500 1.05 17.5 10 200
DB35-04 28,5х28,5х10 400 35 500 1.05 17.5 10 400
DB35-06 28,5х28,5х10 600 35 500 1.05 17.5 10 600
DB35-08 28,5х28,5х10 800 35 500 1.05 17.5 10 800
DB35-10 28,5х28,5х10 1000 35 500 1.05 17.5 10 1000
DB35-12 28,5х28,5х10 1200 35 500 1.05 17.5 10 1200
DB35-14 28,5х28,5х10 1400 35 500 1.05 17.5 10 1400
DB35-16 28,5х28,5х10 1600 35 500 1.05 17.5 10 1600
DBI15/25-005 40х20х10 200 15/25 275/385 1.05 7.5/12.5 10 50
DBI15/25-01 40х20х10 400 15/25 275/385 1.05 7.5/12.5 10 100
DBI15/25-02 40х20х10 600 15/25 275/385 1.05 7.5/12.5 10 200
DBI15/25-04 40х20х10 800 15/25 275/385 1.05 7.5/12.5 10 400
DBI15/25-06 40х20х10 1000 15/25 275/385 1.05 7.5/12.5 10 600
DBI15/25-08 40х20х10 1200 15/25 275/385 1.05 7.5/12.5 10 800
DBI15/25-10 40х20х10 1400 15/25 275/385 1.05 7.5/12.5 10 1000
DBI15/25-12 40х20х10 1600 15/25 275/385 1.05 7.5/12.5 10 1200
DBI15/25-14 40х20х10 50 15/25 275/385 1.05 7.5/12.5 10 1400
DBI15/25-16 40х20х10 100 15/25 275/385 1.05 7.5/12.5 10 1600
DBI25-005A 35х25х4 50 25 390 1.05 12.5 10 50
DBI25-04A 35х25х4 400 25 390 1.05 12.5 10 400
DBI25-08A 35х25х4 800 25 390 1.05 12.5 10 800
DBI25-12A 35х25х4 1200 25 390 1.05 12.5 10 1200
DBI25-16A 35х25х4 1600 25 390 1.05 12.5 10 1600
DBI6-005 40х20х10 200 6 135 1.05 3 10 50
DBI6-01 40х20х10 400 6 135 1.05 3 10 100
DBI6-02 40х20х10 600 6 135 1.05 3 10 200
DBI6-04 40х20х10 800 6 135 1.05 3 10 400
DBI6-06 40х20х10 1000 6 135 1.05 3 10 600
DBI6-08 40х20х10 1200 6 135 1.05 3 10 800
DBI6-10 40х20х10 1400 6 135 1.05 3 10 1000
DBI6-12 40х20х10 1600 6 135 1.05 3 10 1200
DBI6-14 40х20х10 900 6 135 1.05 3 10 1400
DBI6-16 40х20х10 1000 6 135 1.05 3 10 1600
Мосты выпрямительные
B125C1500A/B 19х3,5х10 250 1.8 50 10 250
B125D DIL 250 1 40 1.1 1 10 250
B250C1500A/B 19х3,5х10 600 1.8 50 10 600
B250S DIL 600 1 40 1.1 1 10 600
B380C1500A/B 19х3,5х10 800 1.8 50 10 800
B380D DIL 800 1 40 1.1 1 10 800
B40C1500A/B 19х3,5х10 80 1.8 50 10 80
B40D DIL 80 1 40 1.1 1 10 80
B500C1500A/B 19х3,5х10 1000 1.8 50 10 1000
B500S DIL 1000 1 40 1.1 1 10 1000
B80C1500A/B 19х3,5х10 160 1.8 50 10 160
B80D DIL 160 1 40 1.1 1 10 160
CS10D DIL 20 1 40 0.5 1 500 20
GBI10M 32х5,6х17 1000 3 220 10 1000
GBU10M 20,8х3,3х18 1000 8.4 300 1 12 10 1000
KBPC10/15/2500FP
KBPC601 15,2х15,2х6,3 100 3.8 125 1.2 3 10 100
KBU12M 23,5х5,7х19,3 1000 8.4 300 1 12 10 1000
KBU8M 23,5х5,7х19,3 1000 5.6 300 1 8 10 1000
MS500 SuperMicroDIL 1000 0.5 20 1.2 0.5 10 1000
MYS250 MicroDIL 600 0.5 20 1.2 0.5 10 600
PB1001 19х19х6,8 70 10 150 1.2 5 10 35
S80 MiniDIL (TO-269AA) 160 0.8 44 1.2 0.8 10 160

Для применения в одно- и трехфазных схемах компания Diotec предлагает новые полумосты серии S16 в корпусе D2PAK (TO263). Два или три таких полумоста могут легко сформировать одно- или трехфазную схему входного выпрямителя.

Рис. 28. Полумост S16

Такой полумост улучшает процесс автоматической пайки плат и не требует ручного процесса монтажа мост/радиатор в источниках питания и блоках управления двигателем, рассчитанных на работу до нескольких сотен Ватт.

Серия S16 содержит два диода номиналом 8 А, которые могут использоваться, для создания однофазного моста с максимальным током 16 А или трехфазного моста с током до 24 А. Обратное напряжение полумоста достигает 1000 В, максимальный ток перегрузки 135 A при частоте 50 Гц.

Diotec на рынке электронных компонентов

Как видно из рассмотренных примеров области применения диодных выпрямителей, очень велик. Компания Diotec, являющаяся одним из лидеров на рынке полупроводниковых элементов, не ограничивается производством диодных выпрямителей, она имеет сильный портфолио полупроводниковых продуктов диодов и транзисторов общего применения, TVS-диодов (или как еще их называют супрессоры, или ограничительные диоды), быстрые и сверхбыстрые диоды, диоды Шоттки, диоды Зенера и др.

Российский рынок электроники имеет свою специфику работы, и порой цена на компонент становится основным аргументом при выборе того или иного производителя, чем электрические характеристики и их надежность. Многие азиатские производители поставляют свою дешевую продукцию на российский рынок. Компания Diotec является большим подспорьем на российском рынке электронных компонентов для азиатских компаний, обладая высочайшим качеством продукции и приемлемой ценой.

В сочетании с передовыми технологиями и немецким подходом к организации производства продукция Diotec позволяет применять ее в различных отраслях электроники, где предъявляются повышенные требования к надежности.

Опыт применения компонентов Diotec показал, что их легко можно применять в электронике, где ранее применялись электронные компоненты других известных производителей, таких как International Rectifier (IR), STMicroelectronics, ON-Semiconductors, Vishay, а зачастую и превосходить качественные и ценовые параметры этих производителей.

Трехфазный мостовой выпрямитель — принцип работы и схемы

Трехфазный выпрямитель с одной обмоткой на фазу

Рис. 2: Uпик= 0,82 Еэфф, коэффициент пульсаций 17,7%, частота пульсаций 3f. Рис. 3: Uпик=1,412 Еэфф, коэффициент пульсаций 4%, частота пульсаций 6f.

Двухполупериодный выпрямитель
Рекомендован для использования в низковольтных устройствах, так как падение напряжения на диодах меньше, чем у мостового выпрямителя. Значение тока Ir действительно при непрерывном режиме функционирования. Максимальное значение тока Irm допустимо в продолжение 60 с, если при этом среднее значение тока нагрузки остается ниже Ir.

Двухполупериодный мостовой выпрямитель
Рекомендован для использования в устройствах со средним и большим током потребления. Значение тока Ir действительно при непрерывном режиме работы. Максимальное значение тока Irm допустимо в течение 60 с, если при этом среднее значение выходного тока остается ниже Ir.

Двухполярный двухполупериодный выпрямитель
Используется в двухполярных источниках питания. Четыре дискретных диода можно заменить мостовым выпрямителем.

Удвоитель напряжения Латура-Делона-Гренашера

Рис. 7: асимметричный источник питания. Рис. 8: симметричный источник питания.
Диоды должны выдерживать напряжение до 3 Ui (имеется в виду эффективное значение Ui), а конденсаторы — 1,5 Ui, причем их емкость определяется соотношением: С (мкФ) — 100 I2 (мА) / Ui (В). Трансформатор должен обеспечивать 5 I2.

Трехфазный выпрямитель с двумя обмотками на фазу

Рис. 9 (шестифазная схема): Uпик= 0,82 Еэфф, коэффициент пульсаций 4%, частота пульсаций 6 f.
Рис. 10 (двенадцатифазная схема): Uпик = 1,412 Еэфф, коэффициент пульсаций 2%, частота пульсаций 12 f

Удвоитель напряжения Шенкеля-Вилларда (Вийяра)

Рис. 11: асимметричный источник питания. Рис. 12: симметричный удвоитель напряжения.
Диоды должны выдерживать напряжение до 3 Ui (имеется в виду эффективное значение Ui), конденсатор С1 — 1,5 Ui, конденсатор С2 — в два раза больше. Емкость определяется из соотношения: С (мкФ) = 100 I2 (мА) / Ui (В). Трансформатор должен обеспечивать 5 I2.

Дополнительный маломощный выход

Подключение, удвоителя напряжения к двухполупериодному со средней точкой или двухполупериодному мостовому выпрямителю позволяет получить основное выходное напряжение U и дополнительное выходное напряжение Ua х 2 Up . Данную схему рекомендуется использовать только тогда, когда I

РЕКЛАМА:
# Размещаю ссылку на рубрику с обновленными видеозаписями.

# Посещая рекламные объявления — Вы выражаете благодарность создателям сайта 🙂

Выпрямители: Трехфазный двухполупериодный выпрямитель

Схема трехфазного двухполупериодного выпрямителя (т.н. схема Ларионова) и диаграммы, поясняющие его работу, представлены на рис. 3.4-12. Эта схема требует для своего построения шесть полупроводниковых диодов. Она инвариантна к способу соединения первичных и вторичных обмоток силового трансформатора (“звезда” или “треугольник”).

Рис. 3.4-12. Трехфазный двухполупериодный мостовой выпрямитель

Поскольку в представленной схеме используется обе полуволны питающего трехфазного напряжения, выпрямленное напряжение отличается более высоким качеством. Очевидно, что и здесь применимы соотношения (3.4.3), в соответствии с которыми (учитывая, что в данном случае \(n = 6\)):

\( K_п = \cfrac<2> <6^2 - 1>\approx 0,057 \)

где \(U_<вх ф max>\) — амплитуда фазного напряжения на входе выпрямителя. Основная частота пульсаций выходного напряжения в шесть раз превышает частоту входного сигнала.

Максимальное обратное напряжение на каждом диоде равно амплитуде линейного напряжения на входе выпрямителя, т.е.:

Таким образом, при наличии шести последовательно коммутируемых диодов амплитуда первой из присутствующих на выходе выпрямителя гармоник составляет около 5,7% от среднего значения выходного напряжения (это говорит о высокой эффективности схемы Ларионова). Очевидно, что при увеличении числа фаз входного напряжения (например, до шести) аналогичная схема с большим числом диодов (12 для шестифазного двухполупериодного выпрямителя) будет еще более эффективной.

Курсовая работа: Трехфазный мостовой преобразователь

Тольяттинский Государственный Университет

Электротехнический факультет

Кафедра «Промышленная электроника»

к курсовому проекту

«Трёхфазный мостовой преобразователь»

Студент: Моторин С.К.

Преподаватель: Бар В.И.

1. Анализ состояния, перспектив проектирования и разработки статических преобразователей средней мощности

2. Разработка структурной и принципиальной схем преобразователя

3. Расчёт токов и напряжений.

4. Расчёт семейства внешних характеристик

5. Расчёт сглаживающего фильтра выпрямителя при активной нагрузке. Выбор емкостей. Расчет сглаживающего дросселя

6. Электромагнитный расчет трансформатора

7. Выбор и расчет устройств защиты от аварийных токов и перенапряжений

8. Описание работы схемы управления

В настоящее время в промышленных устройствах очень часто возникает необходимость получения постоянного тока из переменного тока. Данную функцию выполняют выпрямители. Выпрямителем называют устройство, предназначенное для преобразования энергии источника переменного тока в постоянный ток.

Целью настоящей работы является расчёт трехфазного управляемого выпрямителя, преобразующего входное напряжение до необходимой выходной величины с заданным коэффициентом пульсаций и величиной выходного тока, за счёт использования трансформатора напряжения, соответствующей вентильной выпрямительной схемы, фильтра гармонических составляющих выходного напряжения и системы защиты от перегрузок и коротких замыканий.

1. Анализ состояния, перспектив проектирования и разработки статических преобразователей средней мощности

На сегодняшний день существуют различные выпрямительные схемы статических преобразователей мощности. Разделение в основном идет на однофазные и трехфазные выпрямители, а также на неуправляемые и управляемые.

Неуправляемые выпрямители строятся на основе полупроводниковых диодов. Данные устройства не позволяют регулировать мощность, выделяемую в нагрузке. Управляемые выпрямители в качестве вентилей используют тиристоры. Применение данных полупроводниковых приборов позволяет регулировать мощность, выделяемую в нагрузке.

Трехфазные выпрямители используются при средних и больших мощностях. Применение трехфазных выпрямителей позволяет создать равномерную нагрузку на все три фазы сети; уменьшить пульсации выпрямленного напряжения; уменьшить расчетную мощность трансформатора, а также повысить коэффициент мощности.

Схема трехфазного однополупериодного выпрямителя (схема Миткевича) изображена на рис. 1.1. Она обладает невысокими энергетическими характеристиками. Частота пульсаций выпрямленного напряжения в три раза больше частоты питающего напряжения; установленная мощность трансформатора должна быть на 35% больше мощности в нагрузке, что значительно увеличивает его габариты; стержни магнитопровода трансформатора подмагничиваются в процессе работы выпрямителя. Наибольшее распространение получила схема трехфазного двухполупериодного мостового выпрямителя, представленная на рис. 1.2 (схема Ларионова). Данная схема обладает лучшими энергетическими показателями: частота пульсаций выпрямленного напряжения в шесть раз больше частоты питающего напряжения, что значительно снижает массогабаритные и стоимостные показатели фильтрующих устройств; установленная мощность трансформатора всего на 5% больше мощности в нагрузке; отсутствует подмагничивание стержней магнитопровода

В табл. 1.1 приведены сравнительные характеристики выпрямителей различных типов, где: q — коэффициент пульсаций, Ia — среднее значение тока вентиля, Id — среднее значение выходного тока выпрямителя, Uобр — амплитуда обратного напряжения на вентилях, Ud — среднее значение выходного напряжения выпрямителя, ST — расчётная мощность трансформатора, Pd — значение мощности на нагрузке, N – минимальное число вентилей, m – пульсность напряжения.

Таблица 1.1

Основные характеристики выпрямителей

Название: Трехфазный мостовой преобразователь
Раздел: Рефераты по физике
Тип: курсовая работа Добавлен 11:21:36 09 июля 2009 Похожие работы
Просмотров: 3746 Комментариев: 14 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать

Тип выпрямителя m N
Однофазный нулевой 2 2 0.67 0.50 3.14 1.34
Однофазный мостовой 2 4 0.67 0.50 1.57 1.11
Трёхфазный нулевой 3 3 0.25 0.33 2.09 1.34
6 6 0.06 0.33 1.05 1.05
Двойной трёхфазный с уравнительным реактором 6 6 0.06 0.17 2.09 1.26

Таким образом, наибольшее применение нашла мостовая схема Ларионова, содержащая выпрямительный мост из шести вентилей.

2. Разработка структурной и принципиальной схем преобразователя

Основными элементами преобразователя являются трансформатор и вентили. Основное требование, предъявляемое к полупроводниковым преобразователям, в том числе и к выпрямителям — это надёжность, поэтому ввиду чувствительности приборов к перегрузкам, коротким замыканиям, перенапряжениям в схеме необходимо предусмотреть быстродействующие системы защиты. Необходимо выдерживать заданные параметры на выходе преобразователя. Для этого в схему включаются фильтры, датчики и системы сравнения выходных параметров преобразователей с заданными, и управления полупроводниковыми приборами. Согласно вышесказанному, составили структурную (рис. 2.1.) и принципиальную (рис. 2.2.) схемы полупроводникового выпрямителя.

3. Расчет токов и напряжений

3.1. Расчет токов и напряжений выпрямителя.

3.1.1 Выбрали минимальное значение угла управления aмин =10º.

3.1.2 Определили номинальное и максимальное значения угла управления:

где Uc =220 В – напряжение сети, из задания;

DUс =22 В – колебание напряжения сети 10%, из задания.

3.1.4 Рассчитали среднее значение выпрямленного тока в относительных единицах:

3.1.5 Вычислили значение выпрямленного напряжения холостого хода (ЭДС выпрямителя):

где Uн =32 В – напряжение на нагрузке из задания;

DUd – суммарное падение напряжения на активном сопротивлении обмотки дросселя и активном сопротивлении тиристора; предварительно приняли DUd =6 В.

3.1.6 Определили амплитудное значение фазной ЭДС на вторичной обмотке трансформатора (соединение обмоток «звезда-звезда»):

3.1.7 Рассчитали индуктивное сопротивление вторичной обмотки трансформатора и угол коммутации:

где Id =Iн =800 А – номинальное значение выпрямленного тока;

Повторили вычисления по пунктам 3.1.3 — 3.1.7 для значений =0,8; 0,75; 0,7; 0,60; 0,55; 0,50. Все полученные результаты занесли в табл.3.1.

Таблица 3.1

Промежуточные результаты расчета выпрямителя

a ном , ° , В , В x g , Ом g ном , ° Id кз S , В × А
33,166 0,8 0,150 47,5 28,718 0,005 16,881 5350 38850
0,75 0,236 50,667 30,633 0,009 24,560 3388 40970
0,70 0,323 54,286 32,821 0,013 31,506 2479 43440
0,65 0,409 58,462 35,346 0,018 37,979 1954 46420
0,60 0,496 63,333 38,281 0,024 44,135 1613 49700
0,55 0,583 69,091 41,772 0,030 50,078 1373 53710
0,50 0,696 76 45,95 0,038 55,888 1196 58520

По результатам расчетов таблицы 3.1, сделали следующие выводы: для уменьшения тока короткого замыкания Id .кз и уменьшения полной мощности трансформатора S, приняли значение выпрямленного напряжения в относительных единицах равным =0,65. Дальнейший расчет ведется для выбранных параметров.

3.1.8 Нашли наибольший выпрямленный ток короткого замыкания:

3.1.9 Определили ортогональные составляющие первой гармоники вторичного тока в относительных единицах:

3.1.10 Рассчитали действующее значение тока первой гармоники вторичной обмотки трансформатора (базисное значение тока):

3.1.11 Нашли действующее значение тока вторичных обмоток трансформатора, соединенных «звездой»:

3.1.12 Определили коэффициент трансформации трансформатора:

3.1.13 Рассчитали действующее значение тока в первичных обмотках трансформатора, соединенных «звездой»:

3.1.14 Вычислили полную мощность трансформатора:

3.1.15 Определили угол сдвига первой гармоники входного тока относительно фазной ЭДС:

3.1.16 Рассчитали активную мощность на входе выпрямителя:

3.1.17 Нашли коэффициент мощности выпрямителя:

3.1.18 Рассчитали среднее значение анодного тока:

3.1.19 Определили максимальное значение анодного тока:

3.1.20 Вычислили действующее значение анодного тока:

3.1.21 Определили скорость спадания анодного тока в момент выключения вентиля:

3.1.22 Рассчитали анодное напряжение в момент включения вентиля:

3.1.23 Нашли анодное напряжение в момент выключения вентиля:

3.1.24 Определили максимальное значение обратного анодного напряжения:

3.1.25 Нашли действующее значение n-й гармоники выпрямленного напряжения (a>0; Id >0; g≤60º):

n – номер гармоники выпрямленного напряжения, приняли n=6.

Аналогичные вычисления провели и для n=12,18. При этом получили:

3.1.26 Определили действующее значение первой гармоники анодного напряжения:

3.1.27 Рассчитали действующее значение n-й (n=6k±1) гармоники анодного напряжения:

Аналогичные вычисления провели и для n=7. При этом получили следующий результат: Ua (7) =3,969 В.

3.1.28 Нашли действующее значение n-й (n=3k) гармоник анодного напряжения:

Аналогичные вычисления провели и для n=6. При этом получили следующий результат: Ua (6) =2,062 В.

3.2 Выбор тиристоров и охладителей

Выбор тиристоров осуществляется на основе следующих найденных расчетным путем величин:

— средний ток, протекающего через прибор Iа.ср =266,667 А,

— максимальное значение обратного анодного напряжения Uam =61,22 В,

— анодное напряжение в момент выключения вентиля 55,737 В,

— скорость спадания анодного тока в момент выключения вентиля

Исходя из этих условий из справочника [2] с учетом 5%-го допуска требуемых разбросов параметров выбрали тиристоры Т-133-400 со следующими эксплуатационными параметрами:

— максимально допустимое напряжение в открытом состоянии 300 – 1600 В

— максимально допустимый средний ток в открытом состоянии 400 А

4. Расчет семейства внешних характеристик

4.1 Режимы работы выпрямителя

В работе трехфазного мостового выпрямителя можно выделить три режима работы: режим 2-3 (ток попеременно пропускают два или три вентиля); режим 3 (ток пропускают всегда три вентиля); режим 3-4 (ток попеременно пропускают три или четыре вентиля). С увеличением выпрямленного тока Id или индуктивного сопротивления xg при заданном напряжении питания Uпит , один режим работы выпрямителя переходит в другой. Внешняя характеристика выпрямителя представляет собой зависимость выпрямленного напряжения Ud от выпрямленного тока Id .

4.2 Внешние характеристики режима работы 2-3

Внешними характеристиками Ud =f(Id ) для режима 2-3 являются прямые линии, следовательно, каждую из них можно построить по двум точкам. Для построения первой точки (a=0°) примем Id =0, тогда вторая координата опишется уравнением:

Для построения второй точки каждой характеристики примем в относительных единицах . Тогда в абсолютных единицах:

0,2×1954 = 390,8 А, (4.2)

где Iбаз =1954 А – базисное значение тока, равное току короткого замыкания при угле a=30°.

Семейство внешних характеристик выпрямителя при его работе в режиме 2-3 описывается уравнением:

Воспользовавшись уравнением (4.3), рассчитали координаты точек при различных углах управления a для номинального параметра Ed ном . Результаты свели в табл.4.1.

Внешние характеристики режима 2-3

Рассчитываемое напряжение Угол управления a, º
15 27,585 45 60 70 80
Ud 1 , В 58,46 56,47 51,81 41,33 29,23 19,99 10,15
Ud 2 , В 51,74 49,75 45,1 34,62 22,51 13,278 3,43

4.3 Внешние характеристики режима 3

Для a=0° граничной между режимами 2-3 и 3 является точка А, для которой координаты определяются так:

Для a=30° граничной между режимами 3 и 3-4 является точка В, для которой координаты определяются так:

Промежуточные точки участка А-В внешней характеристики выпрямителя в режиме 3 описывается уравнением:

Угол управления a для режима 3 является вынужденным и изменяется от 0° до 30°. Угол коммутации остается постоянным и равным 60°.

Участок границы между режимами 2-3 и 3-4 для токов Id >Id грВ­ описывается тем же уравнением, что и участок А-В внешней характеристики. Максимальное значение тока при Ud =0:

Задаваясь значениями тока Id в диапазоне 846,1£Id £1692,2 найдем по формуле (4.8) значения Ud . Результаты свели в табл.4.2.

Внешние характеристики режима 3

Id , A 953,3 1100 1200 1300 1400 1500 1692,2
Ud , B 43,81 38,51 35,78 32,56 28,67 23,79 5,07

4.4 Внешние характеристики режима работы 3-4

Режим работы 3-4 наступает при углах управления a ≥ 30º.

Рассчитаем характеристики углов управления, равных 30º и 45º по двум точкам. Для a=30º координаты точек:

— первая (точка В): Id =1400 A, Ud =28,67 В;

— вторая (на оси Id – точка КЗ): Id =1954 А, Ud =0 В.

Для a=45º координаты точек, по которым будет построена прямая: режим 3 заканчивается, когда g¹60º. При этом условии ток:

Напряжение Ud =13,07 В нашли по формуле (4.8). Вторая точка находится на оси Id , поэтому Ud =0. Ток в относительных единицах:

По формуле (4.2) нашли значение Id =1887,56 А.

По основе данных пунктов 4.2-4.4, включающих табл.4.1-4.2, построили семейство внешних характеристик выпрямителя, которое изображено на рис.4.1. Здесь А – граничная точка режимов 2-3 и 3; B – граничная точка режимов 3 и 3-4.

Графики кривых и постоянной составляющих выпрямленного напряжения представлены на рис. 4.2.

Семейство внешних характеристик выпрямителя.

График кривых и постоянной составляющих выпрямленного напряжения.

5. Расчет сглаживающего фильтра выпрямителя при активной нагрузке

Первой гармоникой источника питания является гармоника напряжения питания при f(1) =50 Гц. Частота основной гармоники выпрямленного напряжения в 6 раз больше: f(6) .

Для сглаживания пульсаций выпрямленного напряжения будем использовать индуктивно-емкостной фильтр с последовательным включением выпрямительного моста и дросселей фильтра, и параллельным включением конденсатора нагрузки (рис.2.2).

5.1.1 Рассчитали коэффициент пульсации на выходе выпрямителя (на входе сглаживающего фильтра):

5.1.2 Коэффициент пульсации на выходе согласно заданию Кп(6) =0,024%. Дальнейший расчет проведем по 6-ой гармонике.

5.1.3 Рассчитали минимальную индуктивность сглаживающего фильтра:

где m=6 – номер гармоники выпрямленного напряжения;

w – круговая частота:

w=2·p·f=2·3,14·50=314 с -1 , (5.5)

где f=50 Гц – частота сети.

Приняли Lф=2 мкГн.

5.1.4 Определили коэффициент фильтрации:

где КП =0,024 % – коэффициент пульсаций, согласно заданию.

5.1.5 Нашли емкость конденсатора фильтра:

5.1.6 Корректировка величин индуктивности и емкости фильтра.

Величина емкости слишком большая, поэтому выбрали емкость конденсатора фильтра Сф =51×10 -3 Ф. Пересчитали индуктивность сглаживающего дросселя:

Определили индуктивность дросселей:

5.1.7 Амплитуда основной гармоники тока:

5.1.8 Выбор типа конденсатора.

В качестве конденсатора С7 (рис.2.2) сглаживающего фильтра выбрали из справочника [3] конденсатор К50-18 емкостью 51 мФ (согласно ряда Е24) и номинальным напряжением Uном = 82 В.

5.2 Расчет сглаживающего дросселя

Сглаживающий дроссель предназначен для уменьшения пульсаций выпрямленного тока. По обмотке дросселя протекают переменная и постоянная составляющие выпрямленного тока. Постоянная составляющая создает поток вынужденного намагничивания сердечника дросселя. Индуктивность дросселя зависит от величины этого магнитного потока. Чтобы ослабить эту зависимость, в сердечнике делают немагнитные зазоры (рис. 5.1). Для расчета сглаживающего дросселя предварительно задались следующими параметрами:

— коэффициент заполнения окна магнитопровода: Kм =0,25;

— коэффициент, характеризующий отношение высоты окна магнитопровода к ширине окна: K1 =b/a=4;

коэффициент, характеризующий отношение магнитного сопротивления зазора к магнитному сопротивлению стали: K2 =10;

— плотность тока в обмотке: jd =3·10 6 А/м 2 ;

— число витков обмотки дросселя: W=25;

— относительная динамическая магнитная проницаемость стали: m * =700.

5.2.1 Длина немагнитного зазора:

5.2.2 Площадь поперечного сечения:

5.2.3 Размеры сечения окна магнитопровода:

0,082 м = 82 мм; (5.13)

b=4·a=4·0,082=0,328 м; (5.14)

5.2.4 Размеры сечения сердечника:

0,188 м = 188 мм. (5.15)

5.2.5 Сечение меди в проводе:

5.2.6 Средняя длина витка обмотки:

5.2.7 Активное сопротивление обмотки:

2,564·10 -3 Ом. (5.18)

5.2.8 Падение напряжения на активном сопротивлении обмотки:

5.2.9 Потери в меди обмотки дросселя:

5.3 Тепловой расчет сглаживающего дросселя

В связи с большим током дросселя приняли водяное охлаждение.

5.3.1 Количество охлаждающей воды для одного дросселя:

1,313·10 -5 м 3 /с, (5.21)

где Т2 – температура воды на выходе; приняли Т2 =50 ºС;

Т1 – температура воды на входе; приняли Т1 =20 ºС.

5.3.2 Площадь сечения отверстия охлаждающей трубки:

6,564·10 -6 м 2 (5.22)

где v – скорость потока воды; приняли v=2 м/с.

Выбрали трубки с прямоугольным отверстием, имеющую размеры 0,37´0,24 см 2 .

5.3.3 Проверка на турбулентность

Гидравлический эквивалент диаметра:

где F – периметр трубки.

Рассчитали критерий Рейнольдса:

где m * — кинематическая вязкость воды при средней температуре

Так как Re=7800>2300, то движение воды турбулентное.

5.3.4 Коэффициент сопротивления шероховатости:

где k=3 – коэффициент шероховатости.

5.3.5 Длина трубки одного дросселя:

5.3.6 Перепад давления:

3,774·10 6 Н/м 2 (5.27)

5.3.7 Рассчитали превышение температуры по формуле:

Повышение температуры ts =tc +t=20+25=45° составляет меньше допустимой температуры класса изоляции «А»: t=105°С, что соответствует требованиям эксплуатации.

6. Электромагнитный расчет трансформатора

6.1 Основные электрические параметры трансформатора были рассчитаны в п.п. 3.1.6 и 3.1.9-3.1.16 (полная мощность S, действующие значения фазных токов первичных I1 и вторичных обмоток I2 и т.д.).

Выбрали двухобмоточный трансформатор с плоской магнитной системой стержневого типа со стержнями, имеющими сечение в форме симметричной ступенчатой фигуры, вписанной в окружность, и с концентрическим расположением обмоток. Магнитная система такого трехфазного трансформатора с обмотками.

В качестве магнитной системы выбираем трёхфазную шихтованную магнитную систему, схематически изображенную на рис.6.1, из холоднокатаной стали марки 3404 толщиной 0.35 мм. Провод обмотки сделан из алюминия. Обмотки соединены по схеме »звезда-звезда».

6.2 По табл. 1.9 [4] определили потери и напряжение короткого замыкания для рассчитанной полной мощности трансформатора (S=46,32 кВ×А). Получили PК = 2000 Вт, UК% = 5 %. Рассчитали реактивную составляющую напряжения короткого замыкания по формуле:

6.3 По табл.2.2 [4] определили коэффициент заполнения kЗ , по табл. 2.4 [4] определили индукцию в стержнях трансформатора B, по табл.2.5 [4] определили коэффициент заполнения площади круга kКР , по табл.3.3 [4] определили коэффициент приведённой ширины k, по табл.3.12 [4] определили значение коэффициента β, по табл.4.5 [4] определили минимальное изоляционное расстояние a12 .

Получили B= 1.575 Тл, kЗ = 0.965, kКР = 0.915, k= 0.787, β= 1.4, a12 = 0.009 м. Приняли коэффициент приведения идеального поля рассеивания к реальному kР = 0.95. Рассчитали диаметр стержня по формуле:

6.4 Рассчитали средний диаметр канала между обмотками по формуле:

где а – коэффициент; по табл. 3.4 приняли a = 1,45.

6.5 Рассчитали радиальный размер обмотки низкого напряжения:

где k1 – коэффициент; принимаем k1 = 1.1.

6.6 Рассчитали высоту обмотки по формуле:

6.7 Рассчитали активное сечение стержня:

6.8 Рассчитали количество витков первичных и вторичных обмоток по формуле:

6.9 Рассчитали сечение проводов первичных и вторичных обмоток.

где jd – плотность тока в обмотке; принимаем jd = 3×10 6 А/м 2 ;

7. Выбор и расчет устройств защиты от аварийных токов и перенапряжений

Для защиты преобразователя от аварийных токов и перенапряжений использовали два вида устройств: автоматический выключатель QF1 и плавкие предохранители FU1-FU7 (рис.2.2).

7.1 Выбор автоматического выключателя

Автоматический выключатель включается в цепь первичных обмоток силового трансформатора. Выбор выключателя осуществляется из условий напряжения питания преобразователя (Uп =220 В), частоты питающей сети (f=50 Гц), действующего значения входного тока (I =215,6 А), а также из условия отношения пускового тока к номинальному (Iпуск /Iн =2,5). Исходя из этих условий, выбрали из справочника [5] автоматический выключатель А37-15Б со следующими параметрами:

— частота питающей сети 50 Гц;

— номинальный ток выключателя 250 А;

— уставка по току срабатывания электромагнитного расцепителя 2500 А;

7.2 Выбор плавких предохранителей

Выбор плавких предохранителей в цепи каждого тиристора осуществляем из условия действующего значения анодного тока. Из справочника [5] выбирали плавкий предохранитель ПП57-3767 с параметрами:

— номинальный ток плавкой вставки 400 А

— номинальные потери мощности плавкой вставки 120 Вт

Для дополнительной защиты тиристоров в схему (рис. 2.2) включена демпфирующая RC-цепочка с подобранными параметрами.

8. Описание работы схемы управления

Для коммутации тиристоров в преобразователе используется система управления, которая может быть одноканальной (в которой все тиристоры управляются одноканальным сигналом со сдвигом на 60 градусов), так и многоканальной — с раздельно управляемыми тиристорами. Рассмотрим вертикальную синхронную систему управления со стабилизацией напряжения (рис.7.1.).

Напряжение с нагрузки Ud через датчик Д поступает на элемент сравнения. Также на вход элемента сравнения подаётся напряжение Uз с задатчика интенсивности ЗИ. Разница напряжений (Uз -Uос ) поступает на усилитель У и усиленное напряжение управления Uу идёт на компаратор К. На другой вход компаратора подаётся опорное напряжение Uоп с генератора пилообразного напряжения ГПН, управляемого устройством синхронизации УС, подключенного к линиям сетевого напряжения Uс . Пока опорное напряжение больше напряжения управления на выходе компаратора присутствует отрицательное выходное напряжение Uвых — . По достижению равенства входных напряжений компаратора он опрокидывается и на формирователе импульсов Ф оказывается положительное напряжение Uвых + .

Этот перепад вызывает появление короткого управляющего импульса напряжения на выходе формирователя импульсов Ф, в дальнейшем усиливаемого усилителем импульсов УИ и подаваемого на систему распределения управляющих импульсов для тиристоров. В случае повышения выходного напряжения Ud управляющее напряжение Uу ­ становится меньше, что вызывает увеличение угла управления aном на величину Da. Следовательно, произойдёт более позднее открывание тиристоров и снижение напряжения на нагрузке до номинального. Если возникает необходимость изменения выходного напряжения, это можно сделать путём изменения напряжения задатчика интенсивности Uз .

Трехфазный выпрямитель схема

Трехфазный выпрямитель схема Миткевича

В этом выпрямителе отрицательные полупериоды не используются совсем. При этом из сети «проходят» только полупериоды одной полярности, из-за этого происходит перекос сети. По вторичным обмоткам трансформатора следует однонаправленный ток, намагничивающий магнитопровод, при этом сердечник трансформатора работает на смещенной кривой намагничивания. При больших мощностях это приводит к насыщению сердечника, форма полупериодов искажается и происходит «срез» вершин полупериодов. А в спектре выпрямленного тока появляется много высокочастотных гармоник.

Зато, коэффициент пульсаций на нагрузке достаточно низок, что позволяет применять фильтрующие конденсаторы небольших значений емкости и меньших габаритов.

Схемы выпрямителя Ларионова, в зависимости от метода соединения вторичных обмоток трансформатора — звездой или треугольником, имеет две разновидности конструкции -«звезда-Ларионова» и «треугольник-Ларионова», они имеют разные технические параметры: среднее выпрямленное напряжение, эквивалентное внутреннее активное сопротивление, потери в меди и др., и работают немного по разному.

В схеме «треугольник-Ларионов» потери в меди на порядок больше, чем в выпрямительном устройстве «звезда-Ларионов», поэтому на практике чаще используется схема «звезда-Ларионов».

ИССЛЕДОВАНИЕ ОДНОФАЗНОГО МОСТОВОГО ВЫПРЯМИТЕЛЯ

В маломощных источниках питания (до нескольких сотен Ватт) обычно используют выпрямители, питаемые однофазным напряжением сети. В однофазных выпрямителях используют три основные схемы включения диодов: однофазная однополупериодная схема на одном диоде, однофазные двухполупериодные схемы: схема со средней точкой (нулевая схема) на двух диодах и мостовая схема на четырех диодах.

2.1. Принцип действия мостовой схемы выпрямления

Двухполупериодная мостовая схема (рис. 3.1) является основной схемой выпрямления для источников питания постоянного тока.

В рассматриваемой схеме (см. рис. 3.1) выпрямитель состоит из четырёх полупроводниковых диодов, собранных по схеме моста, в одну из диагоналей которого ab подключается напряжение U2 вторичной обмотки трансформатора, а в другую cd – сопротивление нагрузки Rd. Положительным полюсом нагрузки является общая точка соединения катодов диодов (точка d), отрицательным – точка соединения анодов (точка c).

Рис. 3.1. Двухполупериодная мостовая схема

Действие схемы показано на рис. 3.2, где показаны формы токов и напряжений для идеализированной мостовой схемы в разных ее сечениях. Напряжение и ток вторичной обмотки трансформатора изменяются во времени по гармоническому закону (рис. 3.2а)

В положительный полупериод питающего напряжения потенциал точки а положителен, а точки b – отрицателен. Диоды VD1 и VD3 будут включены в прямом направлении и импульс токабудет проходить от положительного зажима вторичной обмотки через диод VD1, нагрузку Rd и через открытый диод VD3 к отрицательному зажиму вторичной обмотки трансформатора (см. рис. 3.1). Форма этого тока будет повторять форму тока i2 вторичной обмотки трансформатора (рис. 2.7б). Проходя через нагрузку Rd , импульс тока i13 выделяет на ней напряжение ud (рис. 3.2д), которое без учета потерь напряжения на диодах повторяет форму положительной полуволны напряжения , т. е. имеет амплитуду пульсаций В течение первого полупериода диоды VD2 и VD4 заперты, так как включены в обратном направлении. Эти диоды находятся под воздействием отрицательного обратного напряжения , максимальная величина которого .

При происходит смена полярности напряжения на вторичной обмотке трансформатора, при этом анод диода VD2 подключается к « + », а катод диода VD4 к « – » напряжения (см. рис. 3.1). Теперь в течение второго полупериода под воздействием прямого напряжения будут находиться диоды VD2 и VD4,а диоды VD1 и VD3 заперты обратным напряжением (см. рис. 3.2в).

В цепи вторичной обмотки трансформатора, открытых диодов VD2 и VD4 и нагрузки Rd будет проходить импульс тока, выделяя на нагрузке импульс напряжения , величина и полярность которого такая же как в первом полупериоде (рис. 3.2б). Таким образом, за период преобразуемого напряжения в цепи нагрузки Rd проходят два импульса тока, не меняя своего направления и создавая ток нагрузки i d, под воздействием которого на нагрузке выделяется напряжение пульсирующего характера (см. рис. 3.2б).

Рис. 3.2. Временные диаграммы для мостовой схемы

2.2 Основные параметры мостовой схемы выпрямления

Выпрямленное напряжение содержит постоянную составляющую и бесконечный ряд гармонических составляющих и может быть записано в виде гармонического ряда Фурье:

Постоянная составляющая рассчитывается как среднее значение выпрямленного напряжения на нагрузке при работе выпрямителя в режиме холостого хода:

Отсюда можно рассчитать действующее значение напряжения во вторичной обмотке трансформатора:

При расчете выпрямленного тока Id через нагрузку следует учесть, что при прохождении тока через открытый диод на нем падает напряжение , величина которого указывается в справочниках, поэтому ток в нагрузке определяется выражением:

Действующее значение тока вторичной обмотки связано с током нагрузки соотношением: Основная гармоническая составляющая выпрямленного напряжения определяется выражением:

следовательно частота пульсаций равна удвоенной частоте преобразуемого сетевого напряжения:

Амплитуда основной гармонической составляющей , следовательно коэффициент пульсаций:

Чтобы не допустить повреждения диодов при их работе в схемах выпрямления, необходимо учитывать при выборе диодов максимальные значения напряжения и тока во вторичной обмотке трансформатора. Максимальное обратное напряжение на диоде равно напряжению на концах вторичной обмотки. Поэтому для мостовой схемы – . В двухполупериодных схемах выпрямления импульс тока проходит через диод только в течение полупериода, поэтому среднее значение тока, протекающего через диод, в два раза меньше выпрямленного тока : По этим параметрам: прямой ток через диод Iпр = Ia и Uобрmax = U2m выбирается диод мостовой схемы выпрямления.

2.3. Сглаживающие фильтры

Напряжение на выходе любого блока диодов всегда является пульсирующим, содержащим кроме постоянного напряжения ряд синусоидальных составляющих разных частот. В большинстве случаев питание электронных устройств пульсирующим напряжением совершенно неприемлемо. Требования к допустимой величине коэффициента пульсаций зависят от назначения и режима работы устройства. Например, для входных усилительных каскадов коэффициент пульсаций может находиться в пределах . Для питания устройств эти пульсации должны быть снижены до минимального уровня, при котором они не оказывают существенного влияния на работу электротехнических устройств.

С этой целью используются сглаживающие фильтры, которые пропускают на выход только постоянную составляющую выпрямленного напряжения и максимально ослабляют его переменные составляющие. Основными элементами фильтров являются индуктивность (включается последовательно с нагрузкой) и конденсатор (включается параллельно нагрузке). Сглаживающее действие этих элементов связано с тем, что индуктивность представляет большое сопротивление ( ) для токов высокой частоты и малое для токов низкой частоты, а конденсатор – большое сопротивление ( для токов низкой частоты и малое сопротивление для токов высокой частоты.

Эффективность сглаживания пульсаций оценивается коэффициентом сглаживания, который представляет собой отношение коэффициента пульсаций на входе и выходе фильтра

Коэффициент сглаживания показывает, во сколько раз фильтр уменьшает пульсации выпрямленного напряжения.

Наиболее эффективным является емкостный фильтр, при использовании которого сглаживание пульсации выпрямленного напряжения и тока происходит за счет периодической зарядки конденсатора и последующей его разрядки на сопротивление нагрузки Rd.

При большой емкости конденсатора и сопротивления нагрузки Rd разрядка конденсатора протекает во времени практически по линейному закону, а выходное напряжение (рис. 3.2 г) не уменьшается до нуля, а пульсирует в некоторых пределах, увеличивая среднее значение выпрямленного напряжения , которое может достигнуть максимального значения при большой емкости конденсатора.

Для эффективной работы сглаживающего фильтра емкостное сопротивление на частоте основной гармоники должно быть по крайней мере на порядок меньше сопротивления нагрузки :

Отсюда следует, что применение емкостного фильтра более эффективно при высокоомной нагрузке с малыми значениями выпрямленного тока, так как при этом возрастает эффективность сглаживания.

2.4. Внешняя характеристика выпрямительного устройства

Внешняя характеристика определяет границы изменения тока нагрузки , при которых выпрямленное напряжение на нагрузке не уменьшается ниже допустимой величины при изменении сопротивления нагрузки . Внешняя характеристика описывается уравнением:

где – среднее значение выпрямленного напряжения в режиме холостого хода выпрямителя, – активная составляющая сопротивлений обмоток трансформатора, – падение напряжения на диодах одного плеча выпрямителя. Для мостовой схемы – , – падение напряжения на открытом диоде.

Внешняя характеристика 1 (рис. 3.3) соответствует выпрямителю без фильтра, характеристика 2 – выпрямителю с емкостным фильтром. Напряжение холостого хода для двухполупериодной схемы без фильтра , а при включении емкостного фильтра за счет заряда конденсатора может повысится до максимального значения .

Уменьшение выходного напряжения при увеличении тока нагрузки объясняется падением напряжения на элементах схемы: сопротивлении и диодах. При включении емкостного фильтра дополнительное уменьшение выходного напряжения происходит за счет более быстрого разряда конденсатора на меньшее сопротивление нагрузки .

Рис. 3.3. Внешние характеристики выпрямительного устройства

Дата добавления: 2020-10-26 ; просмотров: 5047 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Трехфазный мостовой выпрямитель — принцип работы и схемы

Выпрямители бывают однополупериодными или двухполупериодными в зависимости от того, сколько полупериодов переменного тока используется – один или два. По однополупериодной схеме выполняют выпрямители, от которых требуется небольшой ток. Такую схему используют редко.

Рис.1. Однополупериодная схема выпрямителя.

Работа схемы однополупериодного выпрямителя.

Во время положительной полуволны плюс напряжения на вторичной обмотке трансформатора приложен к аноду диода, а минус – к катоду. (Знаки + и – указаны в скобках). Диод пропускает ток от плюса вторичной обмотки трансформатора через диод и сопротивление нагрузки R н на минус вторичной обмотки трансформатора. Во время отрицательной полуволны к аноду диода приложен минус, а к катоду – плюс. К диоду в это время прикладывается обратное напряжение, и он закрыт. На графике в этот момент на сопротивлении нагрузки нет падения напряжения.

Двухполупериодный выпрямитель.

Рис.2. Двухполупериодная со средней точкой (б) и мостовая (в) схемы выпрямителей.

Работа схемы выпрямителя со средней точкой.

Схема обеспечивает прохождение тока через нагрузку в течение обоих полупериодов. Во время положительного полупериода работает первая половина вторичной обмотки ( II а ). Ток идёт от плюса вторичной обмотки трансформатора через диод V1, нагрузку R н и на среднюю точку вторичной обмотки. В это время к аноду диода V 2 приложен минус, а к катоду – плюс, и диод закрыт. Во время отрицательного полупериода картина меняется: будет открыт диод V 2, а диод V1 – закрыт ( для этого случая знаки указаны в скобках). В этот полупериод ток протекает за счёт напряжения на обмотке II б.

Работа мостовой схемы.

Мостовая схема является наиболее распространённой. Она также двухполупериодная. Во время положительного полупериода ток проходит от плюса вторичной обмотки трансформатора через диод V 2, сопротивление нагрузки R н, диод V 3 на минус вторичной обмотки. В это время ко второй паре диодов V 1, V 4 приложено обратное напряжение. Они закрыты. Во время отрицательного полупериода ток протекает от плюса обмотки (знаки в скобках) через диод V 4, нагрузку R н, диод V 1 на минус вторичной обмотки.

Сравнение мостовой схемы и схемы со средней точкой.

Для получения одинакового напряжения в схеме со средней точкой вторичная обмотка должна иметь большее количество витков, чем в мостовой схеме. Это увеличивает размеры трансформатора. В этой же схеме к диодам прикладывается вдвое большее напряжение, чем в мостовой. Учитывая это, предпочтение отдаётся мостовой схеме, хотя здесь и требуется больше диодов.

Сглаживание выпрямленного напряжения.

Рассмотрим следующую схему.

На сопротивлении нагрузки выделяется пульсирующее напряжение, форма которого значительно отличается от формы постоянного напряжения. Для сглаживания пульсирующего напряжения используются сглаживающие фильтры, которые состоят в большинстве случаев из конденсатора и дросселя. Конденсатор сглаживает пульсирующее напряжение, а дроссель задерживает переменную составляющую сглаженного напряжения от попадания в нагрузку. В настоящее время функции дросселя выполняют стабилизаторы напряжения. Принцип сглаживания можно проследить по графику а). Жирной линией показано напряжение на конденсаторе (или сопротивлении нагрузки). Сглаживание напряжения происходит за счёт того, что во время уменьшения пульсирующего напряжения ток в нагрузке, а, следовательно, и напряжение на R н поддерживается напряжением зарядившегося конденсатора. При возрастании пульсирующего напряжения конденсатор снова подзаряжается и так далее.

Управляемые выпрямители на тиристорах

При эксплуатации выпрямительных устройств часто приходится сталкиваться с необходимостью изменения (регулировки) значения выпрямленного напряжения.

Изменение выпрямленного напряжения может осуществляться как на стороне постоянного, так и на стороне переменного тока.

Регулирование выпрямленного напряжения с помощью управляемых полупроводниковых вентилей-тиристоров применяется в настоящее время весьма широко, успешно конкурируя с выпрямителями на тиратронах вследствие ряда преимуществ тиристоров перед тиратронами.

Регулирование выпрямленного напряжения тиристором осуществляется изменение угла открытия его от (его называют также “углом отпирания” и “углом управления”), он аналогичен углу зажигания в тиратроне. Управление тиристором может быть амплитудным, фазовым и импульсно-фазовым. Ниже рассматриваются схемы, соответствующие фазовому способу регулирования.

Однополупериодный однофазный управляемый выпрямитель (рис. 4.33). Силовой трансформатор схемы имеет две вторичные обмотки: основную w2, которая служит для питания схемы выпрямителя, и управляющую обмотку wу, благодаря которой создается напряжение управления подаваемое на управляющий электрод тиристора. Угол сдвига по фазе между анодным напряжением U2 и управляющим напряжением или угол открытия определяется фазорегулятором схемы R1L, где L — дроссель насыщения. Изменяя индуктивность дросселя подмагничивающим током, можно регулировать угол открытия .

Отпирание тиристора происходит в тот момент, когда управляющее напряжение U, становится положительным (рис. 4.33, б, график Uу); запирание тиристора происходит при появлении отрицательного потенциала в аноде тиристора (отрицательный полупериод напряжения (Л). Резистор R2 ограничивает значение тока управления.

В управляемом выпрямителе, собранном по мостовой схеме (рис. 4.34,а), вторичная обмотка трансформатора управления Tу выполняется с выводом точки 3, от которой управляющее напряжение подается на тиристор VS1. На тиристор VS2. управляющее напряжение подается с фазорегулятора RP, С (с точки 4). Фазовое регулирование, т.е. изменение угла открытия, осуществляется в схеме (рис.4.34, а) переменным резистором RP. Диоды VD3 и VD4 замыкают цепи управления тиристоров.

Схема управления тиристорами работает следующим образом.

Рис. 4.33. Однополупериодная однофазная схема выпрямления на тиристоре (а). Диаграммы напряжений и токов в схеме (б)

При положительном полупериоде напряжения ток управления идет по цепи: точки 3, резистор R1, тиристор VS1, диод VD4, резистор RP, точка 1.

При отрицательном полупериоде напряжения U, ток управления идет по цепи: точка 1, резистор RP, резистор R2 тиристор VS2, диод VD3, точка 3. Выпрямленный ток протекает в один полупериод напряжения U2 через VS1 и VD1, а во второй полупериод напряжения U2.—через VS2 и VD2 причем диоды VD1, VD2 работают, как в известной мостовой однофазной схеме выпрямления.

Диод VD5, включенный в обратном направлении, устанавливается на входе фильтра (обычно фильтра LC), поскольку при запирании тиристора он замыкает цепь нагрузки в целях реализации ЭДС самоиндукции дросселя, в результате чего уменьшаются пульсации выпрямленного напряжения и повышается cosj. В маломощных регулируемых выпрямителях VD5 (нулевой диод) можно не применять.

Трансформаторы схемы Т, Ту обычно совмещаются подобно схеме на рис. 4.33,а.

Как видно из регулировочных характеристик для одной двухполупериодной схемы выпрямления (рис.4.34,6, кривые 1 и 2), угол открытия изменяется в пределах от 20—30 до 150—160°. Такой разброс в пределах регулирования объясняется тем, что при синусоидальной форме напряжения сети у тиристоров имеет место большой разброс по времени открытия их. Для уменьшения указанного разброса и расширения пределов регулирования необходимо подавать на управляющий электрод тиристора импульсы с крутым фронтом. Для этой цели применяют быстродействующие магнитные усилители или генераторы импульсов на транзисторах.

Рис. 4.34. Мостовая однофазная схема выпрямления на тиристорах (а) и регулировочные характеристики (б) (Uox — выпрямленное напряжение холостого хода)

В схеме двухполупериодного управляемого выпрямителя (рис. 4.35,а) тиристоры управляются прямоугольными импульсами, которые вырабатываются с помощью вспомогательных диодов VD1 и VD2, подключенных, как и основные вентили — тиристоры VS1 и VS2, к вторичной обмотке силового трансформатора. Таким образом, в данной схеме (рис. 4.35,а) существуют две функциональные схемы: схема двухполупериодного выпрямителя на тиристорах VS1 и VS2, аналогичная известной однотипной схеме, и схема управления углом открытия тиристоров , с помощью которой осуществляется фазовое регулирование выпрямленного напряжения; эта схема выполняется на диодах VD1 и VD2, однопереходном транзисторе VT3, на резисторах и конденсаторе схемы.

Работа схемы управления углом открытия может быть пояснена следующим образом. При подключении сетевого напряжения U1 на. выходе диодов VD1 и VD2 появится выпрямленное напряжение uab, форма которого является огибающей положительных полусинусоид напряжения u2 (рис. 4.18,б). С помощью стабилитрона VD3 и балластного резистора R1 это напряжение преобразуется в импульсы прямоугольной формы положительной полярности Uст. Эти импульсы поступают через резистор R4 на базу Б2, а также через переменный резистор R6 на эмиттер однопереходного транзистора VT3, на котором собран релаксационный генератор схемы. Поступающие на эмиттер импульсы заряжают при этом конденсатор С до тех пор, пока напряжение на нем не достигнет значения, равного Uэmax (pис. 4.18, б, график ис), причем крутизна экспоненты напряжения Uc при заряде и время заряда конденсатора С зависят от постоянной времени тз=R6 С. Когда напряжение на конденсаторе ис достигнет значения Uэmax транзистор отпирается и конденсатор С быстро разряжается через транзистор и резистор R5, поскольку R5

Мостовой выпрямитель принцип действия

Устройства выпрямления, детектирования и смешивания сиг­налов можно строить на основе мостовых схем. Типичной схе­мой такого рода является схема диодного выпрямителя, пока­занная на рис. 9.7. В этой схеме переменное напряжение, при­кладываемое к противоположным узлам диодного моста, преоб­разуется в пульсирующее выпрямленное напряжение, снимае­мое с двух других узлов. При включении нагрузочного резисто­ра RH выделяемое на нем пульсирующее напряжение является униполярным, что характерно для двухполупериодного выпря­мления (см. гл. 10).

Рис. 9.7. Мостовой выпрямитель.

При действии на входе полуволны переменного напряжения положительной полярности зажим Т1 будет положителен по от­ношению к зажиму 7Y В этом случае электроны поступают на зажим Т2 и выводятся через зажим Т1. Электроны от зажи­ма Т2 поступают на узел с диодами Д3 и Д4, причем только Д3 имеет нужное для проводимости направление включения. По­этому электроны движутся, пройдя через этот диод, к узлу с диодами Д3 .и Дь Полярность напряжения, приложенного к дио­ду Дь является запирающей, так что электроны от этого узла поступают на резистор в направлении, указанном на рис. 9.7 штриховой линией. При протекании тока через резистор RH на последнем возникает падение напряжения (полярность указана на рисунке). После прохождения через резистор электроны достигают узла с диодами Д2 и Д4. Но только на диоде Д2 действует отпирающее напряжение, позволяющее электронам двигаться к выводу Т1, потенциал которого положителен при данной полуволне переменного тока. Диод же Д4 оказывается запертым, так как потенциал T2 отрицателен.

В течение следующего полупериода «изменения входного на­пряжения потенциал зажима Т1 отрицательный, а зажима Т2 положительный. Поэтому электроны от зажима TI перемещают­ся к узлу с диодами Д] и Д2, и, поскольку нужную для прово­димости полярность включения имеет лишь диод Д]? электроны проходят через этот диод и опять поступают на резистор RH, создавая на нем падение напряжения той же полярности, что и в первом случае. Далее электроны, как и прежде, поступают на узел с диодами Д2 и Д4, однако к зажиму Т2 они проходят че­рез диод Д4. Таким образом, поскольку мостовой выпрямитель использует каждый полупериод входного переменного напряже­ния и поворачивает фазу колебаний отрицательной полярности для получения униполярного пульсирующего напряжения на выходе схемы, он обеспечивает двухполупериодное выпрямле­ние.

Каждый электрик должен знать:  Ремонт светодиодной лампы своими руками видео с инструкцией
Добавить комментарий