Устройство и параметры тиристоров

СОДЕРЖАНИЕ:

Основные параметры тиристоров 1447

Так же, как и у диода, класс характеризует максимальное повторяющееся напряжение, которое можно прикладывать к прибору как в прямом так и в обратном направлении и при этом он остается в непроводящем состоянии. Uкл=Umax/(1,5…2), Umax=Uпр.max»Uобр.max. Классы от 0,5 до 20. Uкл=Кл×100 В.

2. Ток прямой номинальный.

Это допустимый средний ток в открытом состоянии. Диапазон токов: 100мА…1000А. Ток оговаривается при естественном и принудительном охлаждении. Принудительное охлаждение потоком воздуха применяется для мощных приборов. При этом оговаривается скорость воздуха.

3. Прямое падение напряжения в открытом состоянии Uпр. откр.

4. Допустимая скорость нарастания напряжения на закрытом тиристоре в прямом направлении du/dt. Параметр du/dt приводится в справочнике. du/dt=100…2000В/мкс. Тиристор имеет паразитные межэлектродные емкости — рис. 70. При приложении крутого фронта прямого напряжения может произойти самопроизвольное включение тиристора. Для ограничения du/dt параллельно тиристору подключают конденсатор определенной емкости, как показано на рис. 71. Последовательно с конденсатором включают небольшое сопротивление, т.к. при включении тиристора конденсатор разряжается на него и R необходимо для ограничения тока разряда. Диод параллельно R обычно не ставят. Обычно С=0,2…2мкФ, R=10…100ом мощностью до 25Вт. R-C цепь параллельно тиристору можно не ставить, если выбирается тиристор с большим запасом по классу. Это существенно снижает габариты преобразовательного устройства.

5. Допустимая скорость нарастания тока через открытый тиристор di/dt. При включении тиристора средней и большой мощности ток вначале начинает концентрироваться около управляющего электрода, а затем распределяется по всей полупроводниковой структуре. Концентрация тока, нарастающего с большой скоростью около управляющего электрода, может привести к прожогу структуры. Если di/dt ограничено, то ток успевает распределиться по структуре и разрушения полупроводника не будет. Для ограничения di/dt последовательно с тиристором включается индуктивность L. Часто в качестве L выступает индуктивность трансформатора питания.

6. Время включения tвкл.

Это интервал времени между началом импульса управления и моментом, когда напряжение на тиристоре снизится до 0,1 от напряжения питания. Составляет несколько мкс.

7. Время выключения tвыкл.

Это интервал времени от момента перехода тока анода через ноль до момента приложения к нему прямого напряжения, не вызывающего его отпирания. В несколько раз больше времени включения. Для приборов средней мощности tвыкл=50…300мкс.

8. Ток управления Iупр.

Различают Iупр.длит. и Iупр.имп. Iупр.имп=20…1000мА.

9. Ток удержания Iуд.

Это минимальное значение прямого тока, при котором тиристор остается в открытом состоянии. Обычно Iуд»Iупр.длит.

Пример обозначения тиристора: ТХ-100-10-ХХХ. Здесь ТХ — обозначение разработки тиристора, 100 -номинальный ток тиристора в А, 10 -класс тиристора, ХХХ -цифры, регламентирующие параметры du/dt, di/dt, tвыкл.

Устройство и параметры тиристоров

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

Принцип работы

Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.

К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

Заключение

Тиристор – это полупроводниковый ключ, конструкция которого представляет собой четыре слоя. Они обладают способностью переходить из одного состояния в другое – из закрытого в открытое и наоборот.

Информация, представленная в данной статье, поможет дать исчерпывающий ответ на вопрос об этом аппарате.

В специализированной литературе этот прибор также носит название однооперационного тиристора. Это название обусловлено тем, что устройство является не полностью управляемым . Другими словами, при получении сигнала от управляющего объекта он может только перейти в режим включенного состояния. Для того чтобы выключить прибор, человеку придется выполнить дополнительные действия, которые и приведут к падению уровня напряжения до нулевой отметки.

Работа этого прибора основывается на использовании силового электрического поля. Для его переключения из одного состояния в другое применяется технология управления, передающая определенные сигналы. При этом ток по тиристору может двигаться только в одном направлении. В выключенном состоянии этот прибор обладает способностью выдерживать как прямой, так и обратное напряжение.

Способы включения и выключения тиристора

Переход в рабочее состояние стандартного этого типа аппарата осуществляет путем поучения импульса токового напряжения в определенной полярности. На скорость включения и на то, как он впоследствии будет работать, влияют следующие факторы:

Выключение тиристора может быть осуществлено некоторыми способами:

  1. Естественное выключение. В технической литературе также встречается такое понятие, как естественная коммутация – оно аналогично естественному выключению.
  2. Принудительное выключение (принудительная коммутация).

Естественное выключение этого аппарата осуществляется в процессе его функционирования в цепях с переменным током, когда происходит понижение уровня тока до нулевой отметки.

Принудительное выключение включает в себя большое количество самых разнообразных способов. Самым распространенным из них является следующий метод.

Конденсатор, обозначаемый латинской буквой C, соединяется с ключом. Он должен обозначаться маркеровкой S. При этом конденсатор перед замыканием должен быть заряжен.

Основные типы тиристоров

В настоящее время существует немалое количество тиристоров, которые различаются между собой своими техническими характеристиками – скоростью функционирования, способами и процессами управления, направлениями тока при нахождении в проводящем состоянии и др.

Наиболее распространенные типы

  1. Тиристор-диод. Такой прибор аналогичен устройству, которое имеет встречно-параллельный диод во включенном режиме.
  2. Диодный тиристор. Другое название – динистор. Отличительной характеристикой этого устройства является то, что переход в проводящий режим осуществляется в момент, когда уровень тока превышен.
  3. Запираемый тиристор.
  4. Симметричный. Он также носит название симистора. Конструкция этого прибора аналогична двум устройствам со встречно-параллельным диодами при нахождении в режиме работы.
  5. Быстродействующий или инверторный. Этот тип устройства обладает способностью переходить в нерабочее состояние за рекордно короткое время – от 5 до 50 микросекунд.
  6. Оптотиристор. Его работа осуществляется при помощи светового потока.
  7. Тиристор под полевым управлением по ведущему электроду.

Обеспечение защиты

Тиристоры входят в перечень приборов, которые критично влияют на изменение скорости увеличения прямого тока. Как и для диодов, так и для тиристоров характерен процесс протекания обратного тока восстановления. Резкое изменение его скорости и падение до нулевой отметки приводит к повышенному риску возникновения перенапряжения.

Кроме того, перенапряжение в конструкции этого прибора может возникать вследствие полного исчезновении напряжения в разнообразных составных частях системы, например, в малых индуктивностях монтажа.

По вышеуказанным причинам в подавляющем большинстве случаев для обеспечения надежной защиты этих приборов применяют разнообразные схемы ЦФТП. Данные схемы при нахождении в динамическом режиме помогают защищать устройство от возникновения недопустимых значений напряжения.

Надежным средством защиты также является применение варистора . Это устройство подключается к местам вывода индуктивной нагрузки.

В самом общем виде применение такого прибора, как тиристор, можно разделить на следующие группы:

Ограничения тиристора

При работе с любым типом этого прибора следует соблюдать определенные правила техники безопасности, а также помнить о некоторых необходимых ограничениях.

Например, в случае с индуктивной нагрузкой при функционировании такой разновидности прибора, как симистор. В данной ситуации ограничения касаются скорости изменения уровня напряжения между двумя основными элементами – его анодами и рабочим током. Для ограничения влияния тока и перегрузки применяется RC-цепочка .

Принцип действия тиристора

Тиристор является силовым электронным не полностью управляемым ключом. Поэтому иногда в технической литературе его называют однооперационным тиристором, который может сигналом управления переводиться только в проводящее состояние, т. е. включаться. Для его выключения (при работе на постоянном токе) необходимо принимать специальные меры, обеспечивающие спадание прямого тока до нуля.

Тиристорный ключ может проводить ток только в одном направлении, а в закрытом состоянии способен выдержать как прямое, так и обратное напряжение.

Тиристор имеет четырехслойную p-n-p-n-структуру с тремя выводами: анод (A), катод (C) и управляющий электрод (G), что отражено на рис. 1

Рис. 1. Обычный тиристор: a) – условно-графическое обозначение; б) – вольтамперная характеристика.

На рис. 1, b представлено семейство выходных статических ВАХ при различных значениях тока управления iG. Предельное прямое напряжение, которое выдерживается тиристором без его включения, имеет максимальные значения при iG = 0. При увеличении тока iG прямое напряжение, выдерживаемое тиристором, снижается. Включенному состоянию тиристора соответствует ветвь II, выключенному – ветвь I, процессу включения – ветвь III. Удерживающий ток или ток удержания равен минимально допустимому значению прямого тока iA , при котором тиристор остается в проводящем состоянии. Этому значению также соответствует минимально возможное значение прямого падения напряжения на включенном тиристоре.

Ветвь IV представляет собой зависимость тока утечки от обратного напряжения. При превышении обратным напряжением значения UBO начинается резкое возрастание обратного тока, связанное с пробоем тиристора. Характер пробоя может соответствовать необратимому процессу или процессу лавинного пробоя, свойственного работе полупроводникового стабилитрона.

Тиристоры являются наиболее мощными электронными ключами, способными коммутировать цепи с напряжением до 5 кВ и токами до 5 кА при частоте не более 1 кГц.

Конструктивное исполнение тиристоров приведено на рис. 2.

Рис. 2. Конструкция корпусов тиристоров: а) – таблеточная; б) – штыревая

Тиристор в цепи постоянного тока

Включение обычного тиристора осуществляется подачей импульса тока в цепь управления положительной, относительно катода, полярности. На длительность переходного процесса при включении значительное влияние оказывают характер нагрузки (активный, индуктивный и пр.), амплитуда и скорость нарастания импульса тока управления iG , температура полупроводниковой структуры тиристора, приложенное напряжение и ток нагрузки. В цепи, содержащей тиристор, не должно возникать недопустимых значений скорости нарастания прямого напряжения duAC/dt, при которых может произойти самопроизвольное включение тиристора при отсутствии сигнала управления iG и скорости нарастания тока diA/dt. В то же время крутизна сигнала управления должна быть высокой.

Среди способов выключения тиристоров принято различать естественное выключение (или естественную коммутацию) и принудительное (или искусственную коммутацию). Естественная коммутация происходит при работе тиристоров в цепях переменного тока в момент спадания тока до нуля.

Способы принудительной коммутации весьма разнообразны. Наиболее характерны из них следующие: подключение предварительно заряженного конденсатора С ключом S (рис 3, а); подключение LC-цепи с предварительно заряженным конденсатором CK (рис 3 б); использование колебательного характера переходного процесса в цепи нагрузки (рис 3, в).

Рис. 3. Способы искусственной коммутации тиристоров: а) – посредством заряженного конденсатора С; б) – посредством колебательного разряда LC-контура; в) – за счёт колебательного характера нагрузки

При коммутации по схеме на рис. 3,а подключение коммутирующего конденсатора с обратной полярностью, например другим вспомогательным тиристором, вызовет его разряд на проводящий основной тиристор. Так как разрядный ток конденсатора направлен встречно прямому току тиристора, последний снижается до нуля и тиристор выключится.

В схеме на рис. 3,б подключение LC-контура вызывает колебательный разряд коммутирующего конденсатора Ск. При этом в начале разрядный ток протекает через тиристор встречно его прямому току, когда они становятся равными, тиристор выключается. Далее ток LC-контура переходит из тиристора VS в диод VD. Пока через диод VD протекает ток контура, к тиристору VS будет приложено обратное напряжение, равное падению напряжения на открытом диоде.

В схеме на рис. 3,в включение тиристора VS на комплексную RLC-нагрузку вызовет переходный процесс. При определенных параметрах нагрузки этот процесс может иметь колебательный характер с изменением полярности тока нагрузки iн. В этом случае после выключения тиристора VS происходит включение диода VD, который начинает проводить ток противоположной полярности. Иногда этот способ коммутации называется квазиестественным, так как он связан с изменением полярности тока нагрузки.

Тиристор в цепи переменного тока

При включении тиристора в цепь переменного тока возможно осуществление следующих операций:

Включение и отключение электрической цепи с активной и активно-реактивной нагрузкой;

изменение среднего и действующего значений тока через нагрузку за счёт того, что имеется возможность регулировать момент подачи сигнала управления.

Так как тиристорный ключ способен проводить электрический ток только в одном направлении, то для использования тиристоров на переменном токе применяется их встречно-параллельное включение (рис. 4,а).

Рис. 4. Встречно-параллельное включение тиристоров (а) и форма тока при активной нагрузке (б)

Среднее и варьируются за счёт изменения момента подачи на тиристоры VS1 и VS2 открывающих сигналов, т.е. за счёт изменения угла и (рис. 4,б). Значения этого угла для тиристоров VS1 и VS2 при регулировании изменяется одновременно при помощи системы управления. Угол называется углом управления или углом отпирания тиристора.

Наиболее широкое применение в силовых электронных аппаратах получили фазовое (рис. 4,а,б) и широтно-импульсное управление тиристорами (рис. 4,в).

Рис. 5. Вид напряжения на нагрузке при: а) – фазовом управлении тиристором; б) – фазовом управлении тиристором с принудительной коммутацией; в) – широтно-импульсном управлении тиристором

При фазовом методе управления тиристором с принудительной коммутацией регулирование тока нагрузки возможно как за счёт изменения угла α , так и угла θ . Искусственная коммутация осуществляется с помощью специальных узлов или при использовании полностью управляемых (запираемых) тиристоров.

При широтно-импульсном управлении (широтно-импульсной модуляции – ШИМ) в течение времени Тоткр на тиристоры подан управляющий сигнал, они открыты и к нагрузке приложено напряжение Uн. В течение времени Тзакр управляющий сигнал отсутствует и тиристоры находятся в непроводящем состоянии. Действующее значение тока в нагрузке

где Iн.м. – ток нагрузки при Тзакр = 0.

Кривая тока в нагрузке при фазовом управлении тиристорами несинусоидальна, что вызывает искажение формы напряжения питающей сети и нарушения в работе потребителей, чувствительных к высокочастотным помехам – возникает так называемая электромагнитная несовместимость.

Тиристоры являются наиболее мощными электронными ключами, используемыми для коммутации высоковольтных и сильноточных (сильнотоковых) цепей. Однако они имеют существенный недостаток – неполную управляемость, которая проявляется в том, что для их выключения необходимо создать условия снижения прямого тока до нуля. Это во многих случаях ограничивает и усложняет использование тиристоров.

Для устранения этого недостатка разработаны тиристоры, запираемые сигналом по управляющему электроду G. Такие тиристоры называют запираемыми (GTO – Gate turn-off thyristor) или двухоперационными.

Запираемые тиристоры (ЗТ) имеют четырехслойную р-п-р-п структуру, но в то же время обладают рядом существенных конструктивных особенностей, придающих им принципиально отличное от традиционных тиристоров – свойство полной управляемости. Статическая ВАХ запираемых тиристоров в прямом направлении идентична ВАХ обычных тиристоров. Однако блокировать большие обратные напряжения запираемый тиристор обычно не способен и часто соединяется со встречно-параллельно включенным диодом. Кроме того, для запираемых тиристоров характерны значительные падения прямого напряжения. Для выключения запираемого тиристора необходимо подать в цепь управляющего электрода мощный импульс отрицательного тока (примерно 1:5 по отношению к значению прямого выключаемого тока), но короткой длительности (10-100 мкс).

Запираемые тиристоры также имеют более низкие значения предельных напряжений и токов (примерно на 20-30 %) по сравнению с обычными тиристорами.

Основные типы тиристоров

Кроме запираемых тиристоров разработана широкая гамма тиристоров различных типов, отличающихся быстродействием, процессами управления, направлением токов в проводящем состоянии и т.д. Среди них следует отметить следующие типы:

тиристор-диод , который эквивалентен тиристору со встречно-параллельно включенным диодом (рис. 6.12,a);

диодный тиристор (динистор) , переходящий в проводящее состояние при превышении определённого уровня напряжения, приложенного между А и С (рис. 6,b);

запираемый тиристор (рис. 6.12,c);

симметричный тиристор или симистор , который эквивалентен двум встречно-параллельно включенным тиристорам (рис. 6.12,d);

быстродействующий инверторный тиристор (время выключения 5-50 мкс);

тиристор с полевым управлением по управляющему электроду , например, на основе комбинации МОП-транзистора с тиристором;

оптотиристор, управляемый световым потоком.

Рис. 6. Условно-графическое обозначение тиристоров: a) – тиристор-диод; b) – диодный тиристор (динистор); c) – запираемый тиристор; d) — симистор

Тиристоры являются приборами, критичными к скоростям нарастания прямого тока diA/dt и прямого напряжения duAC/dt. Тиристорам, как и диодам, присуще явление протекания обратного тока восстановления, резкое спадание которого до нуля усугубляет возможность возникновения перенапряжений с высоким значением duAC/dt. Такие перенапряжения являются следствием резкого прекращения тока в индуктивных элементах схемы, включая монтажа. Поэтому для защиты тиристоров обычно используют различные схемы ЦФТП, которые в динамических режимах осуществляют защиту от недопустимых значений diA/dt и duAC/dt.

В большинстве случаев внутреннее индуктивное сопротивление источников напряжения, входящих в цепь включенного тиристора, оказывается достаточным, чтобы не вводить дополнительную индуктивность LS . Поэтому на практике чаще возникает необходимость в ЦФТП, снижающих уровень и скорость перенапряжений при выключении (рис. 7).

Рис. 7. Типовая схема защиты тиристора

Для этой цели обычно используют RC-цепи, подключаемые параллельно тиристору. Существуют различные схемотехнические модификации RC-цепей и методики расчета их параметров для разных условий использования тиристоров.

Для запираемых тиристоров применяются цепи формирования траектории переключения, аналогичных по схемотехнике ЦФТП транзисторов.

Тиристор представляет собой электронный силовой частично управляемый ключ. Этот прибор, с помощью сигнала управления может находиться только в проводящем состоянии, то есть быть включенным. Для того, чтобы его выключить, нужно проводить специальные мероприятия, которые обеспечивают падение прямого тока до нулевого значения. Принцип работы тиристора заключается в односторонней проводимости, в закрытом состоянии может выдержать не только прямое, но и обратное напряжение.

Свойства тиристоров

По своим качествам, тиристоры относятся к полупроводниковым приборам. В их полупроводниковой пластине присутствуют смежные слои, обладающие различными типами проводимости. Таким образом, каждый тиристор представляет собой прибор, имеющий четырехслойную структуру р-п-р-п.

К крайней области р-структуры производится подключение положительного полюса источника напряжения. Поэтому, данная область получила название анода. Противоположная область п-типа, куда подключается отрицательный полюс, называется катодом. Вывод из внутренней области осуществляется с помощью р-управляющего электрода.

Классическая модель тиристора состоит из двух , имеющих разную степень проводимости. В соответствии с данной схемой, производится соединение базы и коллектора обоих транзисторов. В результате такого соединения, питание базы каждого транзистора осуществляется с помощью коллекторного тока другого транзистора. Таким образом, получается цепь с положительной обратной связью.

Если ток отсутствует в управляющем электроде, то транзисторы находятся в закрытом положении. Течение тока через нагрузку не происходит, и тиристор остается закрытым. При подаче тока выше определенного уровня, в действие вступает положительная обратная связь. Процесс становится лавинообразным, после чего происходит открытие обоих транзисторов. В конечном итоге, после открытия тиристора, наступает его стабильное состояние, даже в случае прекращения подачи тока.

Работа тиристора при постоянном токе

Рассматривая электронный тиристор принцип работы которого основан на одностороннем движении тока, следует отметить его работу при постоянном токе.

Обычный тиристор включается путем подачи импульса тока в цепь управления. Эта подача осуществляется со стороны положительной полярности, противоположной, относительно катода.

Во время включения, продолжительность переходного процесса обусловлена характером нагрузки, амплитудой и скоростью, с которой нарастает импульс тока управления. Кроме того, этот процесс зависит от температуры внутренней структуры тиристора, тока нагрузки и приложенного напряжения. В цепи, где установлен тиристор, не должно быть недопустимой скорости роста напряжения, которое может привести к его самопроизвольному включению.

В схемах и технической документации часто используются различные термины и знаки, но не все начинающие электрики знают их значение. Предлагаем обсудить, что такое силовые тиристоры для сварки, их принцип работы, характеристики и маркировка этих приборов.

Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же — это считается аналог выпрямителя.

Фото — Cхема гирлянды бегущий огонь

  • ABB запираемые тиристоры (GTO),
  • стандартные SEMIKRON,
  • мощные лавинные типа ТЛ-171,
  • оптронные (скажем, ТО 142-12,5-600 или модуль МТОТО 80),
  • симметричные ТС-106-10,
  • низкочастотные МТТ,
  • симистор BTA 16-600B или ВТ для стиральных машин,
  • частотные ТБЧ,
  • зарубежные TPS 08,
  • TYN 208.

Но в это же время для высоковольтных аппаратов (печей, станков, прочей автоматики производства) используют транзисторы типа IGBT или IGCT.

Но, в отличие от диода, который является двухслойным (PN) трехслойного транзистора (PNP, NPN), тиристор состоит из четырех слоев (PNPN) и этот полупроводниковый прибор содержит три p-n перехода. В таком случае, диодные выпрямители становятся менее эффективными. Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков (например, в библиотеке можно бесплатно почитать книгу автора Замятин).

Тиристор – это однонаправленный преобразователь переменного тока, то есть он проводит ток только в одном направлении, но в отличие от диода, устройство может быть сделано для работы в качестве коммутатора разомкнутой цепи или в виде ректификационного диода постоянного электротока. Другими словами, полупроводниковые тиристоры могут работать только в режиме коммутации и не могут быть использованы как приборы амплификации. Ключ на тиристоре не способен сам перейти в закрытое положение.

Кремниевый управляемый выпрямитель является одним из нескольких силовых полупроводниковых приборов вместе с симисторами, диодами переменного тока и однопереходными транзисторами, которые могут очень быстро переключаться из одного режима в другой. Такой тиристор называется быстродействующим. Конечно, большую роль здесь играет класс прибора.

Применение тиристора

Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.

Фото — применение Тиристора вместо ЛАТРа

Не стоит забывать и про тиристор зажигания для мотоциклов.

Описание конструкции и принцип действия

Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.

Самые простые микросхемы демонстрируют два транзистора, которые совмещены таким образом, что ток коллектора после команды «Пуск» поступает на NPN транзистора TR 2 каналы непосредственно в PNP-транзистора TR 1. В это время ток с TR 1 поступает в каналы в основания TR 2 . Эти два взаимосвязанных транзистора располагаются так, что база-эмиттер получает ток от коллектора-эмиттера другого транзистора. Для этого нужно параллельное размещение.

Фото — Тиристор КУ221ИМ

Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.

Типичные тиристорные ВАХ

Для начала обсуждения этой сложной темы, просмотрите схему ВАХ-характеристик тиристора:

Фото — характеристика тиристора ВАХ

  1. Отрезок между 0 и (Vвo,IL) полностью соответствует прямому запиранию устройства;
  2. В участке Vво осуществляется положение «ВКЛ» тиристора;
  3. Отрезок между зонами (Vво, IL) и (Vн,Iн) – это переходное положение во включенном состоянии тиристора. Именно в этом участке происходит так называемый динисторный эффект;
  4. В свою очередь точки (Vн,Iн) показывают на графике прямое открытие прибора;
  5. Точки 0 и Vbr – это участок с запиранием тиристора;
  6. После этого следует отрезок Vbr — он обозначает режим обратного пробоя.

Естественно, современные высокочастотные радиодетали в схеме могут влиять на вольт-амперные характеристики в незначительной форме (охладители, резисторы, реле). Также симметричные фототиристоры, стабилитроны SMD, оптотиристоры, триодные, оптронные, оптоэлектронные и прочие модули могут иметь другие ВАХ.

Каждый электрик должен знать:  Расширенная память электосчётчика

Фото — ВАХ тиристора

Кроме того, обращаем Ваше внимание, что в таком случае защита устройств осуществляется на входе нагрузки.

Проверка тиристора

Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:

Фото — тестер тиристоров

Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.

Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.

Фото — схема тестера для тиристоров

Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.

Видео: принцип работы тиристора

Технические характеристики

Рассмотрим технические параметры тиристора серии КУ 202е. В этой серии представляются отечественные маломощные устройства, основное применение которых ограничивается бытовыми приборами: его используют для работы электропечей, обогревателей и т.д.

На чертеже ниже представлена цоколевка и основные детали тиристора.

  1. Установленное обратное напряжение в открытом состоянии (макс) 100 В
  2. Напряжение в закрытом положении 100 В
  3. Импульс в открытом положении — 30 А
  4. Повторяющийся импульс в открытом положении 10 А
  5. Среднее напряжение =0,2 В
  6. Установленный ток в открытом положении

Тиристоры и схемы коммутации мощной нагрузки

Главная страница » Тиристоры и схемы коммутации мощной нагрузки

Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. п.

Тиристор – краткий обзор полупроводника

Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У.

Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации.

Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд. Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.

После переключения и полной проводки, падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения.

Тем не менее, следует помнить: как только полупроводник начинает проводить, этот процесс продолжается даже при отсутствии управляющего сигнала У.

Продолжается такое состояние до момента, когда ток анода уменьшится до величины меньше допустимо минимальной. Лишь на этом уровне и ниже происходит автоматическая блокировка перехода. Иначе работают лишь новые тиристоры структуры MCT.

Инновационная разработка в группе тиристоров. Управляемая структура MCT (MOSFET Controled thyristor): 1 — управление 1; 2 — анод; 3 — управление 2; 4 — катод; 5 — подложка металл; OFF-FET — канал типа n-канал; ON-FET — канал типа p-канал

Этот фактор показывает, что в отличие от биполярных транзисторов и полевых транзисторов, тиристоры, по сути, невозможно использовать для усиления или контролируемого переключения.

Таким образом, напрашивается логичный вывод: тиристоры как полупроводниковые приборы специально разработаны для использования в составе схем коммутации высокой мощности.

Эти полупроводники могут работать только в режиме переключения, где они действуют как открытый или закрытый коммутатор. Как только этот коммутатор срабатывает, он остаётся в состоянии проводника.

Поэтому в цепях постоянного напряжения и некоторых сильно индуктивных цепях переменного напряжения, значение тока необходимо искусственно уменьшать при помощи отдельного переключателя или схемы отключения.

Тиристор в цепи постоянного напряжения

При условии питания схемы постоянным напряжением, тиристор эффективен в качестве переключателя мощной нагрузки. Здесь прибор действует подобно электронной защелке, поскольку после активации остается в состоянии «включено», вплоть до сброса этого состояния вручную. Рассмотрим практическую схему.

Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.

Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1.

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.

Стоит только нажать кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.

Преимущества и недостатки использования тиристора

Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.

Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.

Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.

Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».

Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.

В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.

Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:

  • активация КН2 создаёт «КЗ» между электродами А и К,
  • уменьшается ток фиксации до минимального значения,
  • устройство переходит в состояние «выключено».

Тиристор в цепи переменного тока

При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.

Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».

Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.

Благодаря диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У.

Во время положительного полупериода синусоидальной формы сигнала, устройство смещено вперед, но при выключенном переключателе КН1, к тиристору подводится нулевой ток затвора и прибор остается «выключенным».

В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.

Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт

Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным».

Но в результате достижения достаточного положительного триггерного напряжения (возрастания тока управления) на электроде У, тиристор переключится в состояние «включено».

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидно, т.к. здесь ток анода падает ниже текущего значения.

Во время следующего отрицательного полупериода, устройство будет полностью «отключено» до следующего положительного полупериода. Затем процесс вновь повторяется.

Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как выпрямляющий диод и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.

Управление половинной волной

Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока.

Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.

Во время положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы.

Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1. Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено».

Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.

Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости

Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.

В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.

Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.

Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью.

Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.

Устройство и параметры тиристоров

♦ Тиристор – полупроводниковый прибор на основе монокристалла полупроводника с многослойной структурой типа p –n –p – n обладает свойствами управляемого электрического вентиля. В качестве полупроводника обычно применяют кремний.

Обычно тиристор имеет три вывода: два из них (катод и анод) контактируют с крайними областями монокристалла, а третий вывод – управляющий. Такой управляемый тиристор называется иногда триодным, или тринистором.

Неуправляемый тиристор, имеющий всего два вывода (анод — катод), называется диодным тиристором или динистором.

Четырехслойная структура тиристора изображена на рис 1.

На рисунке 2 — его транзисторный аналог.

♦ Вольт-амперная характеристика, ВАХ динистора, имеет вид на рисунке 3.

Устойчивое состояние (точка D на ВАХ ) достигается в результате перехода транзисторов тиристора в режим насыщения. Падение напряжения на открытом динисторе — тиристоре составляет около 1,5 – 2,0 вольта.

Если на анод подать положительное напряжение относительно катода, то крайние электронно-дырочные переходы П1 и П3 оказываются смещенными в прямом направлении, а центральный переход П2 в обратном.

С увеличением анодного напряжения , ток через динистор сначала растет медленно (участок А — В на ВАХ) . Сопротивление перехода П2 , в этом режиме еще велико, это соответствует запертому состоянию динистора.

При некотором значении напряжения (участок В — С на ВАХ) . называемым напряжением переключения Uпер (напряжение лавинного пробоя перехода П2), динистор переходит в проводящее состояние.
В цепи устанавливается ток (участок D – E на ВАХ) , определяемый сопротивлением внешней цепи Rн и величиной приложенного напряжения U (рис 2).
Напряжение пробоя динистора, в зависимости от экземпляра, изменяется в широких пределах и имеет значения порядка десятков и сотен вольт.
На вольт – амперной характеристике, ВАХ (рис 3.) , обозначены участки:
— А – В участок в прямом включении, здесь динистор заперт и приложенное к его выводам напряжение меньше, чем необходимо для возникновения лавинного пробоя;
— В – С участок пробоя коллекторного перехода;
— C — D участок отрицательного сопротивления;
— D — E участок открытого состояния динистора (динистор включен).

Динистор имеет два устойчивых состояния:
— заперт (А – В)
— открыт (D — E)

В участке A – D – E явно просматривается кривая ВАХ диода .

♦ Тиристор имеющий три электрода – анод, катод и управляющий электрод – называется тринистором или просто тиристором. Четырех слойная структура типа p – n – p – n является единой для тиристора – динистора. Просто, у динистора отсутствует дополнительный вывод управляющего электрода.
При подаче тока в цепь управляющего электрода, тиристор переключается в открытое состояние при меньших значениях напряжения переключения Uпер .
Если каким-то образом уменьшать ток, проходящий через динистор — тиристор, то при некотором его значении (точка D на ВАХ ) тиристор закроется. Минимальный ток, при котором тиристор — динистор переходит из открытого в закрытое состояние (при токе управляющего электрода Iу =0 ) называется током удержания Iуд .
Если через управляющий электрод тиристора пропустить отпирающий ток, то тиристор перейдёт в открытое состояние. Включение транзисторного аналога тиристора (рис 2) можно осуществить по двум входам: между электродами (Э1 –Б1) , либо между электродами (Э2 – Б2) .

♦ Вольтамперная характеристика тиристора (Рис 4), похожа на вольтамперную характеристику динистора.
Однако отпирание тиристора обычно происходит при существенно более низком напряжении, чем необходимо динистору. К раннему открыванию тиристора приводит протекание тока через управляющий электрод. Чем больше ток управляющего электрода от Iy1 до Iy4 , тем при более низком напряжении Ua тринистор перейдёт в открытое состояние. Это отражено на вольтамперной характеристике тиристора.

♦ Тиристоры изготавливают на разные мощности: маломощные (ток 50 мА. – 100 мА) , средней мощности (ток до 20 ампер ) и большой мощности (токи 20 – 10000 ампер) и величины напряжения от нескольких вольт до 10 тысяч вольт .

♦ По назначению и принципу действия тиристоры делятся на: запираемые, быстродействующие, импульсные, симметричные и фототиристоры. Тиристор и динистор пропускают ток только в одном направлении – от анода к катоду.

♦ В настоящее время появились двунаправленные динисторы (пропускают ток в обоих направлениях) и двунаправленные тиристоры (симисторы).

Симистор имеет в своем составе как бы два тиристора, включенных встречно, с управлением от одного управляющего электрода. ВАХ (вольт — амперная характеристика) симистора представлена на рис 5.
Она имеет две одинаковые ветви. При положительном полупериоде сетевого напряжения действует правая ветвь, при отрицательном полупериоде – левая.
На управляющий электрод, относительно катода, также подается соответственно то положительное, то отрицательное управляющее напряжение. В схемах управления, симистор может заменить два тиристора.

♦ Динисторы применяют в регуляторах и переключателях, чувствительных к изменениям напряжений.
Наличие двух устойчивых состояний (включен — выключен), а также низкая мощность рассеяния тиристора, обусловили широкое использование их в различных устройствах.
Тиристоры применяются в регулируемых источниках питания, генераторах мощных импульсов, в линиях передачи энергии постоянного тока, в системах автоматического управления и т.д.

Внешний вид тиристора и его обозначение на схемах:

Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах регулирования освещения, в электронагревателях, в преобразовательных установках.

Внешний вид симистора такой же как и у обычного тиристора.

Тиристорное управление нагрузкой. Включение тиристора схема включения тиристора

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров

  • Максимально допустимый прямой ток . Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток .
  • Прямое напряжение . Это падение напряжения при максимальном токе.
  • Обратное напряжение . Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения . Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода . Он необходим для включения тиристора.
  • Максимально допустимый ток управления .
  • Максимально допустимая рассеиваемая мощность .

Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

Различают несколько разновидностей тиристоров. Рассмотрим их классификацию.

По способу управления разделяют на:

  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.

Триодные тиристоры в свою очередь разделяются:

  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.

Запирание тиристора производится:

  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.

По обратной проводимости тиристоры делятся:

  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

В различных электронных устройствах в цепях переменного тока в качестве силовых ключей широко применяют тринисторы и симисторы. Данная статья призвана помочь в выборе схемы управления подобными приборами.

Самый простой способ управления тиристорами — это подача на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (рис. 1). Ключ SA1 на рис. 1 и на последующих рисунках — это любой элемент, обеспечивающий замыкание цепи: транзистор, выходной каскад микросхемы, оптрон и др. Этот способ прост и удобен, но обладает существенным недостатком — требуется довольно большая мощность управляющего сигнала. В табл. 1 приведены наиболее важные параметры для обеспечения надежного управления некоторыми самыми распространенными тиристорами (три первых позиции занимают тринисторы, остальные — симисторы). При комнатной температуре для гарантированного включения перечисленных тиристоров требуется ток управляющего электрода Iу вкл равный 70–160 мА. Следовательно, при напряжении питания, типовом для собранных на микросхемах узлов управления (10–15 В), требуется постоянная мощность 0,7–2,4 Вт.

Отметим, что полярность управляющего напряжения для тринисторов положительная относительно катода, а для симисторов — или отрицательная для обоих полупериодов, или совпадающая с полярностью напряжения на аноде. Также можно добавить, что часто в соответствии с указаниями по применению требуется шунтирование управляющего перехода тринисторов сопротивлением 51 Ом (R2 на рис. 1) и не требуется никакого шунтирования для симисторов.

Реальные величины тока управляющего электрода, достаточного для включения тиристора, обычно меньше цифр, приведенных в табл. 1, поэтому нередко идут на его снижение относительно гарантированных значений: для тринисторов — до 7–40 мА, для симисторов — до 50–60 мА. Такое снижение часто приводит к ненадежной работе устройств, и необходимости предварительной проверки или же подбора тиристоров. Уменьшение управляющего тока также может приводить к возникновению помех радиоприему, поскольку включение тиристоров при малых токах управляющего электрода происходит при относительно большом напряжении на аноде — несколько десятков вольт, что приводит к броскам тока через нагрузку и, следовательно, к мощным помехам.

Недостатком управления тиристорами постоянным током является гальваническая связь источника управляющего сигнала и сети. Если в схеме с симистором (рис. 1, б) при соответствующем включении сетевых проводов источник управляющего сигнала можно соединить с нулевым проводом, то при использовании тринистора (рис 1, а) такая возможность возникает лишь при исключении выпрямительного моста VD1–VD4. Последнее приводит к однополупериодной подаче напряжения на нагрузку и двукратному уменьшению поступаемой в нее мощности.

В настоящее время в связи с большой потребляемой мощностью запуск тиристоров постоянным током при бестрансформаторном питании пусковых узлов (с гасящим резистором или конденсатором) практически не используется.

Одним из вариантов снижения потребляемой узлом управления мощности является использование вместо постоянного тока непрерывной последовательности импульсов с относительно большой скважностью. Поскольку время включения типовых тринисторов составляет 10 мкс и менее, можно подавать на их управляющий электрод импульсы такой же длительности со скважностью, например, 5–10–20, что соответствует частоте 20–10–5 кГц. В этом случае потребляемая мощность также уменьшается в 5–10–20 раз соответственно.

Однако при таком способе управления выявляются некоторые новые недостатки. Во-первых, теперь тиристор включается не в самом начале полупериода сетевого напряжения, а в произвольные моменты времени, отстоящие от начала полупериода на время, не превышающее периода запускающих импульсов, т. е. 50–100–200 мкс.

За это время напряжение сети может возрасти примерно до 5–10–20 В. Это приводит к возникновению помех радиоприему и к некоторому уменьшению выходного напряжения, впрочем, малозаметному.

Существует еще одна проблема. Если при включении в начале полупериода во время действия запускающего импульса ток через тиристор не достигнет тока удержания (Iуд, табл. 1), тиристор после окончания импульса выключится. Следующий импульс вновь включит тиристор, и он не выключится лишь в том случае, если к моменту окончания импульса ток через него будет больше тока удержания. Таким образом, ток через нагрузку сначала будет иметь вид нескольких коротких импульсов и лишь потом — синусоидальную форму.

Если же нагрузка имеет активноиндуктивный характер (например, электродвигатель), ток через нее за время действия короткого включающего импульса может не успеть достичь величины тока удержания, даже когда мгновенное напряжение в сети максимально. Тиристор после окончания каждого импульса будет выключаться. Этот недостаток ограничивает снизу длительность запускающих импульсов и может свести на нет уменьшение потребляемой мощности.

Схема включения тиристора и симистора с импульсным запуском

Применение импульсного запуска облегчает гальваническую развязку между узлом управления и сетью, ибо ее может обеспечить даже небольшой трансформатор с коэффициентом трансформации, близким к 1:1. Его обычно наматывают на ферритовом кольце диаметром 16–20 мм с тщательно выполненной изоляцией между обмотками. Следует предостеречь от применения малогабаритных импульсных трансформаторов промышленного изготовления. Как правило, они имеют низкое напряжение изоляции (около 50–100 В) и могут служить причиной поражения электрическим током, если при использовании прибора будет считаться, что цепь управления изолирована от сети.

Схема включения тиристора и симистора с импульсным запуском.

Снижение требуемой при импульсном управлении мощности и возможность введения гальванической развязки позволяют применить в узлах управления тиристорами бестрансформаторное питание.

Включение тиристора через ключ и ограничительный резистор

Третий широко распространенный способ включения тиристоров — подача на управляющий электрод сигнала с его анода через ключ и ограничительный резистор (рис. 2). В таком узле ток через ключ протекает в течение нескольких микросекунд, пока включается тиристор, если напряжение на аноде достаточно велико. В качестве ключей используют малошумящие электромагнитные реле, высоковольтные биполярные транзисторы, фотодинисторы или фотосимисторы (схемы на рис. 2 соответственно). Способ включения тиристора прост и удобен, не критичен к наличию у нагрузки индуктивной составляющей, но имеет недостаток, на который нередко не обращают внимания.

Недостаток связан с противоречивостью требований к ограничительному резистору R1. С одной стороны, его сопротивление должно быть как можно меньше, чтобы включение тиристора происходило как можно ближе к началу полупериода сетевого напряжения. С другой стороны, при первом открывании ключа, если оно не синхронизировано с моментом прохождения сетевого напряжения через нуль, напряжение на резисторе R1 может достигать амплитудного напряжения сети, т. е. составлять 310–350 В. Импульс тока через этот резистор не должен превышать допустимых значений для ключа и управляющего перехода тиристора. В табл. 2 приведены некоторые параметры наиболее часто применяемых отечественных фототиристоров (приборы серий АОУ103/3ОУ103 и АОУ115 — фотодинисторы, АОУ — фотосимисторы). Исходя из значений максимально допустимого импульсного тока управления (табл. 1) и максимального импульсного тока через ключ (табл. 2), можно для каждой конкретной пары приборов определить минимально допустимое сопротивление ограничительного резистора. Например, для пары КУ208Г (Iу, вкл макс = 1 А) и АОУ160А (Iмакс, имп = 2 А) можно выбрать R1 = 330 Ом. Если ток управляющего электрода, при котором происходит включение симистора, соответствует его максимальному значению 160 мА, симистор будет включаться при напряжении на аноде равном 0,16·330 = 53 В.

Как и в случае с подачей управляющих импульсов относительно большой скважности, это приводит к возникновению помех и к некоторому уменьшению выходного напряжения. Поскольку реальная чувствительность тиристоров по управляющему электроду обычно лучше, задержка открывания тиристора относительно начала полупериода меньше рассчитанной выше предельной величины.

Сопротивление ограничивающего резистора R1 может быть уменьшено на величину сопротивления нагрузки, поскольку в момент включения они включены последовательно.

Более того, если нагрузка имеет гарантированно индуктивно-резистивный характер, можно еще более уменьшить сопротивление указанного резистора. Однако если нагрузкой являются лампы накаливания, надо помнить, что их холодное сопротивление примерно в десять раз меньше рабочего.

Следует также иметь ввиду, что включающий ток симисторов имеет разную величину для положительной и отрицательной полуволн сетевого напряжения. Поэтому в выходном напряжении мо жет появиться небольшая постоянная составляющая.

Из фотодинисторов серии АОУ103/3ОУ103 для управления тиристорами в сети 220 В по максимально допустимому напряжению подходят только 3ОУ103Г, однако неоднократно проверено, что и АОУ103Б и АОУ103В годятся для работы в этом режиме.

Различие между приборами с индексами Б и В заключается в том, что подача напряжения обратной полярности на АОУ103Б не допускается. Аналогично и различие между АОУ115Г и АОУ115Д: приборы с индексом Д допускают подачу обратного напряжения с индексом Г — нет.

Существенного сокращения потребляемой цепями управления мощности можно добиться, если включать ток управляющего электрода в момент включения тиристора. Два варианта схем узлов управления, обеспечивающих такой режим, приведены на рис. 3.

Включение тринистора в схеме на рис. 3, а происходит в момент замыкания контактов ключа SA1. После включения тринистора элемент DD1.1 выключается, и ток управляющего электрода прекращается, что существенно экономит потребление по цепи управления. Если напряжение на тринисторе в момент включения SA1 будет меньше порога переключения DD1.1, тринистор не включится, пока напряжение на нем не достигнет этого порога, т. е. не станет несколько более половины напряжения питания микросхемы. Регулировать пороговое напряжение можно подбором сопротивления нижнего плеча делителя резистора R6. Резистор R2 обеспечивает низкий логический уровень на входе 1 элемента DD1.1 при закрывании тринистора VS1 и диодного моста VD2.

Для аналогичного включения симистора необходим узел двуполярного управления элементом совпадения DD1.1 (рис. 3, б). Этот узел собран на транзисторах VT1, VT2 и резисторах R2–R4. Транзистор VT1 включен по схеме с общей базой, и напряжение на его коллекторе становится по модулю меньше порога переключения элемента DD1.1, когда напряжение на аноде симистора VS1 положительно относительно катода и превышает его примерно на 7 В. Аналогично транзистор VT2 входит в насыщение, когда отрица тельное напряжение на аноде становится по модулю больше –6 В.

Такой узел выделения момента прохождения напряжения через нуль широко применяется в различных разработках. При всей кажущейся привлекательности узлы, выполненные по схемам, приведенным на рис. 3, и им аналогичные, обладают существенным недостатком: если по какойлибо причине тиристор не включится, ток через его управляющий электрод будет идти неопределенно долго. Поэтому необходимо предпринимать специальные меры по ограничению длительности импульса или рассчитывать источник питания на полный ток, т. е. на такую же мощность, как и для узлов по схеме на рис. 1.

Наиболее экономичные схемы управления используют формирование одиночного включающего импульса вблизи перехода сетевого напряжения через нуль. Две несложных схемы таких формирователей приведены на рис. 4, а временные диаграммы их работы — на рис. 5 (а и б соответственно). Недостатком, впрочем совершенно несущественным в большинстве случаев, является то, что первое включение происходит не в самом начале полупериода сетевого напряжения, а в самом конце того, во время которого был замкнут ключ SA1.

Двойная длительность включающего импульса 2Т0 определяется порогом переключения элемента ИЛИ НЕ с учетом делителя R2R3 (рис. 4, а) или порогом формирователя на VT1, VT2 (рис. 4, б), и рассчитывается по формуле

13.jpg (613 bytes)

Скорость изменения сетевого напряжения при переходе через нуль

14.jpg (926 bytes)

и при Uпор = 50 В двойная длительность составит 2Т0 = 1 мс. Скважность импульсов равна 10, и средний потребляемый ток в 10 раз меньше амплитудного значения, необходимого для надежного включения тиристора.

Минимальная длительность включающего импульса определяется тем, что он должен оканчиваться не ранее, чем ток через нагрузки достигнет тока удержания тиристора. Например, если нагрузка имеет мощность 200 Вт (Rн = 2202/200 = 242 Ом), а ток удержания симистора КУ208 — 150 мА, то этот ток достигается при мгновенном напряжении в сети 242·0, 15 = 36 В, т. е. при скорости нарастания 100 В/мс окончание импульса запуска должно быть не ранее, чем через 360 мкс от момента перехода напряжения через нуль. Снизить потребляемую мощность еще примерно в десять раз можно за счет подачи на третий вход элементов ИЛИ — НЕ схем на рис. 4 непрерывной последовательности импульсов (показано штриховыми линиями), как это было упомянуто в начале статьи применительно к узлам по схемам на рис. 1. При этом проявляются те же недостатки, что и при непрерывной подаче импульсов на управляющий электрод.

Для уменьшения потерь мощности можно сформированный в узлах по схемам на рис. 4 импульс, продифференцировать его, и продифференцированный задний фронт использовать как запускающий для тиристора (рис. 6). Параметры этого запускающего импульса Ти следует выбирать так. Он должен начинаться как можно раньше после прохождения сетевого напряжения через нуль, чтобы бросок тока через нагрузку в момент включения в начале каждого полупериода был бы минимальным и минимальными были бы помехи и потери мощности. Здесь ширина импульса, формируемого в момент прохождения напряжения сети через нуль, ограничена снизу только временем перезаряда дифференцирующей цепи C1R7 и может быть достаточно малой, но конечной. Оканчиваться импульс должен, как и для предыдущего варианта, не ранее, чем когда ток через нагрузку достигнет тока удержания тиристора.

При работе узлов по схемам на рис. 7 и 8 подача на управляющий электрод импульса включения спрямляет выходную характеристику тиристора в момент прохождения сетевого напряжения через нуль и при правильно выбранной длительности импульса удерживает тиристор во включенном состоянии до момента достижения тока удержания даже при наличии небольшой индуктивной составляющей нагрузки. Источник питания таких узлов может быть собран по бестрансформаторной схеме с гасящим резистором или, что еще лучше, конденсатором. Помех радиоприему такое включение тиристоров не создает и может быть рекомендовано для всех случаев управления нагрузками с малой индуктивной составляющей.

Если же нагрузка имеет выраженный индуктивный характер, можно рекомендовать схемы управления, приведенные на рис. 2. Для уменьшения помех радиоприему необходимо включение в сетевые провода помехоподавляющих фильтров, а если провода от регулятора до нагрузки имеют заметную длину, то и в эти провода тоже.

Выше были рассмотрены варианты управления тиристорами при их использовании в качестве ключей. При фазоимпульсном управлении мощностью нагрузок можно использовать описанные выше схемотехнические решения по формированию импульсов в моменты перехода сетевого напряжения через нуль для запуска времязадающего узла запуска тиристора. Отметим, что такой узел должен давать стабильную задержку включения тиристора, не зависящую от напряжения сети и температуры, а длительность формируемого импульса должна обеспечить достижение тока удержания независимо от момента включения нагрузки в пределах полупериода.

1.1 Блок тиристорных усилителей БТУ (далее «прибор»), выполненный на основе твердотельного полупроводникового оптоэлектронного трехфазного реле, предназначен для коммутации одно- или трехфазного напряжения, поступающего на электропривод исполнительного механизма.

Дискретные входы прибора «Открыть», «Закрыть» и «Блокировка», обеспечивающие управление, предназначены для работы со схемами, состоящими из «сухих контактов», и не требуют дополнительных источников питания.

Прибор имеет дискретный выход индикации перегрузки по току в виде нормально разомкнутого «сухого контакта».

Прибор выполняет контроль за током потребления электропривода по фазам В и С. При возникновении аварийных ситуаций, а также снятии питания со схемы защиты, силовые цепи размыкаются электромагнитным реле, включенным до полупроводникового реле.

1.2 Условия эксплуатации и степень защиты прибора
1.2.1 Номинальные значения климатических факторов – согласно ГОСТ 15150 для вида климатического исполнения УХЛ4, тип атмосферы II (промышленная).
1.2.2 Степень защиты прибора IP20 по ГОСТ 14254 (защита от попадания посторонних твердых тел диаметром более 12,5 мм).

2 Технические данные

2.1 Характеристики прибора:
– число дискретных входов для подключения внешнего управления – три;
– число дискретных выходов для индикации перегрузки в силовых цепях прибора – один;
– число коммутируемых фаз – три;
– реверсируемые фазы – В и С.

2.2 На передней панели прибора размещены светодиоды РАБОТА зеленого цвета и ПЕРЕГРУЗКА красного цвета, кнопка СБРОС и клеммные соединители УПРАВЛЕНИЕ, ВХОД 380 В и ВЫХОД 380 В.

2.3 Электрические параметры и характеристики
2.3.1 Питание прибора осуществляется от внешнего источника постоянного напряжения (24 ± 0,24) В.
2.3.2 Ток потребления прибора по цепи +24 В не более 180 мА.
2.3.3 Время установления рабочего режима – не более 10 с.
2.3.4 По степени защиты от поражения электрическим током прибор относится к классу защиты 0 в соответствии с требованиями ГОСТ 12.2.007.0.
2.3.5 Напряжение изоляции между силовыми цепями прибора и цепями управления, а также цепью +24 В выдерживает без пробоя и поверхностного перекрытия испытательное напряжение

1500 В, 50 Гц в нормальных климатических условиях.
2.3.6 Сопротивление изоляции силовых цепей относительно цепей управления и цепи +24 В не менее 20 МОм в нормальных климатических условиях.

2.4 Прибор предназначен для непрерывной работы.

2.5 Параметры дискретных входов прибора:
– логическому нулю (единице) на входах «Открыть», «Закрыть» соответствует разомкнутое (замкнутое) состояние контактов подключенного к прибору устройства;
– напряжение логического нуля на входе «Блокировка» от 0 до 1 В;
– логической единице на входе «Блокировка» соответствует разомкнутое состояние контактов подключенного к прибору устройства;
– минимальная длительность логической единицы или логического нуля 0,1 с;
– ток в цепях «Открыть», «Закрыть» и «Блокировка» от 15 до 24 мА.

2.6 Предельные параметры ключей прибора:
– напряжение коммутации силового ключа не более 380 В, 50 Гц;
– коммутируемый ток силового ключа не более 3 А;
– напряжение коммутации ключа перегрузки не более ± 36 В;
– коммутируемый ток ключа перегрузки не более 0,5 А.

2.7 Прибор обеспечивает защиту от перегрузок и короткого замыкания по фазам В и С.

2.8 Значение тока срабатывания защиты цепей питания электропривода (4,3 ± 0,5) А, время срабатывания от 2,0 до 20 с.

Примечание
Допускается сокращение времени срабатывание защиты при увеличении тока нагрузки.

2.9 Надежность
2.9.1 Средняя наработка на отказ прибора не менее 100000 ч.
2.9.2 Срок службы прибора составляет 14 лет.

3 Общее устройство и принцип работы прибора

3.1 Прибор выполнен на основе твердотельного полупроводникового оптоэлектронного трехфазного реле (далее «ПР») и ориентирован на управление одно- или трехфазным исполнительным электроприводом.

3.2 Силовое трехфазное напряжение для трехфазных исполнительных механизмов или однофазное напряжение для однофазных исполнительных механизмов поступает на электромагнитное реле, обеспечивающее обесточивание силовых цепей и обмоток двигателя электропривода при выключенном питании прибора или при возникновении аварийных ситуаций.

3.3 Управляющее напряжение для ПР формируется схемой согласования с внешними цепями. Соответствующий порядок коммутации силовых цепей определяется таблицей 1.

Дискретные входы прибора (цепи разъёма «УПРАВЛЕНИЕ») Силовые цепи (вход/выход)
Прямой ход Обратный ход
Блокировка Открыть Закрыть Фаза А Фаза В Фаза С Фаза С (В) Фаза В (С)
Р Р Р Р Р Р Р Р
З З Р З З З Р Р
З Р З З Р Р З З
З З З Р Р Р Р Р
З Р P Р Р Р Р Р

Примечания:
1. Р — разомкнуто;
2. З — замкнуто

3.4 Прибор содержит нелинейные элементы (варисторы), используемые в качестве защиты ПР, и токовые трансформаторы, позволяющие контролировать текущее значение тока в фазах В и С.

3.5 Формирование алгоритма работы прибора обеспечивается микроконтроллером.

3.6 На лицевой панели прибора расположены клеммные соединители для подключения входных и выходных цепей прибора, светодиод РАБОТА зеленого цвета и светодиод ПЕРЕГРУЗКА красного цвета.

3.7 Прибор состоит из двух плат: платы ячейки силовых цепей ЯСЦ и платы ячейки защиты ЯЗ. На плате ЯСЦ установлены клеммные соединители, электромагнитное реле, элементы защиты ПР. ПР устанавливается на металлической панели, связанной с ЯСЦ через полистироловые втулки. На плате ЯЗ установлены элементы схемы согласования и токового датчика, светодиоды РАБОТА и ПЕРЕГРУЗКА, кнопка СБРОС.

В качестве корпуса прибора использована пластмассовая коробка СМ175 фирмы Phoenix Contact GmbH & Co. Основание корпуса прибора с установленными в нем печатными платами закрывается крышкой с защелками. На лицевой панели (крышке) размещен декоративный шильдик с описанием основных характеристик прибора. Крышка имеет окна для подключения входных и выходных цепей прибора через клеммные соединители, отверстия для светодиодов и кнопки.

Установка прибора производится на монтажный рельс EN 50 02235×7,5 Phoenix Contact GmbH & Co. (DIN–рельс).

4 Устройство и работа составных частей прибора

4.1 Питание прибора и его управление осуществляется через разъем «УПРАВЛЕНИЕ», выполненный на основе клеммных соединителей FRONT 2,5–H/SA5 фирмы Phoenix Contact GmbH & Co. Названия и назначения цепей приведены в таблице 2.

Номер контакта Название сигнала Назначение
1 Открыть Выход цепи питания контакта 2
2
3 Закрыть Выход цепи питания контакта 4
4 Вход нормально разомкнутых «сухих контактов»
5 Блокировка Выход цепи питания контакта 6
6 Вход нормально разомкнутых «сухих контактов»
7, 8 Перегрузка Выход нормально разомкнутых «сухих контактов»
9 +24 В Цепи питания блока
10 Общий

4.2 Ячейка силовых цепей ЯСЦ

ЯСЦ выполнена на основе твердотельного полупроводникового оптоэлектронного трехфазного реле переменного тока с контролем перехода фазы через «ноль» 5П55.30ТМА–10–8–Д8 ЕСНК.431162.001 ТУ.

В составе ячейки имеются цепи защиты внутренних коммутирующих семисторов ПР в период реверса нагрузки от бросков трехфазного сетевого напряжения и межфазного замыкания.

Контроль текущего значения тока фаз В и С обеспечивается двумя трансформаторами тока. Подключение силовых цепей осуществляется через клеммные соединители FRONT 4–H–7,62 фирмы Phoenix Contact GmbH & Co.

4.3 Ячейка защиты ЯЗ

В составе ЯЗ имеются следующие узлы:
– два канала двухполупериодного выпрямителя;
– два канала компараторов тока;
– микроконтроллер, обеспечивающий алгоритм функционирования БТУ;
– оптопара, обеспечивающая гальваническую развязку между цепями БТУ и цепью сигнализации перегрузки пользователя;
– формирователь индикации нормального функционирования ячейки (светодиод РАБОТА);
– формирователь индикации перегрузки прибора (светодиод ПЕРЕГРУЗКА);
– формирователь возврата прибора в режим нормального функционирования (кнопка СБРОС);
– узел сопряжения и защиты цепей управления ПР;
– вторичный источник стабилизированного напряжения, формирующий из напряжения + 24 В напряжение питания + 5 В;
– разъем для подключения цепей управления и питания.

5 Комплектность поставки

В комплект поставки прибора входят:

6 Габаритные размеры и масса

6.1 Габаритные размеры прибора не превышают 175х155х159 мм.

6.2 Масса не более 1,8 кг.

7 Установка прибора

7.1 Прибор устанавливается на стандартный DIN–рельс, который крепится внутри шкафа или на стене в горизонтальном положении.

7.2 Cведения по установке и схемы подключений к прибору внешних устройств даны в руководстве по эксплуатации УНКР.468364.002 РЭ.

8 Дополнительная информация

Подробно сведения по техническим характеристикам, принципу действия, установке, подготовке к работе и порядке работы с прибором даны в руководстве по эксплуатации УНКР.468364.002 РЭ.

Для включения и отключения нагрузки (ламп накаливания, обмоток реле, электродвигателей и т.п.) зачастую используют тиристоры. Особенность этого вида полупроводниковых приборов и основное их отличие от транзисторов заключается в том, что они обладают двумя устойчивыми состояниями, без каких-либо промежуточных.

Это состояние «включено», когда сопротивление полупроводникового прибора минимально, и состояние «выключено», когда сопротивление тиристора максимально. В идеале эти сопротивления приближаются к нулю или бесконечности.

Для включения тиристора на его управляющий электрод достаточно хотя бы кратковременно подать управляющее напряжение. Отключить тиристор (запереть) можно кратковременным выключением питания тиристора, сменой полярности питающего напряжения либо уменьшением тока в нагрузке ниже тока удержания тиристора.

Обычно включают и отключают тиристорные коммутаторы двумя кнопками. Значительно меньшее распространение получили однокнопочные схемы управления тиристорами.

Здесь подробно рассмотрены методы однокнопочного управления тиристорными коммутаторами. Принцип работы тиристорных однокнопочных управляющих устройств основан на динамических зарядно-разрядных процессах в цепи управления тиристора .

Схема однокнопочного управления тиристором

На рисунке 1 показана одна из простейших схем однокнопочного управления тиристорным коммутатором. В схеме (здесь и далее) используют кнопки без фиксации положения. В исходном состоянии нормально замкнутые контакты кнопки шунтируют цепь управления тиристором.

Сопротивление тиристора максимально, ток через нагрузку не протекает. Диаграммы основных процессов, протекающих в схеме на рис. 1, рассмотрены на рис. 2.

Для включения тиристора (ON) нажимают на кнопку SB1. При этом нагрузка оказывается подключенной к источнику питания через контакты кнопки SB1, а конденсатор С1 заряжается через резистор R1 от источника питания.

Скорость заряда конденсатора определяется постоянной времени цепи R1C1 (см. диаграмму). После того как кнопку отпустят, конденсатор С1 разряжается на управляющий электрод тиристора. Если напряжение на нем равно или превышает напряжение включения тиристора, тиристор отпирается.

Рис. 1. Принципиальная схема управления тиристором с помощью одной кнопки.

Рис. 2. Диаграммы основных процессов, протекающих в схеме с тиристором.

Отключить нагрузку (OFF) можно кратковременным нажатием на кнопку SB1. При этом конденсатор С1 не успевает зарядиться. Поскольку контакты кнопки шунтируют электроды тиристора (анод — катод), это равноценно отключению источника питания тиристора. В результате нагрузка будет отключена.

Следовательно, для включения нагрузки необходимо с большей продолжительностью нажать на управляющую кнопку, для отключения — еще раз кратковременно нажать ту же кнопку.

Простые силовые ключи на тиристорах

На рис. 3 и 4 показаны варианты схемной идеи, представленной на рис. 1. На рис. 3 использована цепочка последовательно соединенных диодов VD1 и VD2 для ограничения максимального напряжения заряда конденсатора.

Рис. 3. Вариант схемы управления тиристором одной кнопкой.

Это позволило заметно снизить рабочее напряжение (до 1,5. 3 В) и емкость конденсатора С1. В следующей схеме (рис. 4) резистор R1 включен последовательно с нагрузкой, что позволяет создать двухполюсный коммутатор нагрузки. Сопротивление нагрузки должно быть намного ниже, чем сопротивление R1.

Рис. 4. Схема электронного ключа на тиристоре с последовательным подключением нагрузки.

Тиристорный коммутатор с двумя кнопками

Тиристорное устройство управления нагрузкой (рис. 5) может быть использовано для включения и выключения нагрузки любой из нескольких последовательно включенных кнопок, работающих на разрыв цепи. Принцип действия тиристорного коммутатора заключается в следующем.

При включении устройства напряжение, подаваемое на управляющий электрод тиристора, недостаточно для его включения. Тиристор, и, соответственно, нагрузка отключены. При нажатии на любую из кнопок SB1 — SBn (и удержании ее нажатой) конденсатор С1 заряжается через резистор R1 от источника питания. Цепь управления тиристора и сам тиристор при этом отключены.

Рис. 5. Схема простого тиристорного коммутатора нагрузки с двумя кнопками.

После отпускания кнопки и восстановления цепи питания тиристора накопленная конденсатором С1 энергия оказывается приложенной к управляющему электроду тиристора. В результате разряда конденсатора через управляющий электрод тиристор включается, подсоединяя тем самым нагрузку к цепи питания.

Для отключения тиристора (и нагрузки) кратковременно нажимают на любую из кнопок SB1 — SBn. При этом конденсатор С1 не успевает зарядиться. В то же время цепь питания тиристора размыкается, тиристор запирается.

Величина резистора R2 зависит от напряжения питания устройства: при напряжении 15 В его сопротивление — 10 кОм при 9 В — 3,3 кОм при 5 6-1,2 кОм.

Схема с эквивалентом тиристора на транзисторах

При использовании вместо тиристора его транзисторного аналога (рис. 6) величина этого резистора меняется, соответственно, от 240 кОм (15 В) до 16 кОм (9 В) и до 4,7 кОм (5 В).

Рис. 6. Схема электронного коммутатора нагрузки с транзисторным эквивалентом тиристора.

Аналог многокнопочного переключателя на тиристорах

Тиристорное устройство, позволяющее создать аналог многокнопочного переключателя с зависимой фиксацией положения и использующее для управления кнопочные элементы, работающие без фиксации, показано на рис. 7. В схеме может быть использовано несколько тиристоров, однако, для упрощения схемы, на рисунке показано лишь два канала. Другие каналы коммутации могут быть подключены аналогично предыдущим.

Рис. 7. Принципиальная схема аналога многокнопочного переключателя с использованием тиристоров.

В исходном состоянии тиристоры заперты. При нажатии на кнопку управления, например, кнопку SB1, конденсатор С1 относительно большой емкости оказывается подключенным к источнику питания через диоды VD1 — VDm и сопротивления нагрузки всех каналов.

В результате заряда конденсатора возникает импульс тока, приводящий к кратковременному замыканию анодов всех тиристоров через соответствующие диоды VD1 — VDm на общую шину.

Любой из тиристоров, если он был включен, отключается. В то же время конденсатор накапливает энергию. После отпускания кнопки конденсатор разряжается на управляющий электрод тиристора, отпирая его.

Для включения любого другого канала нажимают соответствующую кнопку. Происходит отключение (сброс) ранее задействованной нагрузки и включение новой нагрузки. В схеме предусмотрена кнопка SB0 общего отключения всех нагрузок.

Многокнопочный переключатель с транзисторным аналогом тиристоров

Вариант схемы, выполненный на транзисторных аналогах тиристоров и диодно-емкостных зарядных цепочках с использованием малогабаритных конденсаторов, показан на рис. 8, 9.

Рис. 8. Схема эквивалентной замены тиристора транзисторами.

В схеме предусмотрена светодиодная индикация включенного канала. В этой связи максимальный ток нагрузки каждого из каналов ограничен значением 20 мА.

Рис. 9. Схема многокнопочного переключателя с транзисторным аналогом тиристоров.

Устройства, аналогичные представленным на рис. 7 — 9, а также на рис. 10 — 12, можно использовать для систем выбора программ радио- и телеприемников.

Недостатком схемных решений (рис. 7 — 9) является то, что в момент нажатия на любую из кнопок все нагрузки оказываются хотя бы на мгновение подключенными к источнику питания.

Схемы многопозиционных переключателей

На рис. 10 и 11 показан тиристорный коммутатор разрывного типа с неограниченным количеством последовательно включенных элементов.

При нажатии на одну из кнопок управления цепь питания аналогов тиристоров размыкается по постоянному току. Конденсатор С1 оказывается включенным последовательно с аналогом тиристора.

Рис. 10. Схема базового элемента для самодельного многопозиционного коммутатора нагрузки.

Рис. 11. Принципиальная схема самодельного многопозиционного коммутатора нагрузки.

Одновременно управляющее напряжение (нулевого уровня) через задействованную кнопку и резистор R2 (рис. 10) подается на управляющий электрод аналога тиристора.

Поскольку в первые мгновения при нажатии кнопки последовательно с аналогом тиристора оказывается включенным полностью разряженный конденсатор, такое включение равносильно короткому замыканию в цепи питания соответствующего тиристора. Следовательно, тиристор отпирается, включая тем самым соответствующую нагрузку.

При нажатии на любую другую кнопку ранее задействованный канал отключается, и включается другой канал. При длительном (порядка 2 сек) нажатии на любую из кнопок конденсатор С1 заряжается, что равнозначно размыканию цепи и приводит к запиранию всех тиристоров.

Схема усовершенствованного электронного переключателя

Рис. 12. Принципиальная схема тиристорного коммутатора для множества нагрузок.

В ряду тиристорных коммутаторов наиболее совершенной представляется схема, показанная на рис. 12. При нажатии кнопки управления возникает бросок тока, эквивалентный короткому замыканию.

Происходит отключение ранее задействованных тиристоров и включение тиристора, соответствующего нажатой кнопке. В схеме предусмотрена светодиодная индикация задействованного канала, а также кнопка общего сброса.

Вместо конденсаторов большой емкости могут быть использованы диодно-конденсаторные цепочки (рис. 12). Принцип действия схемы сохраняется. В качестве нагрузки можно использовать низковольтные реле, например, РМК 11105 сопротивлением 350 Ом на рабочее напряжение 5 В.

Резистор R1 ограничивает ток короткого замыкания и ток максимального потребления величиной 10. 12 мА. Количество каналов коммутации не ограничено.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Иногда нужно слабым сигналом с микроконтроллера включить мощную нагрузку, например лампу в комнате. Особенно эта проблема актуальна перед разработчиками умного дома . Первое что приходит на ум — реле . Но не спешите, есть способ лучше:)

В самом деле, реле это же сплошной гемор. Во первых они дорогие, во вторых, чтобы запитать обмотку реле нужен усиливающий транзистор, так как слабая ножка микроконтроллера не способна на такой подвиг. Ну, а в третьих, любое реле это весьма громоздкая конструкция, особенно если это силовое реле, расчитанное на большой ток.

Если речь идет о переменном токе, то лучше использовать симисторы или тиристоры . Что это такое? А сейчас расскажу.

Если на пальцах, то тиристор похож на диод , даже обозначение сходное. Пропускает ток в одну сторону и не пускает в другую. Но есть у него одна особенность, отличающая его от диода кардинально — управляющий вход .
Если на управляющий вход не подать ток открытия , то тиристор не пропустит ток даже в прямом направлении. Но стоит подать хоть краткий импульс, как он тотчас открывается и остается открытым до тех пор, пока есть прямое напряжение. Если напряжение снять или поменять полярность, то тиристор закроется . Полярность управляющего напряжения предпочтительно должна совпадать с полярностью напряжения на аноде.

Если соединить встречно параллельно два тиристора , то получится симистор — отличная штука для коммутации нагрузки на переменном токе.

На положительной полуволне синусоиды пропускает один, на отрицательной другой. Причем пропускают только при наличии управляющего сигнала. Если сигнал управления снять, то на следующем же периоде оба тиристора заткнутся и цепь оборвется. Крастота да и только. Вот ее и надо использовать для управления бытовой нагрузкой.

Но тут есть одна тонкость — коммутируем мы силовую высоковольтную цепь, 220 вольт. А контроллер у нас низковольтный , работает на пять вольт. Поэтому во избежание эксцессов нужно произвести потенциальную развязку . То есть сделать так, чтобы между высоковольтной и низковольтной частью не было прямого электрического соединения. Например, сделать оптическое разделение . Для этого существует специальная сборка — симисторный оптодрайвер MOC3041 . Замечательная вещь!
Смотри на схему подключения — всего несколько дополнительных деталек и у тебя силовая и управляющая часть разделены между собой. Главное, чтобы напряжение на которое расчитан конденсатор было раза в полтора два выше напряжения в розетке. Можно не боятся помех по питанию при включении и выключении симистора. В самом оптодрайвере сигнал подается светодиодом, а значит можно смело зажигать его от ножки микроконтроллера без всяких дополнительных ухищрений.

Вообще, можно и без развязки и тоже будет работать, но за хороший тон считается всегда делать потенциальную развязку между силовой и управляющей частью. Это и надежность и безопасность всей системы. Промышленные решения так просто набиты оптопарами или всякими изолирующими усилителями.

Способы и схемы управления тиристором или симистором

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Конструкция, принцип действия и основные параметры тиристоров

Тиристор выполнен на основе четырехслойной р-n-р-n структуры с дополнительным выводом от одной из базовых областей (рис. П1). Этот вывод служит управляющим электродом прибора.

Рис. П1. Принцип работы тиристора

Наружная p-область и вывод от нее называется анодом. Наружная n-область и вывод от нее называется катодом. Для открытия тиристора необходимо соблюдение двух условий:

1) «+» на аноде, «-» на катоде;

2) наличие тока управления. Для этого достаточно, чтобы кратковременный импульс напряжения создал электрическое поле, совпадающее по направлению с полем анода.

Закрывается тиристор при переменном токе самостоятельно, при переходе тока через нуль. Вольт-амперные характеристики тиристора при различных значениях тока управляющего электрода приведены на рис. 4.7.

На начальном участке вольт-амперной характеристики ток через прибор мал – тиристор заперт. При достижении приложенным напряжением значения напряжения переключения сопротивление прибора резко падает — тиристор открывается, падение напряжения в открытом тиристоре составляет около 1 В. Изменяя величину тока управляющего электрода, можно менять напряжение переключения: с увеличением тока управления напряжение переключения снижается. При достаточно большом управляющем токе Iу вольт-амперная характеристика прибора становится такой же, как у обычного диода.

Управляющий электрод служит только для отпирания тиристора. После того, как тиристор переходит в проводящее состояние, управляющий электрод перестает управлять прибором. Поведение тиристора аналогично поведению тиратрона или игнитрона. Для переключения тиристора в запертое состояние нужно снизить прямой ток до величины меньшей тока удержания Iуд. (рис. 4.7). Это достигается различными способами. Наиболее распространенный способ запирания тиристоров сводится к подключению на зажимы тиристора заряженного конденсатора так, чтобы катод получил положительный потенциал относительно анода. Такой способ используется при питании нагрузки от источника постоянного напряжения. При питании цепи нагрузки синусоидальным напряжением тиристор запирается при переходе от положительного полупериода к отрицательному. При этом для запирания не требуется никаких дополнительных устройств.

Рис. П2. Вольт-амперные характеристики тиристора

При приложении к тиристору напряжения обратной полярности через прибор протекает незначительный обратный ток; однако, если обратное напряжение достигнет значения напряжения пробоя Uпp, происходит электрический пробой прибора, и он выходит из строя. Для отпирания тиристора достаточно подать на управляющий электрод кратковременный отпирающий импульс напряжения при положительном анодном напряжении. Время включения тиристора составляет до 10 мкс.

Основные параметры тиристоров:

— максимальный ток во включенном состоянии,

Параметры тиристоров зависят от температуры. Например, с увеличением температуры растут обратный ток и напряжение пробоя. Уменьшается падение напряжения на включенном приборе. Необходимый для отпирания ток управления Iу при нагревании уменьшается, а при охлаждении растет. Основной областью применения тиристоров в сварочном производстве являются схемы коммутации сварочного тока в контактных машинах. Тиристоры заменяют в схемах силовой аппаратуры игнитроны. Тиристоры имеют более высокий КПД, большее быстродействие, меньшие габариты и вес, мощность в цепи управления намного меньше, чем у игнитрона. Наряду с достоинствами имеются и недостатки: меньшая перегрузочная способность, низкая циклоустойчивость и др., однако, эти недостатки не препятствуют применению тиристоров в контактных машинах.

Тиристор

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния:

  • «закрытое» состояние — состояние низкой проводимости;
  • «открытое» состояние — состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тринисторов (с тремя электрическими выводами — анодом, катодом и управляющим электродом) — управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод.

В двухвыводных приборах, — динисторах переход прибора в проводящее состояние происходит, если напряжение между его анодом и катодом превысит напряжение открывания.

Также тиристоры применяются в ключевых устройствах, например, силового электропривода.

Существуют различные виды тиристоров, которые подразделяются, главным образом:

  • по способу управления;
  • по проводимости:
    • тиристоры, проводящие ток в одном направлении (например, тринистор, изображённый на рисунке);
    • тиристоры, проводящие ток в двух направлениях (например, симисторы, симметричные динисторы).

Вольт-амперная характеристика (ВАХ) тиристора нелинейна и показывает, что сопротивление тиристора отрицательное дифференциальное. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала. Тиристор остаётся в открытом состоянии до тех пор, пока протекающий через него ток превышает некоторую величину, называемую током удержания.

Содержание

Устройство и основные виды тиристоров [ | ]

Устройство тиристоров показано на рис. 1. Тиристор состоит из четырёх полупроводников (слоёв), соединённых последовательно и отличающихся типами проводимости: p‑n‑p‑n. p‑n‑переходы между проводниками на рисунке обозначены как «J1», «J2» и «J3». Контакт к внешнему p‑слою называется анодом, к внешнему n‑слою — катодом. В общем случае p‑n‑p‑n‑прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния).

Прибор, не содержащий управляющих электродов, называется диодным тиристором или динистором. Такие приборы управляются напряжением, приложенным между основными электродами.

Прибор, содержащий один управляющий электрод, называют триодным тиристором или тринистором [1] (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. У последних ВАХ симметрична, поэтому соответствующие приборы называются симметричными. Симметричные приборы изготавливаются из пяти слоёв полупроводников. Симметричный тринистор называется также симистором или триаком (от англ. triac ). Следует заметить, что вместо симметричных динисторов, часто применяются их схемотехнические аналоги [2] , в том числе и интегральные, обладающие обычно лучшими параметрами.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры не могут быть переведены в закрытое состояние (что отражено в их названии) с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Вольт-амперная характеристика тиристора [ | ]

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис. 2. Описание ВАХ:

  • кривая ВАХ на участке, ограниченном прямоугольником с координатами вершин (0;0) и (Vвo;IL) (нижняя ветвь), соответствует высокому сопротивлению прибора (прямому запиранию прибора);
  • точка (Vвo;IL) соответствует моменту включения тиристора (переключению динистора во включённое состояние);
  • кривая ВАХ на участке, ограниченном прямоугольником с координатами вершин (Vвo;IL) и (Vн;Iн), соответствует переключению прибора во включённое состояние (неустойчивая область). Судя по тому, что кривая имеет S‑образную форму, можно сделать вывод о том, что сопротивление тиристора отрицательное дифференциальное. Когда разность потенциалов между анодом и катодом тиристора прямой полярности превысит величину Vво, произойдёт отпирание тиристора (динисторный эффект);
  • кривая ВАХ от точки с координатами (Vн;Iн) и выше соответствует открытому состоянию прибора (прямой проводимости);
  • на графике показаны ВАХ с разными токами управления IG (токами на управляющем электроде тиристора): IG=0; IG>0; IG>>0. Чем больше ток IG, тем при меньшем напряжении Vвo происходит переключение тиристора в проводящее состояние;
  • пунктиром обозначена кривая ВАХ, соответствующая протеканию в цепи тока IG>>0 — так называемого «тока включения спрямления». При таком токе тиристор переходит в проводящее состояние при минимальной разности потенциалов между анодом и катодом. Для перевода тиристора в непроводящее состояние необходимо снизить ток в цепи анод-катод ниже тока включения спрямления;
  • кривая ВАХ на участке от VBR до 0 соответствует режиму обратного запирания прибора;
  • кривая ВАХ на участке от -∞ до VBR соответствует режиму обратного пробоя.

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика (слева внизу) повторяет участки из первой четверти (справа вверху) симметрично относительно начала координат (см. ВАХ симистора).

По типу нелинейности ВАХ тиристор относят к S-приборам.

Режимы работы триодного тиристора [ | ]

Режим обратного запирания [ | ]

Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:

В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом (см. рис. 3). В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).

Режим прямого запирания [ | ]

При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ. В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.

Двухтранзисторная модель тиристора [ | ]

Для объяснения характеристик прибора в режиме прямого запирания используется двухтранзисторная модель. Тиристор можно рассматривать как соединение p-n-p транзистора с n-p-n транзистором, причём коллектор каждого из них соединён с базой другого, как показано на рис. 4 для триодного тиристора. Центральный p-n переход действует как коллектор дырок, инжектируемых переходом J1, и электронов, инжектируемых переходом J3. Взаимосвязь между токами эмиттера I E <\displaystyle I_> , коллектора I C <\displaystyle I_> и базы I B <\displaystyle I_> и статическим коэффициентом усиления по току α 1 <\displaystyle \alpha _<1>> p-n-p транзистора также приведена на рис. 4, где I C o <\displaystyle I_> — обратный ток насыщения перехода коллектор-база.

Аналогичные соотношения можно получить для n-p-n транзистора при изменении направления токов на противоположное. Из рис. 4 следует, что коллекторный ток n-p-n транзистора является одновременно базовым током p-n-p транзистора. Аналогично коллекторный ток p-n-p транзистора и управляющий ток I g <\displaystyle I_> втекают в базу n-p-n транзистора. В результате, когда общий коэффициент усиления в замкнутой петле превысит 1, оказывается возможным лавинообразный процесс увеличения тока через структуру, при этом напряжение на приборе становится равным порядка 1 В и ток ограничен только сопротивлением внешней цепи.

Что такое тиристор и как он работает?

Открытие свойств переходов полупроводников по праву можно назвать одним из важнейших в ХХ веке. В результате появились первые полупроводниковые приборы — диоды и транзисторы. А также схемы, в которых они нашли применение. Одной из таких схем является соединение двух биполярных транзисторов противоположных типов — p-n-p c n-p-n. Эта схема показана далее на изображении (б). Она иллюстрирует, что такое тиристор и принцип его действия. В ней присутствует положительная обратная связь. В результате каждый транзистор увеличивает усилительные свойства другого транзистора.

Транзисторный эквивалент

При этом любое изменение проводимости транзисторов в любом направлении лавинообразно нарастает и завершается одним из граничных состояний. Они либо заперты, либо отперты. Этот эффект называется триггерным. А по мере развития микроэлектроники оба транзистора объединили в 1958 году на одной подложке, обобщив одноименные переходы. В результате появился новый полупроводниковый прибор, названный тиристором. На взаимодействии двух транзисторов и зиждется принцип работы тиристора. В результате объединения переходов у него такое же количество выводов, как и у транзистора (а).

На схеме управляющий электрод — это база транзистора структуры n-p-n. Именно ток базы транзистора изменяет проводимость между его коллектором и эмиттером. Но управление может быть выполнено также и по базе p-n-p транзистора. Таково устройство тиристора. Выбор управляющего электрода определяют его особенности, в том числе выполняемые задачи. Например, в некоторых из них вообще не используются какие-либо управляющие сигналы. Поэтому, зачем же использовать управляющие электроды.

Динистор

Это задачи, где применяются двухэлектродные разновидности тиристоров — динисторы. В них присутствуют резисторы, соединенные с эмиттером и базой каждого транзистора. Далее на схеме это R1 и R3. Для каждого электронного прибора есть ограничения по величине приложенного напряжения. Поэтому до некоторой его величины упомянутые резисторы удерживают каждый из транзисторов в запертом состоянии. Но при дальнейшем увеличении напряжения через переходы коллектор–эмиттер появляются токи утечки.

Они подхватываются положительной обратной связью, и оба транзистора, то есть динистор, отпираются. Для желающих поэкспериментировать далее показано изображение со схемой и номиналами компонентов. Можно ее собрать и проверить рабочие свойства. Обратим внимание на резистор R2, отличающийся подбором нужного номинала. Он дополняет эффект утечки и, соответственно, напряжение срабатывания. Следовательно, динистор — это тиристор, принцип работы которого определен величиной питающего напряжения. Если оно относительно велико, он включится. Естественно интересно также узнать, как же его выключить.

Трудности выключения

С выключением тиристоров дело обстояло, как говорится, туго. По этой причине довольно длительное время виды тиристоров ограничивались только двумя выше упомянутыми структурами. До середины девяностых годов ХХ века применяются тиристоры только этих двух типов. Дело в том, что выключение тиристора может произойти лишь при запирании одного из транзисторов. Причем на определенное время. Оно определено скоростью исчезновения зарядов соответствующих отпертому переходу. Наиболее надежный способ «прибить» эти заряды — полностью отключить ток, протекающий через тиристор.

Большинство из них так и работают. Не на постоянном токе, а на выпрямленном, соответствующем напряжению без фильтрации. Оно изменяется от нуля до амплитудного значения, а затем вновь уменьшается до нуля. И так далее, соответственно частоте переменного напряжения, которое выпрямляется. В заданный момент между нулевыми значениями напряжения на управляющий электрод поступает сигнал, и тиристор отпирается. А при переходе напряжения через ноль вновь запирается.

Чтобы выключить его на постоянном напряжении и токе, при котором значение нуля отсутствует, необходим шунт, действующий определенное время. В простейшем варианте это либо кнопка, присоединенная к аноду и катоду, либо соединенная последовательно. Если прибор отперт, на нем присутствует остаточное напряжение. Нажатием кнопки оно обнуляется, и ток через него прекращается. Но если кнопка не содержит специального приспособления, и ее контакты разомкнутся, тиристор непременно снова включится.

Этим приспособлением должен быть конденсатор, подключаемый параллельно тиристору. Он ограничивает скорость нарастания напряжения на приборе. Этот параметр вызывает набольшее сожаление при использовании этих полупроводниковых приборов, поскольку понижается рабочая частота, с которой тиристор способен коммутировать нагрузку, и, соответственно, коммутируемая мощность. Происходит это явление из-за внутренних емкостей, характерных для каждой из моделей этих полупроводниковых приборов.

Конструкция любого полупроводникового прибора неизбежно образует группу конденсаторов. Чем быстрее нарастает напряжение, тем больше токи, их заряжающие. Причем они возникают во всех электродах. Если такой ток в управляющем электроде превысит некоторое пороговое значение, тиристор включится. Поэтому для всех моделей приводится параметр dU/dt.

Многообразие модельного ряда

Эти варианты выключения усложняют тиристорные коммутаторы и уменьшают их надежность. Но развитие тиристорного разнообразия получилось очень плодотворным.

В наше время освоено промышленное производство большого числа разновидностей тиристоров. Область их применения — не только мощные силовые цепи (в которых работают запираемый и диод-тиристор, симистор), но и цепи управления (динистор, оптотиристор). Тиристор на схеме изображается, как показано далее.

Среди них есть модели, у которых рабочие напряжения и токи самые большие среди всех полупроводниковых приборов. Поскольку промышленное электроснабжение немыслимо без трансформаторов, роль тиристоров в его дальнейшем развитии является основополагающей. Запираемые высокочастотные модели в инверторах обеспечивают формирование переменного напряжения. При этом его величина может достигать 10 кВ с частотой 10 килогерц при силе тока 10 кА. Габариты трансформаторов при этом уменьшаются в несколько раз.

Включение и выключение запираемого тиристора происходит исключительно от воздействия на управляющий электрод специальными сигналами. Полярность соответствует определенной структуре этого электронного прибора. Это одна из простейших разновидностей, именуемая как GTO. Кроме нее применяются более сложные запираемые тиристоры со встроенными управляющими структурами. Эти модели называются GCT, а также IGCT. Использование в этих структурах полевых транзисторов относит запираемые тиристоры к приборам семейства MCT.

Мы постарались сделать наш обзор информативным не только для начитанных посетителей нашего сайта, но также и для чайников. Теперь, когда мы ознакомились с тем, как работает тиристор, можно найти применение этим знаниям для практического использования. Например, в несложном ремонте бытовых электроприборов. Главное — увлекаясь работой, не забывайте о технике безопасности!

Каждый электрик должен знать:  Виды отверток и их назначение, маркировка, фото
Добавить комментарий