Устройство электрических кабелей и кабельных линий


СОДЕРЖАНИЕ:

Монтаж кабельных линий

Любая деятельность человека связана с потреблением электроэнергии. Поэтому все населенные пункты и производственные цеха обязательно обеспечивают электричеством. Если в поселке, микрорайоне или же на предприятии нет своей электростанции, то для подключения объекта к сети используют линию электропередач. Она служит для переноса и распределения электроэнергии.

Монтаж кабельных линий 10 кВ производится в соответствии со строгими требованиями и по определенной технологии. Все подготовительные этапы работ и основные мероприятия по укладке электросети должны осуществляться только специализированной организацией, которая имеет соответствующие сертификаты и допуски, профессиональное оборудование и квалифицированных специалистов.

Особенности кабельных линий

Кабельная линия электропередачи – это линия для «транспортировки» электрической энергии, которая состоит из:

  • Одного или нескольких параллельных кабелей;
  • Соединительных, стопорных и концевых муфт (узлов);
  • Крепежных деталей.

Служат кабельные линии с напряжением 10 кВ для передачи энергии от производителя (электростанции, подстанции) до конечного потребителя (производственного цеха, жилого дома, коммерческого строения и т.д.)

Конструкция силового кабеля

Основой линий 10 кВ и главным проводником, по которому осуществляется движение тока, служит силовой кабель. В зависимости от напряжения подбирается тип проводника, при чем наиболее часто используют трех- и четырехжильные кабели с бумажной изоляцией.

Основные составляющие силового кабеля для монтажа линий 10 кВ:

  1. Свинцовая оболочка (общая), внутри которой расположены жилы;
  2. Друг от друга разделенные жилы изолируются с помощью специальной кабельной бумаги. Она пропитана особым составом, в который входят масло и канифоль;
  3. Отделение от земли обеспечивается поясной изоляцией;
  4. Герметичность достигается за счет наложения свинцовой бесшовной оболочки;
  5. Еще один слой – броня из стальной ленты и асфальтированный джут, который оберегает проводник от химических воздействий.

В качестве изоляции токопроводящих жил может использоваться специальный полиэтилен, а вместо свинцовой оболочки – стальная. В каждом случае состав и материалы для токопередачи подбираются индивидуально, исходя из предполагаемой нагрузки на сеть.

Где осуществляют монтаж кабельных линий 10 кВ?

Основная причина использования этого типа передачи электроэнергии кроется в невозможности строительства воздушных трасс. Если в городе, поселке, микрорайоне или на территории производственных зданий нельзя установить опоры и протянуть магистраль по воздуху, то выполняют подземный монтаж кабельных линий 10 кВ.

Благодаря своим преимуществам такой способ укладки получил широкое применение:

  • Закрытый тип прокладки обеспечивает защиту от различных погодных явлений (ветер, гроза, обледенение);
  • Этот способ надежнее и безопаснее в эксплуатации.

Имеются и недостатки: монтаж кабельной линии 10 кВ обходится в достаточно большую сумму, кроме того, этот способ трудоемкий и требует больших затрат времени.

Процесс укладки электрической магистрали

Этапы, перечисленные ниже, должны выполняться строго в указанной последовательности:

  1. Проведение инженерных изысканий и выбор места для прокладки линии;
  2. Согласование и подготовка документации;
  3. Разметка и разбивка трассы на участки;
  4. Рытье траншеи;
  5. Формирование «подушки» из мелкой земли;
  6. Укладка защитных конструкций (если они необходимы по проекту);
  7. Подготовка кабеля к укладке в соответствии с определенными требованиями;
  8. Прокладка магистрали по земле или протяжка в трубах;
  9. Монтаж соединительных муфт;
  10. Засыпка слоя мелкой земли;
  11. Формирование защитного пласта из красного глиняного кирпича или асбоцементных плит;
  12. Далее может быть уложена сигнально-предупредительная лента;
  13. Проведение испытаний кабельной линии 10 кВ;
  14. Засыпка траншеи грунтом, завершение работ.

Документация

Перед началом работ монтажная организация формирует полный набор технических бумаг, в соответствии с которыми прокладывается линия. В пакет документов входят:

  • Рабочий проект. При обычных условиях он выполняется компанией, которая осуществляет монтаж. При специфических и сложных условиях этот этап доверяют специализированное проектной организации.
  • Планы и чертежи. На картах указывается кабельная трасса, она дополняется разрезами. Обязательно указание пересечений линии с подземными сооружениями, расположенными на разной глубине. Если в проекте имеются сложные участки с переходами, то прилагаются отдельные чертежи по каждому подобному узлу или даются ссылки на типовые методы.
  • Строительные схемы кабельных сооружений. Сюда входят кабельный журнал, спецификация на проводники, муфты, материалы, смета работ. В документах указываются все закладные детали.

Все проекты передаются согласованными к производству с соответствующими штампами. Прилагаются разрешения от учреждений городской архитектуры, строительства и землепользования, представителей энергосистемы и других организаций, которым принадлежат подземные коммуникации на рассматриваемом участке.

Подготовка к монтажу кабельной линии 10 кВ

Следует уделить большое внимание транспортировке проводов, так как нарушения могут привести к невозможности использования: при перевозке должна гарантироваться сохранность и целостность, ведь именно это определяет срок эксплуатации. Кабель перевозят намотанным на специальных барабанах.

На небольшое расстояние (в пределах строительной площадки и не более чем на 100 м) перекатку цилиндров можно осуществлять вручную по направлению намотки кабеля, чтобы не допустить распускание витков и последующее защемление.

Перед транспортировкой к месту трассы проводник следует проверить. Визуально осматривают обшивку барабана, крепежных элементов, заводские маркировки и т.д. Если после предварительного осмотра выявлены какие-либо нарушения, то такой материал не подлежит использованию.

Требования к кабелю при монтаже линий 10 кВ

Если при производстве проводника была использована бумажная или ПВХ-изоляция, то их можно использовать для укладки только при положительной температуре воздуха (выше 0°C). Если при монтаже сталкиваются с проблемой похолодания, то материал предварительно следует прогреть. Параметры нагрева, его длительность и срок дальнейшей пригодности кабеля для укладки линии строго регламентированы.

Допустимые температуры при прокладке кабелей без предварительного подогрева

Тип кабеля

Конструкция кабеля

Допустимая температура кабеля и окружающей среды при прокладке, °С, не ниже

С бумажной изоляцией, пропитанной нестекающим составом, и пропитанной изоляцией

Все марки кабелей

С пластмассовой изоляцией

С изоляцией жил и шлангом из полиэтилена, без защитного покрова, содержащего волокнистые материалы

С оболочкой или шлангом из поливинилхлоридного пластика, без защитного покрова, содержащего волокнистые материалы, а также с броней из профилированной стальной оцинкованной ленты

Все остальные марки кабелей с защитным покровом

Время, в течение которого необходимо после предварительного нагрева выполнить укладку кабеля:

Температура воздуха

Количество минут

не более 60 мин

не более 40 мин

не более 30 мин

Существует несколько способов доведения кабеля до нужного уровня прогрева:

  • С помощью трехфазного тока с использованием войлочно-брезентового капота для барабана;
  • В отапливаемых помещениях с температурой внутри до +40 градусов по Цельсию (если таковые имеются вблизи трассы и если транспортировка осуществляется при t° не ниже -20°C);
  • В палатке, где установлены паровое отопление или печи, инфракрасные и другие виды обогревателей (степень тепла не должна превышать 40 градусов выше нуля).

Перед монтажом линии проводятся измерения сопротивления изоляции жил, проверяют целостность проводника. Это следует делать до того, как провода будут помещены в траншею или трубу, так как искать затем поврежденный участок будет достаточно трудно и долго.

После того, как специалисты убедились в соответствии проводника всем требованиям, его раскатывают вдоль трассы с помощью спецтехники или же вручную. Для этого барабан поднимается над землей (или поверхностью кузова автомобиля) на расстояние 15-20 см и устанавливается таким образом, чтобы размотка происходила с верхней части, а основа могла беспрепятственно вращаться.

Основные способы монтажа кабельных линий 10 кВ

Укладка кабеля в траншеи

Это наиболее распространенный и простой метод. Заключается он в раскопке углублений в земле по всей длине трассы и помещении туда магистрального провода. Укладывается он непосредственно в грунт без использования дополнительных конструкций. Иногда при укладке линий проводник дополнительно закрывают красным кирпичом или железобетонными плитами.

Параметры траншеи

  • Глубина: не менее 700 мм. В некоторых случая возможно уменьшение данного показателя до 500 мм: если речь идет об участке при входе в здание с длиной менее 50 см и о местах пересечения трассы с подземными сооружениями. В этом случае потребуется защита асбоцементными трубами.
  • Ширина: рассчитывается таким образом, чтобы между параллельно проложенными линиями с напряжением 10 кВ был интервал минимум 100 мм, а расстояние от боковых стенок углубления было не меньше 50 мм.

Места соединений

Там, где в будущем появятся ответвления от основной магистрали, траншеи расширяют. Появляются колодцы или котлованы, в которых разместят соединительные муфты.

На участок линии 10 кВ длиной 1 км должно приходиться не более 6 муфт. К каждому узлу предъявляются требования герметичности, устойчивости к воздействию влаги, механической прочности, отсутствия коррозии.

Прокладка кабельных линий в блоках

В данном случае защитная конструкция представляет собой подземное сооружение из асбоцементных или керамических труб, а также железобетонных панелей. Среди особенностей данного метода укладки можно выделить:

  • Значительно повышается надежность и безопасность линий;
  • Усложняется процесс монтажа;
  • Увеличиваются финансовые и временные затраты;
  • Ниже показатели токовых нагрузок на кабель (в сравнении с траншейным или открытым способом проведения линий 10 кВ).

В качестве защитных сооружений возводят железобетонные каналы, туннели, блоки из труб и т.д. Такой способ монтажа кабельных линий используется достаточно редко.

Прокладка проводов на опорных конструкциях

Такая методика встречается при проведении электросети в производственных цехах, когда требуется провести линию по стене строения или в тоннеле. Сами опоры изготавливают из стальных листов. Они могут иметь форму стоек с полками, скобами или настенных полок.

Соединение кабелей при монтаже линий 10 кВ

Сведение концов проводника осуществляется за счет сцепления токопроводящих жил. Сначала проводят разделку конца кабеля, то есть последовательно снимают защитные и изоляционные слои материала. Эта процедура является частью монтажа муфты. Размеры участка, который нужно очистить, определяются конструкцией соединительного узла, площадью сечения жил, напряжением кабеля.

Работы по соединению и ответвлению проводят с применением специального инструмента и приспособлений, при этом важно соблюдать всю технологию. Следование правилам способствует созданию надежного электрического контакта и обеспечивает механическую прочность. Для разных материалов и сечений токопроводящих нитей применяют различные методики соединения.

При монтаже кабельных линий 10 кВ используется пайка с использованием жестких и полужестких припоев. Выбирают один из двух возможных манипуляций:

  • Работают хорошо разогретым паяльником;
  • Помещают концы токопроводящих жил в емкости с расплавленным припоем.

Заземление

Является обязательной процедурой перед стартом применения магистральной линии. От вида соединительного узла будет зависеть выбор соответствующей технологии:

  • В чугунных муфтах провода заземляют с помощью двух отрезков гибкого медного провода, который подходит для данного типа проводящих жил. Внешние слои и броню изоляции кабеля соединяют с помощью того же материала путем присоединения к контактной площадке муфты.
  • В свинцовых зажимных устройствах этот процесс проходит с помощью одного кусочка гибкого медного провода. Он припаивается и крепится проволочными бандажами к оболочкам и бронированному слою обоих кабелей и корпусу соединительного узла.
  • В эпоксидных муфтах технология присоединения заземляющего провода зависит от конструкции разъемного корпуса, особенностей монтажа и заливки термопластической полимерной смолой (компаундом).

Наконечники и муфты

Эти комплектующие элементы являются важной деталью при монтаже линий, так как от их качества зависит надежность и безопасность. Кабельные муфты, которые применяются для соединения участков провода, классифицируются по нескольким параметрам:

  • По напряжению (до 1, 6, 10, 35 кВ);
  • По назначению (для соединения, ответвительные и концевые);
  • По размерам (обычные и малогабаритные);
  • По материалу, из которого изготовлены (чугунные, свинцовые, эпоксидные);
  • По форме (У, Т или Х-образные);
  • По месту установки (наружные и внутренние);
  • По числу фаз (концевые трех- или четырехфазные).

На концах кабельных участков размещают либо специальные муфты (на улице), либо концевые заделки (внутри помещений).

При монтаже линий обязательно должны использоваться маркирующие бирки. Их размещают на открытых участках трассы (с интервалом в 50 м), на поворотах и в местах пересечения кабеля огнестойких перегородок (с обеих сторон) и на всех соединительно-разветвительных узлах. К биркам предъявляются требования: они должны быть стойкими к внешним воздействиям.

В начале и конце электролинии навешивают бирки с указанием следующей информации:

  • Марка;
  • Напряжение;
  • Сечение;
  • Номер или название линии;
  • Номер муфты и дата монтажа (для зажимных узлов).

Техника безопасности при работе с кабельными линиями 10 кВ

Межотраслевые правила по охране труда предписывают правила выполнения различных видов деятельности:

  • Техническое обслуживание электроустановок;
  • Проведение переключений в них;
  • Строительные и монтажные работы;
  • Наладочные и ремонтные;
  • Испытания и измерения в объектах электроснабжения.

Также по отдельным направлениям имеются особые предписания, правила и инструкции. Независимо от вида деятельности, до начала любых манипуляций должны проводиться организационные и технические мероприятия.

В комплекс действий, которые должны предшествовать и сопровождать любые виды работы, входит:

  • Оформление наряда на проведение работ (либо распоряжения или перечня);
  • Допуск к работе;
  • Надзор во время выполнения действий;
  • Оформление перерыва;
  • Перевод сотрудников в другое место;
  • Окончание работы.

Подготовка рабочего места со снятием напряжения должна проходить по следующей инструкции:

  1. Отключена подача электроэнергии. Следует принять меры, которые будут препятствовать появлению напряжения на данном участке из-за ошибочного или самопроизвольного включения коммутационной аппаратуры.
  2. Обязательно размещены запрещающие плакаты в местах дистанционного управления коммутациями.
  3. Проконтролировано отсутствие напряжения на заземленных токопроводящих элементах.;
  4. Включены заземляющие механизмы или переносные устройства, установленные для той же цели. Вывешены указательные, предупреждающие и предписывающие плакаты, установлены ограждения на рабочем месте.

Требования к проведению земляных работ на кабельных линиях 10 кВ

  1. Перед началом раскопок обязательно произвести контрольное вскрытие трассы. Для рыхления почвы, находящейся над проводником, можно использовать отбойные молотки, ломы, землеройные машины, однако данное действие можно производить только на такую глубину, чтобы до магистрали оставалось еще минимум 300 мм. После этого следует воспользоваться лопатой для удаления остатков грунта.
  2. В зимний период, когда почва твердая и промерзшая, ее следует предварительно отогреть. При этом любые агрегаты, генерирующие тепло, не следует приближать к кабелю ближе чем на 150 мм.
  3. При проведении работ и монтажа линий 10 кВ следует большое внимание уделять безопасности сотрудников. При угрозе осыпания или обваливания почвы нужно принять соответствующие предупредительные меры. Если траншею оборудуют в слабом или влажном грунте, то ее стенки необходимо укреплять. В некоторых случаях можно обойтись обустройством откосов, расположенных под углом естественного наклона грунта.
  4. Извлеченную из котлована или траншеи землю следует откладывать на расстоянии не менее чем на 50 см от края углубления.
  5. Если трасса прокладывается по участку с почвой естественной влажности без грунтовых вод и подземных сооружений и обустраивается траншея с вертикальными стенками, то принимаются во внимание следующие нормы глубины раскопки:
    • Не более 1 м для насыпных, песчаных, крупнообломочных грунтов;
    • До 1,25 в супесях;
    • До 1,5 м в суглинных и глиняных почвах.
  6. При работе с плотными связанными видами грунта можно рыть траншеи с вертикальными стенками с использованием спецтехники можно на глубину не более 3 м. При этом, если требуется присутствие работников внизу, то в этих местах обустраиваются крепления и откосы.

Как с точностью определить участок кабельной линии, требующий ремонта?

  • В туннеле/коллекторе/канале: прослеживанием, сверкой раскладки с чертежами и схемами, а также проверкой по биркам;
  • В земле: сверкой мест его размещения с чертежами и планами;
  • Для проведения осмотра предварительно обустраивают небольшую траншею (шурф), которая прорывается перпендикулярно трассе. Такое углубление позволит увидеть все кабели и найти неисправный.
  • Если методом непосредственного осмотра невозможно определить наличие повреждения проводника, следует применить специализированное оборудование.
  • Прежде чем приступить к ремонтным работам (разрезание кабеля, вскрытие соединительного узла), нужно в обязательном порядке убедиться в отсутствии напряжения. Это можно сделать с помощью приспособления, состоящего из изолирующей штанги и стальной иглы.
  • В кабельных сооружениях (туннелях, колодцах, коллекторах и др.), где расположено несколько кабелей, подобное устройство должно быть дистанционным. В месте прокалывания провод следует закрывать защитным экраном.

Завершение работ по монтажу кабельных линий 10 кВ

После того, как укладка кабеля и его маркировка завершены, проводится контрольная проверка. Отслеживается, все ли задачи, изложенные в проектной документации, выполнены надлежащим образом. Методом внешнего осмотра проверяется правильность заделки концов кабеля.

Прежде чем осуществить заполнение траншем грунтом составляется подробный план кабельной линии. Для этого необходимо выявить постоянные ориентиры на местности (строения, ограждения и др.). Составляется исполнительный чертеж, на котором изображаются:

  • Расположение кабельной трассы относительно выявленным ориентирам,
  • Ее пересечение с автодорогами и линиями коммуникаций,
  • Участки трассы, проложенные на глубине более 1 м,
  • Расположение соединительных и ответвительных муфт.

Если возникают сложности и невозможно выявить постоянные ориентиры (например, за городом, на широком открытом пространстве), то вдоль кабельной линии устанавливают металлические указатели с интервалом примерно 100-150 м. Проставляют такие вешки-релеры на прямолинейных участках, а также на поворотах и в местах размещения муфт.

При отрисовке плана на нем отражают также и подземные/наземные строения и сооружения, которые пересекаются с проложенным кабелем. Это могут быть трубы водо- или газоснабжения, другие линии проводов, автодороги и пр. Составление подробной схемы местности в дальнейшем значительно облегчает эксплуатацию кабеля и позволяет в случае повреждений быстро и точно проводить ремонтные работы.

Силовые кабели. Подробный обзор

Что такое силовой кабель. Обзор

В настоящее время существуют десятки видов силовых кабелей, и на первый взгляд непонятно, зачем столько много? Ведь достаточно подобрать кабель по сечению, и можно его использовать) Конечно, это не так, раз кабель выпускается, значит это для чего-то нужно, и он имеет какие-то особенности в применении.

Об особенностях разных видов силовых кабелей, их классификации, устройстве, способах подключения и областях применения мы и поговорим в этой статье.

А если нужна официальная информация, вот ГОСТы на кабели:

  • ГОСТ 16442-80. Кабели силовые с пластмассовой изоляцией. Технические условия. С изменениями до 2000 года, включительно.
  • ГОСТ 31996-2012. Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. Общие технические условия.
  • ГОСТ 31565-2012. Кабельные изделия. Требования пожарной безопасности.

Все эти документы можно будет скачать в конце статьи.

Что такое силовой кабель?

Кабель силовой – это такой кабель, который предназначен для передачи электроэнергии, необходимой для питания потребителей. Как правило, по кабелю передаются три фазы и нейтраль в случае системы заземления TN-C. Когда применяется система заземления TN-S, используется пятипроводный силовой кабель (три фазы, рабочий ноль N и защитное заземление РЕ).

Подробнее при системы заземления я рассказывал в статье Моё мнение про заземление, а про трехфазную систему – в статье про отличия трехфазной и однофазной систем питания.

В отличие от контрольных кабелей и кабелей управления, силовые кабели передают напряжение постоянно, в течение всего времени работы потребителя, и это напряжение не несёт никакой информации.

Классификация силовых кабелей

Материал жилы

Тут возможны два варианта – медь и алюминий. От материала зависят многие параметры – электрическое сопротивление, механическая прочность, способы соединения, и конечно цена. Цена играет решающее значение при сечениях проводов более 16 мм², поэтому алюминиевый кабель применяют в силовых установках и на вводе в дома (СИП).

Как известно, в домашней проводке алюминий запрещен согласно ПУЭ:

2.1.49. Для стационарных электропроводок должны применяться преимущественно провода и кабели с алюминиевыми жилами. Исключения см. в 2.1.70, 3.4.3, 3.4.12, 5.5.6, 6.5.12-6.5.14, 7.2.53 и 7.3.93.

Исключений больше, чем правил: алюминиевые провода нельзя применять, если коротко, в чердачных помещениях, в некоторых устройствах подстанций, в щитовых устройствах, в цепях управления лифтами, в цепях освещения некоторых помещений, в общественных зданиях и помещениях, на взрывоопасных объектах.

Однако, недавно вышел Приказ Минэнерго России от 16.10.2020 N 968 о использовании алюминиевой электропроводки, где указаны нормы на провода с жилами из алюминиевых сплавов. Там приведены правила использования алюминиевых жил и требования к химическому составу алюминиевых сплавов.

Тем не менее, кабелей конкретных марок сечением 2,5, 4,0, 6,0 мм², удовлетворяющих этому приказу и пригодных для использования в электропроводке 0,4 кВ, я пока не встречал.

Количество проволок в жиле

Чем больше в жиле проволок, тем больше она годна к многократному изгибу. Конечно, в этом смысле медь более предпочтительна. Но подождем ещё отзывы про новые алюминиевые сплавы!

С другой стороны, кабели с однопроволочными жилами (в их названии есть буквы “ож”) проще подключать. Многожильные требуют обязательной опрессовки наконечниками, а для этого нужен специальный инструмент и опыт работы.

Опрессовка многожильных проводов

Плюс одножильных кабелей – дешевизна, и поэтому их прокладывают при стационарной и скрытой электропроводке.

Изоляция и пожарная безопасность

Современные кабели изготавливаются в основном с изоляционной оболочкой из поливинилхлорида (ПВХ). Если в кабеле несколько проволок (проводов), то кроме индивидуальной, он имеет и общую изоляцию, предохраняющую его от внешних воздействий. Качественный кабель всегда имеет общую изоляцию из нескольких слоев и материалов.

Силовые кабели подготовлены к монтажу

Кроме изоляционных свойств, очень важная характеристика изоляции кабеля – поведение при пожаре. Для этого изоляцию выполняют из специальных материалов и определенной конструкции. Обозначения таких кабелей на примере распространенного кабеля ВВГ:

А что там свежего в группе ВК СамЭлектрик.ру?

Подписывайся, и читай статью дальше:

ВВГ нг – негорючий,

ВВГ нг LS – с пониженным дымообразованием (Low Smoke), другое его название – FR LS – « Fire Resistance »

ВВГ нг (а) – универсальный пожароустойчивый.

В проектах на строительство обычно указывается марка кабеля, и наиболее распространенные сейчас кабели – ВВГ FRLS и его аналог NYM.

Прокладка

При прокладке кабелей нужно руководствоваться маркой кабеля и ПУЭ, глава 2.1.

Следует выделить важные моменты при прокладке кабелей:

Прокладка должна быть выполнена таким образом, чтобы минимизировать механические и атмосферные воздействия. В случае прокладки на открытом воздухе должны применяться специально разработанные для этого марки кабелей (например, СИП).

Кабель должен быть по возможности сменяемым. Это – требование ПУЭ 7.1.37. Впрочем, в том же пункте говорится, что в случае скрытой проводки внутри стен из негорючих материалов допускается проводку делать несменяемой.

Пример прокладки кабелей в цеху

Согласно ПУЭ 2.1.23, все места соединения проводов должны быть доступны. Поэтому их делают в распределительных или установочных коробках, а также в электрощитках, к которым должен быть доступ для осмотра, ремонта и обслуживания. Это требование часто не выполняют в угоду дизайну помещения.

Соединение кабелей

На эту тему сказано уже очень много, приведу здесь лишь краткий обзор возможных вариантов.

Самый распространенный вариант – это скрутка. Однако, этот способ соединения не разрешается в ПУЭ, поскольку он не поддается оценке качества. Иначе говоря, каждый электрик может сделать её по своему, и проверить это не получится.

Поэтому в ПУЭ разрешено делать соединения при помощи опрессовки, сварки, пайки или сжимов. Но все эти варианты не исключают предварительную скрутку!

Одинаковый материал жилы и сечение

Это самый лучший вариант. Тут можно использовать все способы соединения. Для больших токов предпочтительна опрессовка и сжимы типа “Орех”.

Винтовые клеммы и сжимы типа “Орех”

Одинаковый материал жилы, разное сечение

Следует избегать этого варианта. Допустима разница на один размер, например, 4 мм2 и 2,5 мм2. Тогда возможны варианты, как в предыдущем пункте.

Разный материал жилы

Это как раз медь с алюминием. Самое главное здесь – чтобы поверхности этих материалов не соприкасались непосредственно. Должен быть какой-то “посредник”, для этого применяют клеммники с пастой (Wago), болтовые соединения через шайбу, соединения типа “Орех”, опрессовкой специальными медно-алюминиевыми гильзами.

Соединение проводов с наконечниками через винтовой клеммник

На крайний случай, медный провод можно облудить, и потом скручивать его с алюминиевым.

Жила однопроволочная и многопроволочная

Это – самый тяжелый случай, его следует избегать. А в случае необходимости – использовать специальные сжимы или болтовые клеммы.

Во всех приведенных случаях необходимо защищать место соединения и кабель, ограничивая ток автоматическим выключателем.

Вот что бывает, если наконечник на проводе плохо обжат, либо поверхность провода окислена:

Наконечник нагрелся. Необходима повторная обжимка проводов либо замена

Видео

Напоследок – парочка интересных видео про кабели.

Скачать

Как и обещал, выкладываю основные ГОСТы, по которым изготавливаются сейчас силовые кабели:

• ГОСТ 16442-80 / Кабели силовые с пластмассовой изоляцией. Технические условия. С изменениями до 2000 года, включительно., pdf, 165.03 kB, скачан:221 раз./

• ГОСТ 31565-2012 / Кабельные изделия. Требования пожарной безопасности., pdf, 279.59 kB, скачан:189 раз./

• ГОСТ 31996-2012 / Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ. Общие технические условия., pdf, 445.44 kB, скачан:128 раз./

Устройство силовых кабелей

Силовой кабель – один из важнейших элементов электросистемы. Собственно по силовым кабелям электроэнергия передается от главного распределительного щита или вводно-распределительного устройства к конечным пользователям. Для того чтобы правильно спроектировать систему электроснабжения, необходимо понимать особенности устройства силовых кабелей.

Рис. 1. Сечения силовых кабелей:

а — двухжильные кабели с круглыми и сегментными жилами,

б — трехжильные кабели с поясной изоляцией и отдельными оболочками,

в — четырехжильчые кабели с нулевой жилой круглой, секторной и треугольной формы,

1 — токопроводящая жила, 2 — нулевая жила, 3 — изоляция жилы, 4 — экран на токопроводящей жиле, 5 — поясная изоляция, 6 — заполнитель, 7 — экран на изоляции жилы, 8 — оболочка, 9 — бронепокров, 10 — наружный защитный покров

— это проводники электрического тока, изготавливаются из алюминия, либо меди. Делятся на основные и нулевые жилы. Основные жилы используются для передачи электрической энергии, а нулевые — для прохождения разности токов фаз при неравномерной нагрузке. По форме могут быть круглыми, секторными или сегментными. Нулевая жила (жила защитного заземления), как правило, имеет сечение, уменьшенное по сравнению с основными жилами. Она бывает круглой, секторной или треугольной формы и располагается в центре кабеля или между его основными жилами (см. рис. 1). Нулевая жила используется для соединения не находящихся под напряжением металлических частей электроустановки с контуром защитного заземления.

обеспечивает необходимую электрическую прочность токопроводящих жил по отношению друг к другу и к заземленной оболочке. Изоляция жилы — изоляция, наложенная на жилу кабеля. Используется бумажная, резиновая и пластмассовая (поливинилхлоридная и полиэтиленовая) изоляция.

Поясная изоляция – изоляция, наложенная поверх изолированных скрученных или параллельно уложенных жил кабеля. Бумажная изоляция кабелей пропитывается вязкими пропиточными составами (маслоканифольными или электроизоляционными синтетическими).

Недостаток кабелей с такой изоляцией – крайне ограниченная возможность прокладки по наклонным трассам (разность высот между концевыми их заделками не должна превышать определенных значений).

Кабели с вязким пропиточным составом, свободная часть которого удалена, называют кабелями с обедненно-пропитанной изоляцией. Их применяют при прокладке на вертикальных и наклонных трассах разностью уровней до 100 м. (либо без ограничения разности уровней, если это небронированные и бронированные кабели в алюминиевой оболочке на напряжение до 3 кВ).

Для прокладки по вертикальным и крутонаклонным трассам без ограничения разности уровней изготовляют кабели с бумажной изоляцией, пропитанной особым составом на основе церезина или полиизобутилена. Этот состав имеет повышенную вязкость, поэтому при нагреве кабеля, проложенного вертикально или вдоль крутого наклона, он не стекает вниз.

Резиновая изоляция выполняется из сплошного слоя резины или из резиновых лент с последующей вулканизацией. Такие кабели применяют в сетях переменного тока до 1 кВ и постоянного тока до 10 кВ.

Пластмассовая изоляция – это поливинилхлоридный пластикат в виде сплошного слоя или из композиций полиэтилена. Также используются кабели с изоляцией из самозатухающего (не поддерживающего горения) и вулканизированного полиэтилена.

Кабели с пластмассовой и резиновой изоляцией можно прокладывать на любую высоту.

Экраны

— это название оболочки, которая защищает внешние цепи от влияния электромагнитных полей токов, проходящих по кабелю. Экраны обеспечивают симметрию электрического поля вокруг жил кабеля. Изготавливаются из полупроводящей бумаги, алюминиевой или медной фольги.

Заполнители

— элементы, заполняющие свободные промежутки между токопроводящими жилами и изоляцией кабеля. Они герметизируют кабель, придают ему прочность и необходимую форму. В качестве заполнителей применяют жгуты из бумажных лент или кабельной пряжи, нити из пластмассы или резины.

Оболочка силового кабеля

бывает из алюминия, свинца, стали, пластмассы и резины. Она предохраняет внутренние элементы кабеля от разрушения влагой, кислотами, газами и т. п.

Защитные покровы силовых кабелей

защищают оболочки кабелей, которые могут повреждаться и даже разрушаться от химических и механических воздействий.

Существует три типа покрова: подушка, бронепокров и наружный покров. В зависимости от конструкции кабеля применяют один, два или три защитных покрова.

Подушка накладывается на экран или оболочку для их защиты от коррозии и повреждения лентами или проволоками брони. Подушка представляет собой слои пропитанной кабельной пряжи, поливинилхлоридных, полиамидных и т.п. лент, крепированной бумаги, битумного состава или битума.

Бронепокров – это броня из стальной проволоки или стальных лент. Ею обматывают оболочки кабелей в зависимости от условий эксплуатации.

Броня из плоских стальных лент защищает кабели только от механических повреждений. Броня из стальных проволок помимо этого может растягиваться. Это очень важно при вертикальной прокладке кабелей на большую высоту или по крутонаклонным трассам.

Наружный покров предохраняет броню кабеля от коррозии. Он представляет собой слой кабельной или стеклянной пряжи, пропитанной битумным составом, а в некоторых конструкциях поверх слоев пряжи и битума накладывают выпрессованный ПВХ или полиэтиленовый шланг.

В шахтах, взрывоопасных и пожароопасных помещениях не допускается применять бронированные кабели обычной конструкции из-за наличия между оболочкой и броней кабеля «подушки» с содержанием горючего битума. В этих случаях должны применяться кабели с негорючей «подушкой» и наружный покров, изготовленный на основе стеклянной пряжи из штапельного стекловолокна.

Маркировка – способ определения типа кабеля.

Для определения свойств кабеля и возможной сферы его применения используют цветовую и знаковую маркировку. Цветовая маркировка может применяться каждой страной и производителем в соответствии со своей системой. Однако большинство стран старается придерживаться общих принципов, которые были разработаны Международной Электротехнической комиссией и нашли свое воплощений в стандарте данной Комиссии МЭК 60445:2010.

В нашей стране принято знаковое нанесение маркировки, где каждый знак и место, которое он занимает, имеет свое значение.

А – алюминиевая. Если нет ни какого символа, то это означает что жила медная. Данные символы стоят в самом начале применяемого кода.

В – из поливинилхлорида

Ц – бумажная, пропитанная не стекающим составом

НР – резиновая, не поддерживающая горение

П – термопластичный полиэтилен, дополнительная буква С указывает, что данные материал самостоятельно затухающий, а символ В, что он вулканизированный.

О – наличие оболочки у каждой жилы

П – полиэтиленовая или из сополимера полиэтилена

Б – броня, выполненная из двух стальных лент с защитным покровом от коррозии

Бн – то же, что и Б, но покрытие еще и не горючее

БбГ – броня, выполненная из профильной стальной ленты

К – из круглых, стальных, оцинкованных проволок с защитным покровом

П – то же, что и К, только проволока плоская.

Э – медный по изолированной жиле

Эо – общий экран сердечника из меди для трехжильного кабеля

г – герметизация в продольном направлении набухающими в воде лентами

га — поперечная и продольная герметизация алюминиево полимерной лентой и водонабухающими лентами

Дополнительная информация и символы:

нг LS – не горючий, с низким дымовым и газовым выделением

Кабельные линии электропередачи, общие сведения о кабельных линиях и кабелях

ПО УЧЕБНОЙ ЭЛЕКТРОМОНТАЖНОЙ ПРАКТИКЕ

Монтаж комплектных и вводных распределительных устройств, щиты, пульты, станции управления

«К защите допускаю»

Оценка при защите

Оглавление

Введение3

1. Кабельные линии электропередачи, общие сведения о кабельных линиях и кабелях4

1.1 Классификация кабелей и кабельных сетей 4

1.2 Технология монтажа кабельных линий 6

1.3 Разделка концов кабелей 8

1.4 Способы соединения кабелей 11

1.5 Прокладка кабельных линий 14

1.6 Прозвонка кабелей в лотках 17

2. Технология обслуживания, ремонт кабельных линий19

2.1. Техническое обслуживание кабельных линий 19

2.2. Ремонт кабельных линий 20

2.3. Основные повреждения кабельных линий 22

Заключение25

Библиографический список 26

Зарождение в начале прошлого века техники передачи электроэнергии по проводникам, получившим впоследствии общее название «электропровода», было связано с необходимостью передачи электрических сигналов. Электропровода появились в конце прошлого столетия вместе с первыми электрическими генераторами и началом развития электроснабжения. Передача электроэнергии играет важную роль в решении задач электрификации, технического перевооружения всех отраслей народного хозяйства, механизации, автоматизации и интенсификации производственных процессов.

Единая энергосистема России — один из крупнейших в мире высокоавтоматизированных электроэнергетических комплексов, обеспечивающих производство, передачу и распределение электроэнергии и централизованное оперативно-диспетчерское управление этими процессами. В составе ЕЭС России параллельно работают около 450 крупных электростанций различной ведомственной принадлежности, суммарной мощностью более 200 млн кВт, а также имеется свыше 2,5 млн км линий электропередачи различных напряжений, в том числе 30 тыс. км системообразующих ЛЭП напряжением 500, 750, 1150 кВ. Передача электроэнергии можно произвести по воздушным и кабельным линиям. Наиболее защищенным видом передачи электроэнергии, но к тому же дорогим, является кабельная электропередача.

Цель данной работы заключается в изучении кабельных линий и кабелей.

Кабельные линии электропередачи, общие сведения о кабельных линиях и кабелях

1.1 Классификация кабелей и кабельных сетей

Силовые кабели состоят из следующих основных элементов: токопроводящих жил, изоляции, оболочек и защитных покровов. Кроме основных элементов в конструкцию кабеля могут входить экраны, жилы защитного заземления и заполнители.

Силовые кабели различают по следующим признакам: роду металла токопроводящих жил — кабели с алюминиевыми и медными жилами; роду материалов, которыми изолируют токопроводящие жилы — кабели с бумажной, пластмассовой и резиновой изоляцией; роду защиты изоляции жил кабелей от влияния внешней среды — кабели в металлической, пластмассовой и резиновой оболочке; способу защиты от механических повреждений — бронированные и небронированные; количеству жил — одно-, двух-, трех- и четырехжильные.

Каждый электрик должен знать:  Определение коэффициента мощности

Каждая конструкция кабелей имеет свои обозначения и марку. Марка кабеля составляется из начальных букв слов, описывающих конструкцию кабеля.

Кабельные линии прокладывают в земляных траншеях, специальных кабельных сооружениях, на эстакадах, в галереях, открыто по стенам зданий и сооружений, в трубах, во внутрицеховых помещениях промышленных предприятий, а также коллекторах — подземных сооружениях, предназначенных для прокладки в них кабелей совместно с линиями связи и другими коммуникациями.

Конструкция силовых кабелей:

а — двужильные кабели с круглыми и сегментными жилами; б— трехжильные кабели с поясной изоляцией и отдельными оболочками; в — четырехжильные кабели с нулевой жилой круглой, секторной или треугольной формы; 7 — токопроводящая жила; 2— нулевая жила; 3 — изоляция жилы; 4— экран на то ко проводя щей жиле; 5— поясная изоляция; 6— заполнитель; 7— экран на изоляции жилы; 8

оболочка; 9— бронепокров; 10— наружный защитный покров.

Наиболее дешевый способ канализации электроэнергии — размещение кабелей в траншее. Такой способ не требует большого объема строительных работ и создает хорошие условия для охлаждения кабелей. Недостаток этого способа — возможность механических повреждений кабелей во время различных раскопок, проводимых при эксплуатации сооружений. В траншеях кабели прокладывают на глубине не менее 0,7 м на трассах, не загруженных другими подземными и надземными коммуникациями. В одной траншее размещают не более шести кабелей на напряжение 6—10 кВ или двух кабелей на напряжение 35 кВ. Кроме того, рядом с ними допускается прокладка не более одного пучка из четырех контрольных кабелей.

При пересечении с железнодорожными путями и проездами в стесненных местах, на участках вероятного разлива расплавленного металла и в районах с интенсивными блуждающими токами или грунтами с особой степенью агрессивности применяют прокладку кабелей в блоках.

На территории энергоемких промышленных предприятий при более 20 кабелей, идущих в одном направлении, применяют прокладку в туннелях. Такая прокладка обеспечивает надежную работу кабельных линий, но имеет самую высокую стоимость строительной части.

1.2 Технология монтажа кабельных линий

Кабельные линии прокладывают так, чтобы при их эксплуатации исключалась возможность возникновения опасных механических напряжений и повреждений.

Кабели укладывают с запасом по длине 1—2 % для компенсации возможных смещений почвы и температурных деформаций как самих кабелей, так и конструкций, по которым они проложены. В траншеях и на сплошных поверхностях внутри зданий и сооружений запас создают волнообразной укладкой кабеля («змейкой»), а по кабельным конструкциям (кронштейнам) — образованием стрелы провеса. Создавать запас кабеля в виде колец (витков) не допускается.

Усилия тяжения при прокладке кабелей зависят от способа прокладки, сечения жил, температуры и трассы.

Кабели, прокладываемые горизонтально по конструкциям, стенам, перекрытиям и фермам, жестко закрепляют в конечных точках, непосредственно у концевых муфт и заделок, на поворотах трассы, с обеих сторон изгибов и у соединительных муфт. Кабели на вертикальных участках закрепляют на каждой кабельной конструкции. В местах жесткого крепления небронированных кабелей со свинцовой или алюминиевой оболочкой на конструкциях применяют прокладки из листовой резины, листового поливинилхлорида или другого эластичного материала. Небронированные кабели с пластмассовой оболочкой или пластмассовым шлангом, а также бронированные кабели крепят к конструкциям скобами, хомутами, накладками без прокладок.

Внутри помещений и снаружи в местах, доступных для неквалифицированного персонала, где возможно передвижение автотранспорта, грузов и механизмов, бронированные и небронированные кабели защищают от механических повреждений до безопасной высоты (не менее 2 м от уровня земли или пола и на глубине 0,3 м в земле).

Защиту обеспечивают кожухами из листового металла толщиной 2,5 мм или отрезками стальных труб. Приступая к сооружению кабельных линий, монтажники изучают рабочую документацию: план трассы; продольный профиль; рабочие чертежи конструкций; строительные чертежи кабельных сооружений; перечни мероприятий по герметизации вводов; чертежи перехода кабельной линии напряжением 35 кВ в воздушную; кабельный журнал; спецификации на материалы и изделия; сметы и др.

На сложных трассах с многими поворотами и резкими перепадами высотных отметок используют комплект протяжных устройств с автономным приводом ПИК-4У. Если длина трассы не превышает 180 м и имеет один угол поворота, используют одно устройство; при длине трассы 200—300 м с поворотами применяют два привода, а при длине трассы 500 м с поворотами — три-четыре привода. Кабели напряжением до 1000 В защищают там, где возможны механические повреждения: в местах частых раскопок, в местах перехода через улицы, дороги, вдоль проезжей части.

Кабели напряжением выше 1000 В защищают от механических повреждений красным кирпичом или бетонными плитами на всем протяжении трассы. Предварительно кабель покрывают слоем песка или чистой земли толщиной 100 мм. После завершения указанных операций траншею зарывают. Бронированные силовые кабели с металлическими оболочками на протяженных участках прокладывают с передвигаемого или самоходного кабелеукладчика. Перед прокладкой трассу очищают от пней и корней деревьев, выравнивают откосы, засыпают ямы.

При использовании ножевого кабелеукладчика типа КУ-150 с пассивным рабочим органом его буксируют двумя (или более) тракторами 1 и 2, так как усилия, необходимые для расклинивания грунта ножом Р, составляют 170—440 кН. Кабелеукладчик 3 снабжен кассетой 8 с входным лотком 4 для прохода разматываемого с барабана 5 кабеля 7. К кабелеукладчику прицеплен транспортер 6 кабельных барабанов.

При движении кабелеукладчика его нож входит в грунт на глубину 1,2—1,3 м, а в образующуюся щель укладывается кабель.

После прохода ножа щель под действием массы грунта закрывается, а кабель остается на глубине 1—1,2 м и не требует защиты от механических повреждений. В процессе прокладки электромонтажники вращают барабан 5 с кабелем так, чтобы последний перед входом в кассету имел некоторый провес.

1.3 Разделка концов кабелей

Разделку концов кабелей производят до монтажа муфт и заделок. Она заключается в последовательном ступенчатом удалении на определенной длине защитных покровов, брони, оболочки, экрана и изоляции кабеля. Размеры разделки определяют по технической документации в зависимости от конструкции кабеля и монтируемой на нем муфты (заделки), напряжения кабеля и сечения его жил.

Приступая к разделке конца кабеля, проверяют отсутствие влаги в бумажной изоляции и жилах. При необходимости удаляют имеющуюся влажную изоляцию, лишнюю длину концов, участки под герметизирующими колпачками и концевыми кабельными захватами, а также участки, проходящие через щеки барабанов. Дефектные места кабеля отрезают секторными ножницами НС.

Разделку кабеля начинают с определения мест установки бандажей, которые рассчитывают по формуле: А=Б + О + П + И + Г. На конце кабеля отмеряют расстояние А и распрямляют этот участок. Далее подматывают смоляную ленту и накладывают бандаж из двух-трех витков стальной оцинкованной проволоки вручную или с помощью специального приспособления (клетневки). Концы проволоки захватывают плоскогубцами, скручивают и пригибают вдоль кабеля.

Наружный кабельный покров разматывают до установленного бандажа и не срезают, а оставляют его для защиты ступени брони от коррозии после монтажа муфты.

На броню кабеля на расстоянии Б (50. 70 мм) от первого проволочного бандажа накладывают второй бандаж. При монтаже чугунных соединительных и ответвительных муфт и концевых заделок в стальных воронках участок брони используют для уплотнения их горловин, поэтому размер Б увеличивают до 100. 160 мм. По внешней кромке второго бандажа бронерезкой или ножовкой надрезают верхнюю и нижнюю ленты брони (не более половины их толщины), затем броню разматывают, обламывают и снимают.

Далее удаляют подушку. Для этого кабельную бумагу и битумный состав подогревают огнем пропановой горелки или паяльной лампы. Оболочку кабеля очищают салфеткой, смоченной в подогретом до 35. 40 °С трансформаторном масле.

Для удаления оболочки на расстоянии 50. 70 мм от среза брони делают кольцевые надрезы. В чугунных муфтах и концевых стальных воронках участок оболочки используют только для присоединения заземляющего проводника, поэтому указанное расстояние уменьшают до 20. 25 мм.

При разметке свинцовых оболочек кольцевые надрезы на половину глубины выполняют монтерским или специальным ножом с ограничителем глубины резания. От второго кольцевого надреза на расстоянии 10 мм полоску оболочки захватывают плоскогубцами и удаляют. Оставшуюся часть оболочки раздвигают и отламывают у второго кольцевого надреза. Между первым и вторым кольцевыми надрезами оболочка временно остается. Она предохраняет изоляцию от повреждения при изгибе жил.

У кабелей с алюминиевой оболочкой надрезы выполняют стальным ножом НКА-1М с режущим диском. От второго кольцевого надреза делают винтовой надрез. Удаление гофрированной алюминиевой оболочки производят после ее надрезания на расстоянии 10. 15 мм у выступа гофр. Далее жилы кабеля освобождают от поясной изоляции и постепенно выгибают по шаблону. Затем подготовляют место для присоединения заземления.

Для присоединения жил кабелей к контактным выводам элек­тротехнических устройств их оконцовывают наконечниками, за­крепляемыми на жилах опрессовкой, сваркой или пайкой. Оконцевание однопроволочных жил кроме того может быть выполнено формированием наконечника из конца жилы. Соединение жил кабелей в муфтах выполняют в соединительных и ответвительных гильзах опрессовкой, сваркой или пайкой.

Концы алюминиевых секторных жил перед опрессовкой скругляют: многопроволочные — универсальными плоскогубцами, однопроволочные и комбинированные — специальным инструментом, входящим в набор НИСО.

1.4 Способы соединения кабелей

Основные требования к электрическому соединению заключаются в обеспечении надежного и долговечного контакта в электрической цепи с сопротивлением, не превышающим сопротивление эквивалентного участка целого проводника, а для соединений, работающих в условиях, не исключающих случайное растяжение, необходимо обеспечить также механическую прочность не менее прочности проводника. Неразборные соединения выполняются пайкой, сваркой, опрессовкой; разборные (без учета разъемных) — стягиванием при помощи болтов, винтовых зажимов, штыревых выводов.

Наибольшие трудности при соединениях вызывают алюминиевые жилы, на поверхности которых всегда имеется плохо проводящая, твердая и тугоплавкая оксидная пленка. После зачистки поверхности алюминия она сразу же образуется вновь. При пайке эта пленка препятствует сцеплению с припоем, при сварке — образует в расплаве нежелательные включения. При креплении в винтовых зажимах алюминий проявляет другой свой недостаток — низкий предел текучести, в результате чего алюминий «вытекает» из-под зажима, ослабляя контакт.

Места соединений и ответвлений проводов надежно изолируют, они, как правило, не должны при эксплуатации подвергаться растяжению и быть доступными для осмотра и ремонта. Соединяемые участки и ответвления проводов размещают в соответствующих коробках с закрывающейся крышкой. В соединительных и ответвительных коробках проводники могут стягиваться винтовым соединением, для чего в основании коробок запрессовываются либо гайки, либо винты.

Такие зажимы, благодаря простоте и удобству, широко применяются для присоединения проводов к розеткам, выключателям, к токонесущим элементам электроприборов, для соединения и ответвления проводов в электропроводке. Контактные зажимы разделяются на винтовые и безвинтовые (пружинные). Винтовые зажимы для проволочных алюминиевых и многопроволочных медных жил снабжаются фасонной шайбой или шайбой-звездочкой, препятствующей выдавливанию жилы из-под крепления, а алюминиевые жилы — и разрезной пружинной шайбой, обеспечивающей постоянное давление на жилу.

Стальные детали, а также детали для соединения с алюминиевыми проводами должны иметь антикоррозийное гальваническое покрытие. С конца провода, подготавливаемого для изгиба в кольцо, срезают изоляцию на отрезке, равном трем диаметрам винта плюс 2-3 мм. Чтобы отдельные проволочки многопроволочной жилы не расходились, их свивают в плотный жгутик. Жилы зачищают мелкой наждачной бумагой, смазанной вазелином.

Подготовленный конец жилы круглогубцами (или пассатижами на круглой оправке) изгибают в кольцо с диаметром отверстия, соответствующим винту. Изгиб кольца на винтовом зажиме должен быть направлен по часовой стрелке. Зажимной винт или гайку затягивают до полного сжатия пружинной шайбы и дожи-мают еще примерно на половину оборота.

Наиболее простой способ сварки алюминиевых жил сечением до 10 мм2 и медных до 4 мм2 — контактный разогрев их концов угольным электродом до образования расплавленного шарика. Нагрев происходит в точке соприкосновения электрода и жилы. Концы свариваемых жил и электрод подключают к вторичной обмотке трансформатора с выходным напряжением 6-10 В.

Для сварки можно применить лабораторный девятиамперный автотрансформатор (ЛАТР). При работе с ним надо снять с него регулирующий напряжение ползунок и намотать поверх сетевой обмотки вторичную обмотку, которую изолируют от сетевой несколькими слоями бумаги от крафт-пакетов и поверх нее — несколькими слоями лакоткани или изоляционной ленты с хлопчатобумажной основой.

С проводов, подлежащих сварке, осторожно срезают изоляцию на 40-50 мм, зачищают провода наждачной бумагой до блеска и скручивают под сварку. Для защиты расплава от кислорода электромонтажники применяют флюс «ВАМИ», состоящий из хлористого калия, хлористого натрия и криолита в соотношении 5:3:2 (по массе). Можно обойтись и обычной бурой, продающейся в аптеках. Перед сваркой в лунку угольного электрода насыпают флюс и опускают скрутку проводов, прижимая их к электроду. Включают трансформатор. Под слоем расплавившегося флюса концы жил оплавляются и сливаются в шарик. При этом надо помнить, что отводить жилы от электрода можно только после остывания (затвердевания) спая. За процессом сварки наблюдают через очки для газосварщика или синий светофильтр, закрепленный на очковой оправе.

Чтобы уменьшить потери напряжения, трансформатор размещают поближе к месту сварки. Сетевой выключатель выводят отдельным шнуром и держат в левой руке. Для этого подходит проходной выключатель, устанавливаемый в торшерах или настольных лампах в разрезе шнура. После сварки соединение очищают от флюса стальной щеткой, покрывают лаком и изолируют.

Хотя сварка проходит без брызг и капель расплавленного металла, для перестраховки ее следует выполнять в перчатках (лучше кожаных) и в защитных очках-светофильтрах. На пол необходимо положить лист асбеста, оргалита или фанеры. Полезно предварительно освоить технологию процесса на отрезках ненужных проводов, причем угольный электрод заранее следует обжечь на открытом воздухе.

При пайке алюминиевых проводов сечением 4-10 мм2 снимают изоляцию с концов жил, зачищают ножом, стальной щеткой или наждачной бумагой до блеска и скручивают. Место соединения пламенем горелки или паяльной лампы облуживают специальными припоями без использования флюса.

При применении мягких припоев используют флюс типа АФ-44. Места пайки очищают от остатков флюса, протирают бензином, покрывают влагонепроницаемым (асфальтовым) лаком, а затем изоляционной лентой, которую также лакируют. Медные однопроволочные и многопроволочные провода сечением до 10 мм2 соединяют скруткой с последующей припайкой места соединения припоями ПОС-30(30 % олова и 70 % свинца) или ПОС-40 и канифолью в качестве флюса. Места соединения скруткой должны быть длиной не менее 10-15 наружных диаметров соединяемых жил.

1.5 Прокладка кабельных линий

Выбор способа прокладки кабельных сетей производят в зависимости от:

ü величины и размещения нагрузок, плотности застройки предприятия,

ü компоновки электротехнических помещений,

ü наличия технологических, транспортных коммуникаций,

ü параметров и расположения источников питания,

ü уровня грунтовых вод,

ü степени загрязнения окружающей среды и грунта, назначения кабельной лини.

а) траншея; б) канал; в) туннель; г) блок; д) галерея; е) эстакада.

Каждый вид специального сооружения для прокладки кабелей характеризуется максимальным количеством силовых кабелей, которое можно в нём проложить. Траншея — 6 кабелей, канал -24, блок — 20, туннель — 72, эстакада — 24, галерея — 56.

Редко отдаётся предпочтение какому-либо одному виду прокладки кабелей. Обычно применяют смешанную прокладку, когда в зависимости от конкретных условий является целесообразным комбинированное исполнение различных способов прокладки кабельных линий.

Кабельные линии промышленных предприятий можно разделить на внутрицеховые и внецеховые. К внутрицеховым кабельным сетям относятся прокладки кабелей открыто на конструкциях, в лотках, коробах, каналах, туннелях и в трубах. К внецеховым кабельным линиям относятся прокладки кабелей в каналах, туннелях, блоках, траншеях, на эстакадах и в галереях. Внецеховые кабельные сети требуют для размещения сравнительно небольших площадей и могут быть осуществлены почти в любых атмосферных и грунтовых условиях.

Из опыта эксплуатации кабельных коммуникаций на действующих и реконструируемых объектах, прокладка кабеля в траншеях недостаточно надёжна, из-за частого производства земляных работ. Поэтому при числе кабелей от 6 до 30 рациональна прокладка в каналах или блоках, при числе кабелей свыше 30 кабели прокладывают в специальных кабельных сооружениях — в туннелях, на эстакадах и в галереях.

В помещениях скрытая прокладка проводов и кабелей в стальных трубах постепенно вытесняется открытыми прокладками. Открытая прокладка кабелей почти полностью исключают зависимость производства монтажных работ по прокладке кабелей от готовности строительной части сооружения. Открытые прокладки кабелей позволяют закончить нулевой цикл строительных работ, не дожидаясь производства электромонтажных работ, что невозможно при скрытых прокладках. Открытые прокладки кабелей наглядны, доступны, удобны для осмотра и замены кабелей, отличаются гибкостью при изменении трасс во время реконструкции электроустановок.

При открытой прокладке кабелей следует соблюдать меры по пожарной безопасности, обосновывать выбор марок кабелей и оболочек, правильно выбирать кабель по нагреву, контролировать качество присоединений и порядок раскладки кабелей, отделять зоны массовой прокладки кабелей от оборудования. При открытой прокладке кабелей в электротехнических и производственных помещениях следует стремиться к совмещению трасс, объединению кабелей различного назначения (силовых, осветительных, кабелей управления) в общие потоки, прокладывая их на общих конструкциях, лотках или коробах. Необходимо на стадии проектирования предусмотреть зоны размещения кабельных сетей, согласовать их взаимное расположение с технологическими, энергетическими, сантехническими сетями.

В случае размещения большого количества открыто прокладываемых кабелей целесообразно устройство кабельного этажа в верхней зоне подвала под электромашинным помещением, под производственными пролётами.

По территории промышленных предприятий кабельные сети могут выполнятся подземными — в траншеях, каналах, туннелях и блоках или надземными на эстакадах и в галереях. Подземный способ прокладки кабельных сетей защищает их от грозовых и атмосферных воздействий. Кабели, проложенные под землёй в меньшей мере создают помехи. Однако прокладка кабельных подземных коммуникаций нецелесообразна при неблагоприятных грунтовых условиях — высоком уровне грунтовых вод, наличия химически активных веществ, разрушающих кабельные оболочки.

Надземная прокладка кабелей рекомендуется во всех случаях, когда это позволяют условия среды, застройки предприятия и другие факторы. Надземные прокладки кабелей доступны при обслуживании, обеспечивают лёгкую замену и возможность дополнительной прокладки кабелей, облегчают работы по реконструкции сетей. При выборе способа прокладки кабельных линий следует учитывать, что первоначальные затраты при подземной системе выше, но надземные системы требуют более сложного ухода (покраска конструкций, очистка сооружений).

1.6 Прозвонка кабелей в лотках

Для правильного подключения кабелей к контактам электрических машин, приборов и аппаратов проводят их прозвонку.

Простейшая прозвонка выполняется с помощью лампы и батарейки т.е. жилы одного конца кабеля произвольно маркируют и к первой из них подключают провод от батарейки. Затем присоединяют к лампе проводник и им поочередно касаются жил на другом конце кабеля. Если при касании лампа загорается, значит это жила, к которой присоединен провод от батарейки.

Также прозвонку можно выполнить без проводника, соединяющего оба конца кабеля. Таков же принцип прозвонки с применением мегомметра, если он оказывается присоединенным к концам, принадлежащим одной и той же жиле, его стрелка показывает нуль.

Рассмотренные способы прозвонки удобны в том случае, если оба конца кабеля расположены недалеко друг от друга и ее может выполнить один человек. Если концы длинного отрезка кабеля находятся в разных помещениях здания или в разных зданиях, применяется наиболее универсальный способ прозвонки с помощью двух телефонных трубок. Для этого телефонные и микрофонные капсюли в трубках соединяют последовательно, и в эту цепь включают сухой элемент или аккумулятор с напряжением 1—2 В. Этот способ удобен также тем, что монтеры могут согласовывать свои действия, переговариваясь по телефону. На одном конце кабеля монтер присоединяет один проводник трубки к оболочке кабеля, а другой — к любой из его жил. На другом конце кабеля второй рабочий присоединяет один проводник трубки к оболочке кабеля, а другой — поочередно к его жилам. Если в трубке слышится щелчок и монтеры слышат друг друга, значит проводники трубки присоединены к одной жиле кабеля.

В некоторых случаях прозвонка выполняется с помощью специального трансформатора с несколькими отводами от вторичной обмотки В этом случае начало обмотки подключают к заземленным оболочкам кабеля, а отводы — к его жилам. Далее записывают напряжение, поданное на каждую из жил. Измерив напряжение между жилами и оболочкой на противоположном конце кабеля и используя записанные значения напряжения, нетрудно определить принадлежность концов к той или иной жиле и выполнить маркировку.

Для маркировки жил силовых кабелей используют отрезки виниловых трубок или специальные оконцеватели, на которых несмываемыми чернилами делают надписи.

Устройство электрических кабелей и кабельных линий

Кабельные линии служат для передачи электроэнергии от производителя конечному потребителю. Кабельная линия состоит из одного или нескольких силовых кабелей с соединительными и концевыми муфтами . Прокладку кабельной линии ведут или непосредственно в земле или в специальных кабельных сооружениях.

Каждой кабельной линии присваивают наименование или номер. Чаще всего линию обозначают двумя цифрами, соответствующими номерам трансформаторных подстанций, соединяемых этой линией, причем первым указывают наименьший номер. Так, например, если кабельная линия из ТП4 заходит в ГП12, ее обозначают 4 — 12. Питающие кабельные линии обозначают также двумя цифрами — первая указывает номер центра питания, вторая — номер распределительного пункта, соединяемого этой линией с ЦП. Если. кабельная линия состоит из нескольких параллельных кабелей, то каждый из них должен иметь тот же номер с добавлением букв А, Б, В и т. д,

Для длительной и бесперебойной работы кабельных линий эксплуатационный персонал должен:

  1. принимать в эксплуатацию новые линии и осуществлять технический надзор за их строительством;
  2. замерять нагрузки на линиях и контролировать их нагрев;
  3. проводить мероприятия по защите металлических оболочек кабелей от коррозии;
  4. следить за состоянием трасс кабельных линий и кабельных сооружений и за производством работ на трассах и вблизи кабельных линий;
  5. производить плановый ремонт кабельных сооружений и проложенных в них кабельных линий;
  6. выполнять плановые осмотры и ремонты концевых заделок кабельных линий в РП, ТП и ЦП;
  7. испытывать линии повышенным напряжением;
  8. измерять сопротивление изоляции линий мегомметром;
  9. производить ремонт линий при их повреждении.

В процессе монтажа кабельных линий эксплуатационный персонал проверяет соответствие марки прокладываемого кабеля проектируемой, знакомится с протоколами заводских испытаний кабеля и следит за его состоянием на барабанах; проверяет, соответствует ли трасса и глубина траншеи проекту; наблюдает за правильной прокладкой кабеля и монтажом соединительных и концевых муфт; эскизирует проложенные кабельные линии и муфты.

Технический надзор за прокладкой кабельных линий напряжением выше 1 кВ выполняет инженерно-технический персонал (мастер участка), за прокладкой до 1кВ — электромонтер соответствующего эксплуатационного участка. Эскизирование кабельных линий производит персонал монтажной и эксплуатационной организаций.

При сдаче кабельной линии в эксплуатацию монтажная организация представляет следующую техническую документацию:

  1. технический проект линии со всеми согласованиями на ее прокладку;
  2. исполнительный чертеж, выполненный в масштабе 1 :500;
  3. протоколы заводских испытаний кабеля и протоколы вскрытия и осмотра его образцов в лаборатории (если это необходимо);
  4. акты наружного осмотра кабеля на барабанах;
  5. кабельный журнал, в котором указаны длина кабельной линии, число и типы соединительных муфт, фамилии рабочих, монтировавших муфты, даты монтажа и прокладки;
  6. акты на скрытые работы;
  7. акт выполнения фазировки;
  8. протоколы испытания кабельной линии после монтажа.

Каждой линии присваивают номер или наименование и на нее заводят паспорт, содержащий все необходимые технические данные, а в дальнейшем пополняемый сведениями по испытаниям, ремонту и эксплуатации линии.

Перед включением проложенной линии эксплуатационный персонал проверяет целость ее жил, сопротивление изоляции между жилами и между жилами и землей, соответствие жил по фазам и испытывает линию повышенным напряжением. После включения кабельной линии под напряжение проверяют правильность ее фазировки.

Открыто проложенные кабельные линии, а также все муфты и концевые заделки имеют бирки, на которых указывают номер или наименование линии, напряжение и сечение.

Кабельную линию прокладывают по трассе с учетом наименьшего расхода кабеля и обеспечения его сохранности от механических повреждений, коррозии, вибрации, перегрева и поджога электрической дугой при повреждении рядом проложенных кабелей.

Чтобы в кабельной линии в процессе монтажа и эксплуатации не возникли опасные механические напряжения, кабели прокладывают с запасом по длине (змейкой) и с обеих сторон соединительных муфт оставляют запас длиной 350мм в вертикальной плоскости в углублении, образованном в дне траншеи. Запас кабеля в виде колец (витков) не допускается из-за перегрева его в этих местах.

Кабели, проложенные открыто горизонтально по конструкциям и стенам (в коллекторах, каналах), жестко закрепляют в конечных точках, местах изгибов и у соединительных муфт, устанавливая через каждые 0,8 — 1 метра поддерживающие конструкции. Небронированные кабели ААШв прокладывают по сплошным несгораемым перегородкам, закрепляя дополнительно через каждые 10 метров.

В местах, где возможны механические повреждения, кабельные линии, проложенные открыто, защищают на высоте 2 метра от уровня пола или земли стальным уголком или другим надежным покрытием. При проходе из траншеи в здания, туннели, через перекрытия кабели прокладывают в трубах или проемах.

Радиусы внутренней кривой изгиба кабелей
допускаются не менее следующих кратностей по отношению
к их наружному диаметру:

Силовые одножильные с бумажной пропитанной изоляцией в свинцовой или алюминиевой оболочке бронированные и небронированные
Силовые многожильные с пропитанной бумажной изоляцией, или с бумажной изоляцией, пропитанной нестекающим составом, в свинцовой оболочке бронированные или небронированные То же, в алюминиевой оболочке бронированные и небронированные Силовые с пластмассовой изоляцией в алюминиевой оболочке Силовые с резиновой изоляцией в свинцовой или поливинилхлоридной оболочке, а также силовые с пластмассовой изоляцией, не имеющие алюминиевой оболочки:
10
6

Кабельные линии напряжением до 1000В и выше, проложенные открыто, имеют свинцовые соединительные муфты, а до 1000 В проложенные в земле — чугунные.

Свинцовые соединительные муфты, расположенные открыто в кабельных сооружениях (туннелях, коллекторах, каналах), закрываются разъемными стальными кожухами (смотри рисунок ниже), которые при электрическом пробое изоляции в свинцовой муфте и ее загорании предохраняют соседние кабели от повреждений.

В настоящее время кроме свинцовых и чугунных муфт для кабельных линий с бумажной и пластмассовой изоляцией напряжением до 10кВ включительно применяют эпоксидные соединительные муфты.

Металлические оболочки кабелей соединяют в муфтах между собой, а также с корпусами муфт по всей длине кабельной линии. Кроме того, в концевых заделках металлические оболочки соединяют с системой заземления подстанции для: уменьшения опасности поражения электрическим током обслуживающего персонала сети при пробое изоляции кабельной линии во время ее эксплуатации, исключения возможности повреждения свинцовой или алюминиевой оболочки линии электрической дугой, которая может возникнуть при появлении на оболочке напряжения, достаточного для того, чтобы пробить пропитанную влагой и различными веществами джутовую подушку между броней и оболочкой.

В случае прокладки кабелей в земле на дне траншеи делают подсыпку слоем мягкой земли или песка толщиной 100мм. Сверху кабель также засыпают слоем песка или земли, не содержащим камней, строительного мусора и шлака, толщиной не менее 100 мм, затем укладывают на кабели напряжением выше 1000В покрытия, защищающие от механических повреждений, и траншею засыпают полностью.

Кабели напряжением выше 1000В защищают от механических повреждений бетонными плитами или кирпичом (несиликатным), а напряжением до 1000В — таким же покрытием, но только на тех участках, где вероятны механические повреждения.

Способы покрытия кабелей кирпичом в зависимости от числа их показаны на рисунке ниже. Глубина заложения кабельных линий напряжением до 10кВ от планировочной отметки составляет 0,7 метра, а при пересечениях улиц и площадей 1 метр. На участках длиной не более 5 метров глубину заложения кабелей можно уменьшить до 0,5 метра.

Наименьшие расстояния от кабельных линий до различных сооружений при параллельном сближении и пересечениях приведены ниже. Эти расстояния могут быть сокращены по согласованию с эксплуатационной организацией (например, при заключении кабелей в трубы).

Наименьшие расстояния от кабельных линий
до различных сооружений, мм.

Устройство электрических кабелей и кабельных линий

КАБЕЛЬНЫЕ ЛИНИИ НАПРЯЖЕНИЕМ ДО 220 кВ

Область применения, определения

2.3.1. Настоящая глава Правил распространяется на кабельные силовые линии до 220 кВ, а также линии, выполняемые контрольными кабелями. Кабельные линии более высоких напряжений выполняются по специальным проектам. Дополнительные требования к кабельным линиям приведены в гл.7.3, 7.4 и 7.7.

2.3.2. Кабельной линией называется линия для передачи электроэнергии или отдельных импульсов ее, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

2.3.3. Кабельным сооружением называется сооружение, специально предназначенное для размещения в нем кабелей, кабельных муфт, а также маслоподпитывающих аппаратов и другого оборудования, предназначенного для обеспечения нормальной работы маслонаполненных кабельных линий. К кабельным сооружениям относятся: кабельные туннели, каналы, короба, блоки, шахты, этажи, двойные полы, кабельные эстакады, галереи, камеры, подпитывающие пункты.

Кабельным туннелем называется закрытое сооружение (коридор) с расположенными в нем опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонты и осмотры кабельных линий.

Кабельным каналом называется закрытое и заглубленное (частично или полностью) в грунт, пол, перекрытие и т.п. непроходное сооружение, предназначенное для размещения в нем кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.

Кабельной шахтой называется вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).

Кабельным этажом называется часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.

Двойным полом называется полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).

Кабельным блоком называется кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.

Кабельной камерой называется подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в нее, называется кабельным колодцем.

Кабельной эстакадой называется надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.

Кабельной галереей называется надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.

2.3.4. Коробом называется — см. 2.1.10.

2.3.5. Лотком называется — см. 2.1.11.

2.3.6. Кабельной маслонаполненной линией низкого или высокого давления называется линия, в которой длительно допустимое избыточное давление составляет:

0,0245-0,294 МПа (0,25-3,0 кгс/см ) для кабелей низкого давления в свинцовой оболочке;

0,0245-0,49 МПа (0,25-5,0 кгс/см ) для кабелей низкого давления в алюминиевой оболочке;

1,08-1,57 МПа (11-16 кгс/см ) для кабелей высокого давления.

2.3.7. Секцией кабельной маслонаполненной линии низкого давления называется участок линии между стопорными муфтами или стопорной и концевой муфтами.

2.3.8. Подпитывающим пунктом называется надземное, наземное или подземное сооружение с подпитывающими аппаратами и оборудованием (баки питания, баки давления, подпитывающие агрегаты и др.).

2.3.9. Разветвительным устройством называется часть кабельной линии высокого давления между концом стального трубопровода и концевыми однофазными муфтами.

2.3.10. Подпитывающим агрегатом называется автоматически действующее устройство, состоящее из баков, насосов, труб, перепускных клапанов, вентилей, щита автоматики и другого оборудования, предназначенного для обеспечения подпитки маслом кабельной линии высокого давления.

Общие требования

2.3.11. Проектирование и сооружение кабельных линий должны производиться на основе технико-экономических расчетов с учетом развития сети, ответственности и назначения линии, характера трассы, способа прокладки, конструкций кабелей и т.п.

2.3.12. При выборе трассы кабельной линии следует по возможности избегать участков с грунтами, агрессивными по отношению к металлическим оболочкам кабелей (см. также 2.3.44).

2.3.13. Над подземными кабельными линиями в соответствии с действующими правилами охраны электрических сетей должны устанавливаться охранные зоны в размере площадки над кабелями:

для кабельных линий выше 1 кВ по 1 м с каждой стороны от крайних кабелей;

для кабельных линий до 1 кВ по 1 м с каждой стороны от крайних кабелей, а при прохождении кабельных линий в городах под тротуарами — на 0,6 м в сторону зданий сооружений и на 1 м в сторону проезжей части улицы.

Для подводных кабельных линий до и выше 1 кВ в соответствии с указанными правилами должна быть установлена охранная зона, определяемая параллельными прямыми на расстоянии 100 м от крайних кабелей.

Охранные зоны кабельных линий используются с соблюдением требований правил охраны электрических сетей.

2.3.14. Трасса кабельной линии должна выбираться с учетом наименьшего расхода кабеля, обеспечения его сохранности при механических воздействиях, обеспечения защиты от коррозии, вибрации, перегрева и от повреждений соседних кабелей электрической дугой при возникновении КЗ на одном из кабелей. При размещении кабелей следует избегать перекрещиваний их между собой, с трубопроводами и пр.

При выборе трассы кабельной маслонаполненной линии низкого давления принимается во внимание рельеф местности для наиболее рационального размещения и использования на линии подпитывающих баков.

2.3.15. Кабельные линии должны выполняться так, чтобы в процессе монтажа и эксплуатации было исключено возникновение в них опасных механических напряжений и повреждений, для чего:

кабели должны быть уложены с запасом по длине, достаточным для компенсации возможных смещений почвы и температурных деформаций самих кабелей и конструкций, по которым они проложены; укладывать запас кабеля в виде колец (витков) запрещается;

кабели, проложенные горизонтально по конструкциям, стенам, перекрытиям и т.п., должны быть жестко закреплены в конечных точках, непосредственно у концевых заделок, с обеих сторон изгибов и у соединительных и стопорных муфт;

кабели, проложенные вертикально по конструкциям и стенам, должны быть закреплены так, чтобы была предотвращена деформация оболочек и не нарушались соединения жил в муфтах под действием собственного веса кабелей;

конструкции, на которые укладываются небронированные кабели, должны быть выполнены таким образом, чтобы была исключена возможность механического повреждения оболочек кабелей; в местах жесткого крепления оболочки этих кабелей должны быть предохранены от механических повреждений и коррозии при помощи эластичных прокладок;

кабели (в том числе бронированные), расположенные в местах, где возможны механические повреждения (передвижение автотранспорта, механизмов и грузов, доступность для посторонних лиц), должны быть защищены по высоте на 2 м от уровня пола или земли и на 0,3 м в земле;

при прокладке кабелей рядом с другими кабелями, находящимися в эксплуатации, должны быть приняты меры для предотвращения повреждения последних;

кабели должны прокладываться на расстоянии от нагретых поверхностей, предотвращающем нагрев кабелей выше допустимого, при этом должна предусматриваться защита кабелей от прорыва горячих веществ в местах установки задвижек и фланцевых соединений.

2.3.16. Защита кабельных линий от блуждающих токов и почвенной коррозии должна удовлетворять требованиям настоящих Правил и СНиП 3.04.03-85 «Защита строительных конструкций и сооружений от коррозии» Госстроя России.

2.3.17. Конструкции подземных кабельных сооружений должны быть рассчитаны с учетом массы кабелей, грунта, дорожного покрытия и нагрузки от проходящего транспорта.

2.3.18. Кабельные сооружения и конструкции, на которых укладываются кабели, должны выполняться из несгораемых материалов. Запрещается выполнение в кабельных сооружениях каких-либо временных устройств, хранение в них материалов и оборудования. Временные кабели должны прокладываться с соблюдением всех требований, предъявляемых к кабельным прокладкам, с разрешения эксплуатирующей организации.

2.3.19. Открытая прокладка кабельных линий должна производиться с учетом непосредственного действия солнечного излучения, а также теплоизлучений от различного рода источников тепла. При прокладке кабелей на географической широте более 65° защита от солнечного излучения не требуется.

2.3.20. Радиусы внутренней кривой изгиба кабелей должны иметь по отношению к их наружному диаметру кратности не менее указанных в стандартах или технических условиях на соответствующие марки кабелей.

2.3.21. Радиусы внутренней кривой изгиба жил кабелей при выполнении кабельных заделок должны иметь по отношению к приведенному диаметру жил кратности не менее указанных в стандартах или технических условиях на соответствующие марки кабелей.

2.3.22. Усилия тяжения при прокладке кабелей и протягивании их в трубах определяются механическими напряжениями, допустимыми для жил и оболочек.

2.3.23. Каждая кабельная линия должна иметь свой номер или наименование. Если кабельная линия состоит из нескольких параллельных кабелей, то каждый из них должен иметь тот же номер с добавлением букв А, Б, В и т.д. Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками с обозначением на бирках кабелей и концевых муфт марки, напряжения, сечения, номера или наименования линии; на бирках соединительных муфт — номера муфты и даты монтажа. Бирки должны быть стойкими к воздействию окружающей среды. На кабелях, проложенных в кабельных сооружениях, бирки должны располагаться по длине не реже чем через каждые 50 м.

Каждый электрик должен знать:  Выпаиваем радиодетали из старых плат

2.3.24. Охранные зоны кабельных линий, проложенных в земле в незастроенной местности, должны быть обозначены информационными знаками.

Информационные знаки следует устанавливать не реже чем через 500 м, а также в местах изменения направления кабельных линий. На информационных знаках должны быть указаны ширина охранных зон кабельных линий и номера телефонов владельцев кабельных линий.

Выбор способов прокладки

2.3.25. При выборе способов прокладки силовых кабельных линий до 35 кВ необходимо руководствоваться следующим:

1. При прокладке кабелей в земле рекомендуется в одной траншее прокладывать не более шести силовых кабелей. При большем количестве кабелей рекомендуется прокладывать их в отдельных траншеях с расстоянием между группами кабелей не менее 0,5 м или в каналах, туннелях, по эстакадам и в галереях.

2. Прокладка кабелей в туннелях, по эстакадам и в галереях рекомендуется при количестве силовых кабелей, идущих в одном направлении, более 20.

3. Прокладка кабелей в блоках применяется в условиях большой стесненности по трассе, в местах пересечений с железнодорожными путями и проездами, при вероятности разлива металла и т.п.

4. При выборе способов прокладки кабелей по территориям городов должны учитываться первоначальные капитальные затраты и затраты, связанные с производством эксплуатационно-ремонтных работ, а также удобство и экономичность обслуживания сооружений.

2.3.26. На территориях электростанций кабельные линии должны прокладываться в туннелях, коробах, каналах, блоках, по эстакадам и в галереях. Прокладка силовых кабелей в траншеях допускается только к удаленным вспомогательным объектам (склады топлива, мастерские) при количестве не более шести. На территориях электростанций общей мощностью до 25 МВт допускается также прокладка кабелей в траншеях.

2.3.27. На территориях промышленных предприятий кабельные линии должны прокладываться в земле (в траншеях), туннелях, блоках, каналах, по эстакадам, в галереях и по стенам зданий.

2.3.28. На территориях подстанций и распределительных устройств кабельные линии должны прокладываться в туннелях, коробах, каналах, трубах, в земле (в траншеях), наземных железобетонных лотках, по эстакадам и в галереях.

2.3.29. В городах и поселках одиночные кабельные линии следует, как правило, прокладывать в земле (в траншеях) по непроезжей части улиц (под тротуарами), по дворам и техническим полосам в виде газонов.

2.3.30. По улицам и площадям, насыщенным подземными коммуникациями, прокладку кабельных линий в количестве 10 и более в потоке рекомендуется производить в коллекторах и кабельных туннелях. При пересечении улиц и площадей с усовершенствованными покрытиями и с интенсивным движением транспорта кабельные линии должны прокладываться в блоках или трубах.

2.3.31. При сооружении кабельных линий в районах многолетней мерзлоты следует учитывать физические явления, связанные с природой многолетней мерзлоты: пучинистый грунт, морозобойные трещины, оползни и т.п. В зависимости от местных условий кабели могут прокладываться в земле (в траншеях) ниже деятельного слоя, в деятельном слое в сухих, хорошо дренирующих грунтах, в искусственных насыпях из крупноскелетных сухих привозных грунтов, в лотках по поверхности земли, на эстакадах. Рекомендуется совместная прокладка кабелей с трубопроводами теплофикации, водопровода, канализации и т.п. в специальных сооружениях (коллекторах).

2.3.32. Осуществление разных видов прокладок кабелей в районах многолетней мерзлоты должно производиться с учетом следующего:

1. Для прокладки кабелей в земляных траншеях наиболее пригодными грунтами являются дренирующие грунты (скальные, галечные, гравийные, щебенистые и крупнопесчаные); пучинистые и просадочные грунты непригодны для прокладки в них кабельных линий. Прокладку кабелей непосредственно в грунте допускается осуществлять при числе кабелей не более четырех. По грунтово-мерзлотным и климатическим условиям запрещается прокладка кабелей в трубах, проложенных в земле. На пересечениях с другими кабельными линиями, дорогами и подземными коммуникациями кабели следует защищать железобетонными плитами.

Прокладка кабелей вблизи зданий не допускается. Ввод кабелей из траншеи в здание при отсутствии вентилируемого подполья должен выполняться выше нулевой отметки.

2. Прокладку кабелей в каналах допускается применять в местах, где деятельный слой состоит из непучинистых грунтов и имеет ровную поверхность с уклоном не более 0,2%, обеспечивающим сток поверхностных вод. Кабельные каналы следует выполнять из водонепроницаемого железобетона и покрывать снаружи надежной гидроизоляцией. Сверху каналы необходимо закрывать железобетонными плитами. Каналы могут выполняться заглубленными в грунт и без заглубления (поверх грунта). В последнем случае под каналом и вблизи него должна быть выполнена подушка толщиной не менее 0,5 м из сухого грунта.

2.3.33. Внутри зданий кабельные линии можно прокладывать непосредственно по конструкциям зданий (открыто и в коробах или трубах), в каналах, блоках, туннелях, трубах, проложенных в полах и перекрытиях, а также по фундаментам машин, в шахтах, кабельных этажах и двойных полах.

2.3.34. Маслонаполненные кабели могут прокладываться (при любом количестве кабелей) в туннелях и галереях и в земле (в траншеях); способ их прокладки определяется проектом.

Выбор кабелей

2.3.35. Для кабельных линий, прокладываемых по трассам, проходящим в различных грунтах и условиях окружающей среды, выбор конструкций и сечений кабелей следует производить по участку с наиболее тяжелыми условиями, если длина участков с более легкими условиями не превышает строительной длины кабеля. При значительной длине отдельных участков трассы с различными условиями прокладки для каждого из них следует выбирать соответствующие конструкции и сечения кабелей.

2.3.36. Для кабельных линий, прокладываемых по трассам с различными условиями охлаждения, сечения кабелей должны выбираться по участку трассы с худшими условиями охлаждения, если длина его составляет более 10 м. Допускается для кабельных линий до 10 кВ, за исключением подводных, применение кабелей разных сечений, но не более трех при условии, что длина наименьшего отрезка составляет не менее 20 м (см. также 2.3.70).

2.3.37. Для кабельных линий, прокладываемых в земле или воде, должны применяться преимущественно бронированные кабели. Металлические оболочки этих кабелей должны иметь внешний покров для защиты от химических воздействий. Кабели с другими конструкциями внешних защитных покрытий (небронированные) должны обладать необходимой стойкостью к механическим воздействиям при прокладке во всех видах грунтов, при протяжке в блоках и трубах, а также стойкостью по отношению к тепловым и механическим воздействиям при эксплуатационно-ремонтных работах.

2.3.38. Трубопроводы кабельных маслонаполненных линий высокого давления, прокладываемые в земле или воде, должны иметь защиту от коррозии в соответствии с проектом.

2.3.39. В кабельных сооружениях и производственных помещениях при отсутствии опасности механических повреждений в эксплуатации рекомендуется прокладывать небронированные кабели, а при наличии опасности механических повреждений в эксплуатации должны применяться бронированные кабели или защита их от механических повреждений.

Вне кабельных сооружений допускается прокладка небронированных кабелей на недоступной высоте (не менее 2 м); на меньшей высоте прокладка небронированных кабелей допускается при условии защиты их от механических повреждений (коробами, угловой сталью, трубами и т.п.).

При смешанной прокладке (земля — кабельное сооружение или производственное помещение) рекомендуется применение тех же марок кабелей, что и для прокладки в земле (см. 2.3.37), но без горючих наружных защитных покровов.

2.3.40. При прокладке кабельных линий в кабельных сооружениях, а также в производственных помещениях бронированные кабели не должны иметь поверх брони, а небронированные кабели — поверх металлических оболочек защитных покровов из горючих материалов.

Для открытой прокладки не допускается применять силовые и контрольные кабели с горючей полиэтиленовой изоляцией.

Металлические оболочки кабелей и металлические поверхности, по которым они прокладываются, должны быть защищены негорючим антикоррозийным покрытием.

При прокладке в помещениях с агрессивной средой должны применяться кабели, стойкие к воздействию этой среды.

2.3.41. Для кабельных линий электростанций, распределительных устройств и подстанций, указанных в 2.3.76, рекомендуется применять кабели, бронированные стальной лентой, защищенной негорючим покрытием. На электростанциях применение кабелей с горючей полиэтиленовой изоляцией не допускается.

2.3.42. Для кабельных линий, прокладываемых в кабельных блоках и трубах, как правило, должны применяться небронированные кабели в свинцовой усиленной оболочке. На участках блоков и труб, а также ответвлений от них длиной до 50 м допускается прокладка бронированных кабелей в свинцовой или алюминиевой оболочке без наружного покрова из кабельной пряжи. Для кабельных линий, прокладываемых в трубах, допускается применение кабелей в пластмассовой или резиновой оболочке.

2.3.43. Для прокладки в почвах, содержащих вещества, разрушительно действующие на оболочки кабелей (солончаки, болота, насыпной грунт со шлаком и строительным материалом и т.п.), а также в зонах, опасных из-за воздействия электрокоррозии, должны применяться кабели со свинцовыми оболочками и усиленными защитными покровами типов , или кабели с алюминиевыми оболочками и особо усиленными защитными покровами типов , (в сплошном влагостойком пластмассовом шланге).

2.3.44. В местах пересечения кабельными линиями болот кабели должны выбираться с учетом геологических условий, а также химических и механических воздействий.

2.3.45. Для прокладки в почвах, подверженных смещению, должны применяться кабели с проволочной броней или приниматься меры по устранению усилий, действующих на кабель при смещении почвы (укрепление грунта шпунтовыми или свайными рядами и т.п.).

2.3.46. В местах пересечения кабельными линиями ручьев, их пойм и канав должны применяться такие же кабели, как и для прокладки в земле (см. также 2.3.99).

2.3.47. Для кабельных линий, прокладываемых по железнодорожным мостам, а также по другим мостам с интенсивным движением транспорта, рекомендуется применять бронированные кабели в алюминиевой оболочке.

2.3.48. Для кабельных линий передвижных механизмов должны применяться гибкие кабели с резиновой или другой аналогичной изоляцией, выдерживающей многократные изгибы (см. также 1.7.111).

2.3.49. Для подводных кабельных линий следует применять кабели с броней из круглой проволоки, по возможности одной строительной длины. С этой целью разрешается применение одножильных кабелей.

В местах перехода кабельных линий с берега в море при наличии сильного морского прибоя, при прокладке кабеля на участках рек с сильным течением и размываемыми берегами, а также на больших глубинах (до 40-60 м) следует применять кабель с двойной металлической броней.

Кабели с резиновой изоляцией в поливинилхлоридной оболочке, а также кабели в алюминиевой оболочке без специальных водонепроницаемых покрытий для прокладки в воде не допускаются.

При прокладке кабельных линий через небольшие несудоходные и несплавные реки шириной (вместе с затопляемой поймой) не более 100 м, с устойчивыми руслом и дном допускается применение кабелей с ленточной броней.

2.3.50. Для кабельных маслонаполненных линий напряжением 110-220 кВ тип и конструкция кабелей определяются проектом.

2.3.51. При прокладке кабельных линий до 35 кВ на вертикальных и наклонных участках трассы с разностью уровней, превышающей допустимую по ГОСТ для кабелей с вязкой пропиткой, должны применяться кабели с нестекающей пропиточной массой, кабели с обедненно-пропитанной бумажной изоляцией и кабели с резиновой или пластмассовой изоляцией. Для указанных условий кабели с вязкой пропиткой допускается применять только со стопорными муфтами, размещенными по трассе, в соответствии с допустимыми разностями уровней для этих кабелей по ГОСТ.

Разность вертикальных отметок между стопорными муфтами кабельных маслонаполненных линий низкого давления определяется соответствующими техническими условиями на кабель и расчетом подпитки при предельных тепловых режимах.

2.3.52. В четырехпроводных сетях должны применяться четырехжильные кабели. Прокладка нулевых жил отдельно от фазных не допускается. Допускается применение трехжильных силовых кабелей в алюминиевой оболочке напряжением до 1 кВ с использованием их оболочки в качестве нулевого провода (четвертой жилы) в четырехпроводных сетях переменного тока (осветительных, силовых и смешанных) с глухозаземленной нейтралью, за исключением установок со взрывоопасной средой и установок, в которых при нормальных условиях эксплуатации ток в нулевом проводе составляет более 75% допустимого длительного тока фазного провода.

Использование для указанной цели свинцовых оболочек трехжильных силовых кабелей допускается лишь в реконструируемых городских электрических сетях 220/127 и 380/220 В.

2.3.53. Для кабельных линий до 35 кВ допускается применять одножильные кабели, если это приводит к значительной экономии меди или алюминия в сравнении с трехжильными или если отсутствует возможность применения кабеля необходимой строительной длины. Сечение этих кабелей должно выбираться с учетом их дополнительного нагрева токами, наводимыми в оболочках.

Должны быть также выполнены мероприятия по обеспечению равного распределения тока между параллельно включенными кабелями и безопасного прикосновения к их оболочкам, исключению нагрева находящихся в непосредственной близости металлических частей и надежному закреплению кабелей в изолирующих клипах.

Подпитывающие устройства и сигнализация давления масла кабельных маслонаполненных линий

2.3.54. Маслоподпитывающая система должна обеспечивать надежную работу линии в любых нормальных и переходных тепловых режимах.

2.3.55. Количество масла, находящегося в маслоподпитывающей системе, должно определяться с учетом расхода на подпитку кабеля. Кроме того, должен быть запас масла для аварийного ремонта и заполнения маслом наиболее протяженной секции кабельной линии.

2.3.56. Подпитывающие баки линий низкого давления рекомендуется размещать в закрытых помещениях. Небольшое количество подпитывающих баков (5-6) на открытых пунктах питания рекомендуется располагать в легких металлических ящиках на порталах, опорах и т.п. (при температуре окружающего воздуха не ниже минус 30 °С). Подпитывающие баки должны быть снабжены указателями давления масла и защищены от прямого воздействия солнечного излучения.

2.3.57. Подпитывающие агрегаты линий высокого давления должны быть размещены в закрытых помещениях, имеющих температуру не ниже +10 °С, и расположены возможно ближе к месту присоединения к кабельным линиям (см. также 2.3.131). Присоединение нескольких подпитывающих агрегатов к линии производится через масляный коллектор.

2.3.58. При параллельной прокладке нескольких кабельных маслонаполненных линий высокого давления рекомендуется подпитку маслом каждой линии производить от отдельных подпитывающих агрегатов или следует устанавливать устройство для автоматического переключения агрегатов на ту или другую линию.

2.3.59. Подпитывающие агрегаты рекомендуется обеспечивать электроэнергией от двух независимых источников питания с обязательным устройством автоматического включения резерва (АВР). Подпитывающие агрегаты должны быть отделены один от другого несгораемыми перегородками с пределом огнестойкости не менее 0,75 ч.

2.3.60. Каждая кабельная маслонаполненная линия должна иметь систему сигнализации давления масла, обеспечивающую регистрацию и передачу дежурному персоналу сигналов о понижении и повышении давления масла сверх допустимых пределов.

2.3.61. На каждой секции кабельной маслонаполненной линии низкого давления должно быть установлено по крайней мере два датчика, на линии высокого давления — датчик на каждом подпитывающем агрегате. Аварийные сигналы должны передаваться на пункт с постоянным дежурством персонала. Система сигнализации давления масла должна иметь защиту от влияния электрических полей силовых кабельных линий.

2.3.62. Подпитывающие пункты на линиях низкого давления должны быть оборудованы телефонной связью с диспетчерскими пунктами (электросети, сетевого района).

2.3.63. Маслопровод, соединяющий коллектор подпитывающего агрегата с кабельной маслонаполненной линией высокого давления, должен прокладываться в помещениях с положительной температурой. Допускается прокладка его в утепленных траншеях, лотках, каналах и в земле ниже зоны промерзания при условии обеспечения положительной температуры окружающей среды.

2.3.64. Вибрация в помещении щита с приборами для автоматического управления подпитывающим агрегатом не должна превышать допустимых пределов.

Соединения и заделки кабелей

2.3.65. При соединении и оконцевании силовых кабелей следует применять конструкции муфт, соответствующие условиям их работы и окружающей среды. Соединения и заделки на кабельных линиях должны быть выполнены так, чтобы кабели были защищены от проникновения в них влаги и других вреднодействующих веществ из окружающей среды и чтобы соединения и заделки выдерживали испытательные напряжения для кабельной линии и соответствовали требованиям ГОСТ.

2.3.66. Для кабельных линий до 35 кВ концевые и соединительные муфты должны применяться в соответствии с действующей технической документацией на муфты, утвержденной в установленном порядке.

2.3.67. Для соединительных и стопорных муфт кабельных маслонаполненных линий низкого давления необходимо применять только латунные или медные муфты.

Длина секций и места установки стопорных муфт на кабельных маслонаполненных линиях низкого давления определяются с учетом подпитки линий маслом в нормальном и переходных тепловых режимах.

Стопорные и полустопорные муфты на кабельных маслонаполненных линиях должны размещаться в кабельных колодцах; соединительные муфты при прокладке кабелей в земле рекомендуется размещать в камерах, подлежащих последующей засыпке просеянной землей или песком.

Доступ к полной версии этого документа ограничен

Ознакомиться с документом вы можете, заказав бесплатную демонстрацию систем «Кодекс» и «Техэксперт».

Виды кабелей и проводов и их назначение: описание и классификация + расшифровка маркировки

Существующие многообразие кабелей и проводов в массе своей исчисляются трёхзначными числами. Поэтому описать весь ассортимент в рамках одной статьи не представляется возможным.

Между тем, расписывать все виды кабелей и проводов и их назначение вовсе необязательно. Достаточно иметь представление относительно стандартов маркировки и уметь извлекать нужные сведения из характеристик, чтобы из многообразия кабельной продукции выбрать подходящий вариант согласно назначению.

Рассмотрим основные моменты, как можно научиться различать электропровода среди массива таких изделий, а также приведем описания наиболее востребованных проводов и кабелей.

Структурная основа кабельного изделия

Исполнением кабеля или электрических проводов определяются технико-эксплуатационные характеристики продукта. Собственно, исполнение кабельной или проводной продукции – это, в большинстве конструктивных вариаций, достаточно простой технологический подход.

  1. Изоляция кабеля.
  2. Изоляция жилы.
  3. Металлическая жила – сплошная/пучковая.

Металлическая жила – основа кабеля/провода, через которую протекает электрический ток. Главная характеристика, в данном случае, – пропускная способность, определяемая поперечным сечением жилы. На этот параметр оказывает влияние строение – сплошное или пучковое.

От строения зависит и такое свойство, как гибкость. Многожильные (пучковые) проводники по степени «мягкости» изгиба характеризуются лучшими свойствами, чем одножильные провода.

Жилы кабелей и проводов в электрической практике, как правило, имеют цилиндрическую форму. Вместе с тем, редко, но встречаются несколько видоизменённые формы: квадратные, овальные.

Основным материалом для изготовления проводящих металлических жил выступают медь и алюминий. Однако электрическая практика не исключает проводники, в структуре которых присутствуют стальные жилы, например, «полевой» провод.

Если одиночный электропровод традиционно построен на одной токопроводящей жиле, кабель является продуктом, где сосредоточены несколько таких жил.

Изоляционный компонент проводов и кабеля

Неотъемлемая часть кабельно-проводниковых изделий – изоляция металлической токоведущей основы. Назначение изоляции вполне понятно – обеспечение изолированного состояния для каждой токоведущей жилы, предотвращение эффекта короткого замыкания.

В зависимости от назначения кабельных (проводных) изделий, изоляционная часть может иметь разное исполнение.

Диэлектрическим материалом могут выступать:

  • керамика;
  • стекло;
  • поливинилхлорид;
  • целлулоид;
  • полимеры и др.

Кроме защиты чисто электрического плана, изолирующий материал обеспечивает также механическую защиту, предохраняет провод (кабель) электрический от воздействия влаги и других разрушающих факторов.

Существует также специальное изоляционное построение, применяемое к электрическим проводам и кабелям, наделяющее продукцию «бронированными» или «антихимическими» свойствами.

Отличительные черты кабеля и проводя

Нередко в условиях непрофессиональной практики термин «кабель» приравнивается к любым видам электрических проводов. Между тем следует разделять понятия: «кабель» и «провод». И, прежде всего, разделение предусматривает фактор передаваемой мощности.

Кабель – изделие, структура которого объединяет, как минимум, три проводника в изоляции, дополнительно защищенных внутри оболочки специальным материалом – пергаментом, резиной, свинцом и т.д.

Провод – изделие, состоящее из одного, максимум, пяти проводников (шнур), для последнего случая объединенных общим кожухом.

Приоритетное применение кабелей – объекты промышленно-хозяйственного назначения. Провода активно используются в быту, а также в других сферах.

Отдельно следует выделить оголённые провода, которые не имеют изоляции. Основное применение подобным изделиям находится при обустройстве централизованных линий электропередач.

Основные типы электрических проводов

Провода электрических сетей классифицируются исходя из мощности нагрузки и условий применения. Для бытового случая характерным является применение следующих видов проводов: ПБПП, ПБППг, АПУНП, ППВ, АППВ, АПВ, ПВ1 – ПВ3, ПВС, ШВВП.

Тип #1 – провод ПБПП (плоской формы)

Продукт с поливинилхлоридной изоляционной оболочкой, под которой скрыта цельнолитая жила из меди. Изготавливается этот электроматериал с жилами сечением 1,5 – 6,0 мм 2 .

Допускается использование провода ПБПП в условиях температуры окружения от -15°С до +50°С. Рассчитан провод под устройство сетей с напряжением не выше 250 В. Традиционное применение ПБПП – монтаж розеточных линий бытового сектора. Такой провод часто используют для организации проводки в квартире.

Тип #2 – модификация ПБППг

По сути, продукт представлен тем же исполнением, что описано для ПБПП, за исключением одного нюанса, на который указывает буква «г» стандартной маркировки.

Нюанс этот заключается в более выраженных свойствах гибкости. В свою очередь, улучшенные свойства гибкости образует структура жилы этой марки провода, которая является «пучковой», а не цельнолитой.

Тип #3 – алюминиевая жила АПУНП

О наличии под изоляцией алюминиевой жилы отмечает непосредственно маркировка продукта – первый символ «А». Выпускается такой продукт в диапазоне сечения жил 2,5-6,0 мм 2 .

Профессиональными электриками такой проводник не рекомендуется к применению. Единственное достоинство этой марки – низкая стоимость. Однако для построения временных слабо-нагрузочных схем вполне допустим к использованию.

Тип #4 – двух- трех- проводниковый ППВ

Продукт двух- трех- проводниковой конфигурации, где токоведущие жилы помещены под изоляцию ПВХ и удерживаются одна рядом с другой посредством изолирующей перемычки на основе того же поливинилхлорида.

Жилы провода (медные) могут иметь сечение в диапазоне 0,75-6,0 мм.

Согласно техническим характеристикам, поддерживается работоспособность на частотах до 400 Гц при напряжениях до 450 В. Температурный предел -50/+70°С.

Тип #5 – разновидность под маркой АППВ

Фактически тот же самый вид исполнения, что демонстрирует марка ППВ, за исключением наличия алюминиевых жил вместо жил медных. Изготавливается разным сечением, начиная от сечения 2,5 мм 2 .

Этот вид электропровода находит широкое применение в самых разных случаях монтажа. Допускается использование АППВ под устройство проводки открытого типа.

Тип #6 – алюминий АПВ с изоляцией ПВХ

Производится в двух вариантах конфигурации жил – цельнолитая единичная или пучковая (многожильная).

При этом одинарный вариант представлен продукцией, где диапазон сечений 2,5-16 мм 2 , а вариант многожильного исполнения доступен в диапазоне 25-95 мм 2 .

Это одна из тех модификаций, которая допускает применение в условиях высокой влажности. Поддерживается широкий температурный диапазон – от -50°С до +70°С.

Тип #7 – модификация ПВ1 – ПВ5

По сути, аналог АПВ, но выпускается исключительно с медными жилами. Разница между индексами 1 и 5 заключается в том, что первый вариант – это изделие с цельнолитой жилой, а вариант второй, соответственно, многожильный.

Эта разновидность часто используется при сборке схем шкафов управления. Поставляется с разноцветной изоляцией.

Тип #8 – соединительный шнур ПВС с ПВХ изоляцией

Вид проводника, представляющий конфигурацию электрического шнура. Выпускается с числом жил 2-5 в диапазоне сечений 0,75 – 16 мм. Строение жил многопроволочное (пучковое).

Рассчитан для работы в сетях с напряжением до 380 В при частоте 50 Гц.

Особенность исполнения ПВС – высокая степень гибкости. Однако температурный режим несколько ограничен – от -25°С до +40°С.

Тип #9 – плоский шнур ШВВП в оболочке ПВХ

Ещё одна разновидность в «шнуровом» исполнении. Поддерживается вариация численности проводов, объединенных ПВХ оболочкой, в количестве двух либо трёх.

Основное применение – бытовая сфера, проводка наружного исполнения. Рабочее напряжение до 380 В, структура жил – пучковая, максимальное сечение 0,75 мм 2 .

Разновидности электрических кабелей

Если рассматривать исключительно кабели для силовых электрических схем, здесь основным видом выступают следующие силовые кабели:

Конечно, это далеко не полный перечень всей существующей кабельной продукции. Тем не менее, на примере технических характеристик можно сформировать общее представление о кабеле электрического назначения.

Исполнение под маркой ВВГ

Широко применяемая, популярная и надежная марка. Кабель ВВГ рассчитан для передачи тока с напряжением 600 – 1000 вольт (максимально 3000 В).

Изготавливается продукт двумя модификациями, с токоведущими жилами сплошной структуры либо пучковой структуры.

Согласно продуктовой спецификации, диапазон сечений жил 1,5 – 50 мм. Изоляция поливинилхлоридная позволяет использовать кабель в условиях температур -40…+50°С.

Существуют несколько модификаций этого вида кабельной продукции:

Модификации отличаются несколько иным исполнением изоляции, использованием алюминиевых жил вместо жил медных, формой кабеля.

Силовой гибкий кабель типа КГ

Конструкция ещё одного популярного кабеля, характерного высокой степенью гибкости, благодаря использованию пучковой структуры токоведущих жил.

Исполнение этого вида предусматривает наличие до шести токоведущих жил внутри оболочки. Диапазон рабочих температур -60…+50°С. Преимущественно, разновидность КГ используется для подключения силового оборудования.

Бронированный кабель ВБбШв

Пример конструкции специальной кабельной продукции в образе продукта под маркой ВБбШв. Токопроводящими элементами могут выступать пучковые или сплошные жилы. В первом случае диапазон сечений 50-240 мм 2 , во втором 16-50 мм 2 .

Изоляция кабеля построена сложно-образованной структурой, включая поясную изоляцию, ленточный экран, стальную броню, битум и ПВХ.

Существуют несколько модификаций этого вида:

  • ВБбШвнг – негорючая изоляция;
  • ВБбШвнг-LS – при горении не выделяет вредных веществ;
  • АВБбШв – наличие алюминиевых жил.

Умение читать маркировку кабельной продукции пригодиться при выборе изделий и разводке электрических сетей.

Особенности типа материала жилы – Литера 1: «А» –алюминиевая жила. В любом другом случае – жила медь.

Что касается предназначения (Литера 2), то здесь расшифровки следующие:

  • «М» – под монтаж;
  • «П(У)», «МГ» – под монтаж гибкий;
  • «Ш» – инсталляционный; «К» – для контроля.

Обозначение изоляции (Литера 3) и ее расшифровка выглядит следующим образом:

  • «В(ВР)» – ПВХ;
  • «Д» – обмотка двойная;
  • «Н (НР)» – резина негорючая;
  • «П» – полиэтилен;
  • «Р» – резина;
  • «С» – стекловолокно;
  • «К» – капрон;
  • «Ш» – шелк полиамид;
  • «Э» – экранированная.

Особенности, о которых свидетельствует Литера 4, имеют свою расшифровку:

  • «Б» – бронированный;
  • «Г» – гибкий;
  • «К» – оплетка проволочная;
  • «О» – оплетка другая;
  • «Т» – для трубной укладки.

Также классификация предусматривает использование строчных букв и литер, обозначенных латиницей:

  • «нг» – негорючий,
  • «з» – заполненный,
  • «LS» – без хим. выделений при горении,
  • «HF» – без дыма при горении.

Маркировочные обозначения, как правило, наносятся непосредственно на внешнюю оболочку, причем по всей длине продукта через равные промежутки.

На нашем сайте есть статьи, посвященные выбору кабельной продукции для обустройства электрических сетей в квартире и доме, советуем ознакомиться:

Выводы и полезное видео по теме

Видеороликом ниже демонстрируется урок «начинающего электрика».

Показан достаточно полезный видеоматериал, который рекомендуется к просмотру в качестве приобретения обобщающих знаний по проводам и кабелям:

Учитывая существование обширного ассортимента проводной и кабельной продукции, потенциальный электрик получает много вариантов под решение любых задач в области электрики.

Однако даже при таком разнообразии достаточно сложно подобрать подходящий продукт для конкретных целей, если нет соответствующих знаний. Будем надеяться, эта статья поможет сделать правильный выбор.

Есть, что дополнить, или возникли вопросы по выбору электрических кабелей и проводов? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования кабельной продукции. Форма для связи находится в нижнем блоке.

Устройство кабельных линий. Устройство и монтаж кабельных линий

Страница 1 из 8

Силовая кабельная линия — это линия для передачи электрической энергии, состоящая из одного или нескольких параллельных кабелей с соединительными. стопорными и концевыми муфтами (заделками) и крепежными деталями. В силовых кабельных линиях наиболее широко используются кабели с бумажной и пластмассовой изоляцией. Тип изоляции силовых кабелей и их конструкция влияют не только на технологию монтажа, но и на условия эксплуатации силовых кабельных линий. В особенности это касается кабелей с пластмассовой изоляцией. Так в результате изменяющихся при эксплуатации нагрузок и дополнительного нагрева, обусловленного перегрузками и токами короткого замыкания, в изоляции кабелей возникает давление от увеличивающегося при нагреве полиэтилена (поливинилхлорида), которое может растягивать экраны и оболочки кабелей, вызывая их остаточные деформацию. При последующем охлаждении вследствие усадки в изоляции образуются газовые или вакуумные включения, являющиеся очагами ионизации. В связи с этим будут изменяться ионизационные характеристики кабелей. Сравнительные данные по величине температурного коэффициента объемного расширения различных материалов, используемых в конструкциях силовых кабелей приведенные в таблице 1.

Таблица 1. Температурные коэффициенты объемного расширения материалов, применяемых в конструкции силовых кабелей

При этом следует отметить, что наибольшая величина температурного коэффициента объемного расширения имеет место при температурах 75-125°С. соответствующего нагреву изоляции при кратковременных перегрузках и токах короткого замыкания.

Бумажная пропитанная изоляция жил кабелей имеет высокие электрические характеристики. продолжительные срок службы и сравнительно высокую температуру нагрева. Кабели с бумажной изоляцией лучше сохраняют свои электрические характеристики в процессе эксплуатации при возникавших частых перегрузах и связанных с этим дополнительных нагревах.

Для обеспечения длительной и безаварийной работы кабельных линий необходимо, чтобы температура жил и изоляции кабеля в процессе эксплуатации не превышала допустимых пределов.

Длительно допустимая температура токопроводящих жил и допустимый их нагрев при токах короткого замыкания определяются материалом изоляции кабеля. Максимально допустимые температуры жил силовых кабелей для различного материала изоляции жил приведены в табл. 2.

Таблица 2. Максимально допустимые температуры жил силовых кабелей

Напряжение кабеля, кВ

Длительно допустимая температура жил кабеля, РС

Допустимый нагрев жил при токах короткого замыкания, °С

Резиновая повышенной теплостойкости

Примечание: Допустимый нагрев жил кабелей из поливинилхлоридного пластиката и полиэтилена в аварийном режиме должен быть не более 80°С, из вулканизирующегося полиэтилена – 130°С.

Продолжительность работы кабелей в аварийном режиме не должна превышать 8 ч в сутки и 1000 час. за срок службы. Кабельные линии напряжением 6-10 кВ, несущие нагрузки меньше номинальных, могут кратковременно перегружаться при условиях, приведенных в табл. 3.

Таблица 3. Допустимые перегрузки по отношению к номинальному току кабельных линий напряжением 6-10 кВ

Примечание: Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузки должны быть понижены на 10%. Перегрузка кабельных линий на напряжение 20 ÷35 кВ не допускается.

Любая силовая кабельная линия помимо своего основного элемента — кабеля, содержит соединительные и концевые муфты (заделки), которые оказывают значительное влияние на надежность всей кабельной линии.

В настоящее время при монтаже, как концевых муфт (заделок) так и соединительных муфт широкое применение находят термоусаживаемые изделия из радиационно-модифицированного полиэтилена. Радиационное облучение полиэтилена приводит к получению качественно нового электроизоляционного материала, обладающего уникальными комплексами свойств. Так, его нагревостойкость возрастает с 80 °С до 300°С при кратковременной работе и до 150 °С при длительной. Этот материал отличается высокими физико-механическими свойствами: термостабильностью, хладостойкостью, стойкостью к агрессивным химическим средам, растворителями, бензину, маслам. На ряду со значительной эластичностью он обладает высокими диэлектрическими свойствами, сохраняющимися при весьма низких температурах. Термоусаживаемые муфты и заделки монтируют как на кабелях с пластмассовой, так и кабелях с бумажной пропитанной изоляцией.

Проложенный кабель подвергается воздействию агрессивных компонентов среды, которые обычно являются разбавленными в той или иной степени химическими соединителями. Материалы, из которых изготовлены оболочка и броня кабелей, имеют разную коррозийную стойкость.

Свинец устойчив в растворах, содержащих серную, сернистую, фосфорную, хромовую и фторно-водородную кислоты. В соляной кислоте свинец устойчив при ее концентрации до 10%.

Наличие хлористых и сульфатных солей в воде или почве вызывает резкое торможение коррозии свинца. поэтому свинец устойчив в солончаковых почвах морской воде.

Азотно-кислотные соли (нитраты) вызывают сильную коррозию свинца. Это весьма существенно, так как нитраты образуются в почве в процессе микробиологического распада и вносятся в нее в виде удобрений. Почвы по степени возрастания их агрессивности по отношению к свинцовым оболочкам можно распределить следующим образом:

а) солончаковые; б) известковые; в) песчаные; г) черноземные; д) глинистые; е) торфяные.

Углекислота и фенол значительно усиливает коррозию свинца. Свинец устойчив в щелочах.

Алюминий устойчив в органических кислотах и неустойчив в соляной, фосфорной, муравьиной кислотах. а также в щелочах. Сильно агрессивное действие на алюминий оказывают соли, при гидролизе которых образуются кислоты или щелочи. Из нейтральных солей (рН=7) наибольшей активностью обладают соли, содержащие хлор, так как образующиеся хлориды разрушают защитную пленку алюминия, поэтому наиболее агрессивными для алюминиевых оболочек являются солончаковые почвы. Морская во да, главным образом из-за наличия в ней ионов хлора, также является для алюминия сильно агрессивной средой. В растворах сульфатов, нитратов и хромов алюминий достаточно устойчив. Коррозия алюминия значительно усиливается при контакте с более электроположительным металлом, например свинцом, что, имеет место при установке соединительных муфт, если не принято специальных мер.

При монтаже свинцовой соединительной муфты на кабеле с алюминиевой оболочкой образуется контактная гальваническая пара свинец-алюминий, в которой алюминий является анодом, что может вызвать разрушение алюминиевой оболочки через несколько месяцев после монтажа муфты. При этом повреждение оболочки происходит на расстоянии 10-15 см от шейки муфты, т.е. на том месте, где с оболочки при монтаже снимаются защитные покровы. Для устранения вредного действия подобных гальванических пар муфту и оголенные участки алюминиевой оболочки покрывают кабельным составом марки МБ-70(60), разогретом до 130 °С, и сверху накладывают липкую поливинилхлоридную ленту в два слоя с 50%-ным перекрытием. Поверх липкой ленты накладывают слой просмоленной ленты с последующим покрытием ее битумным покровным лаком марки БТ-577.

Поливинилхлоридный пластикат негорюч, обладает высокой стойкостью против действия большинства кислот, щелочей и органических растворителей. Однако его разрушают концентрированные серная и азотная кислоты, ацетон и некоторые другие органические соединения. Под воздействием повышенной температуры и солнечной радиации поливинилхлоридный пластикат теряет свою пластичность и морозостойкость.

Полиэтилен обладает химической стойкостью к кислотам, щелочам, растворам солей и органическим растворителям. Однако полиэтилен под воздействием ультрафиолетовых лучей становится хрупким и теряет свою прочность.

Резина, применяемая для оболочек кабелей, хорошо противостоит действию масел, гидравлических и тормозных жидкостей, ультрафиолетовых лучей, а также микроорганизмов. Разрушающие действуют на резину растворы кислот и щелочей при повышенных температурах.

Броня, изготавливаемая из низко углеродной стали, обычно разрушается намного раньше, чем начинает коррозировать оболочка. Броня сильно коррозирует в кислотах и весьма устойчива в щелочах. Разрушающее действуют на нее сульфатвосстанавливаю щие бактерии, выделяющие сероводород и сульфиды.

Покровы из кабельной пряжи и битума практически не защищают оболочку от контакта с внешней средой и довольно быстро разрушаются в почвенных условиях.

Электрохимическая защита кабелей от коррозии осуществляется путем катодной поляризации их металлических оболочек, а в некоторых случаях и брони, т.е. накладыванием на последние отрицательного потенциала. В зависимости от способа электрической защиты катодная поляризация достигается присоединением к оболочкам кабелей катодной станции, дренажной и протекторной защиты. При выборе способа защиты учитывается основной фактор, вызывающий коррозию в данных конкретных условиях.

Марка силового кабеля характеризует основные конструктивные элементы и область применения кабельной продукции.

Буквенные обозначения конструктивных элементов кабеля приведены в табл. 4.

Таблица 4. Буквенные обозначения конструктивных элементов кабеля

Конструктивный элемент кабеля

Нет буквы П В Р

Бумажная Полиэтиленовая Поливинилхлоридная Резиновая

Нет буквы П В Р

Свинцовая Алюминиевая гладкая Алюминиевая гофрированная Поливинилхлоридная Полиэтиленовая негорючая резина

Бумага и битум Без подушки Полиэтиленовая (шланг) Поливинилхлоридная: один слой пластмассовой ленты типа ПХВ два слоя пластмассовой ленты типа ПХВ

Стальная лента Проволока плоского сечения Проволока круглого сечения

Наружный кабельный покров

Кабельная пряжа Без наружного кабельного покрова Стеклянная пряжа из штапелированного волокна (негорючий кабельный покров) Полиэтиленовый шланг Поливинилхлоридный шланг

Примечание: 1. Буквы в обозначении кабеля располагаются в соответствии с конструкцией кабеля, т.е. начиная от материала жилы и заканчивая наружным кабельным покровом.

2. Если в конце буквенной части марки кабеля стоит буква «П», написанная через черточку, то это означает, что кабель имеет по сечению плоскую форму, а не круглую.

3. Обозначение контрольного кабеля отличается от обозначения силового кабеля только тем, что после материала жилы кабеля ставится буква «К».

После букв стоят числа, указывающие число основных изолированных жил и их сечение (через знак умножения), а также номинальное напряжение (через тире). Число и сечение жил у кабелей с нулевой жилой или заземляющей жилой обозначается суммой чисел.

Наиболее широкое применение находят кабели следующих стандартных сечений жил: 1,2; 1,5; 2,0;2,5; 3; 4; 5; 6; 8; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240 мм.

Для передачи и распределения электроэнергии наряду с воздушными линиями электропередачи применяют силовые кабельные линии. Силовые кабели прокладывают в земле, воде, а также по конструкциям на открытом воздухе, в туннелях, каналах, железобетонных блоках и внутри зданий. Их используют главным образом для передачи электроэнергии на сравнительно небольшие расстояния и в тех случаях, когда сооружение воздушных линий нежелательно или недопустимо. Кабельные линии, проложенные в земле, не подвергаются действию ветра, гололеда, грозовых разрядов.
Повреждения в кабельных линиях не так опасны для населения, как обрыв проводов воздушных линий. Силовые кабельные ЛЭП применяются для подземной и подводной передачи электроэнергии на высоком и низком напряжениях. Трассу выбирают, исходя из условий наименьшего расхода кабеля и обеспечения его наибольшей защищенности от механических повреждений при раскопках, от коррозии, вибрации, перегрева. Кабельные ЛЭП прокладывают в траншеях по непроезжей части улиц, под тротуарами, по дворам.
Глубина заложения кабельной линии в земле для кабелей напряжением до 10 кВ составляет 0,7 м, а при пересечении улиц, автомобильных и железных дорог — 1 метр.
Кабель не должен проходить под существующими или предполагаемыми к постройке зданиями и сооружениями, под проездами, насыщенными подземными коммуникациями.
В местах пересечения с различными трубопроводами (теплопроводы, водопроводы и др.), кабелями связи и иными коммуникациями силовые кабели прокладывают в асбоцементных трубах или железобетонных блоках с соблюдением расстояний между кабелями и другими коммуникациями, установленными (ПУЭ). При прохождении кабелей через стены и перекрытия кабели прокладывают в отрезках неметаллических труб.
После прокладки концы кабелей должны быть временно загерметизированы. Соединение и оконцевание кабелей осуществляется при помощи кабельных муфт и воронок. Для оконцевания жил используются кабельные наконечники. Кроме того, кабель в траншее присыпают сверху слоем мелкой земли или песка толщиной 10 см, а для предохранения от механических повреждений его защищают, прикрывая слоем красного кирпича. Поверх кирпича траншею засыпают выкопанным из нее грунтом.
Наибольшее количество отказов кабельных линий 6-10 кВ происходит при прокладке их в траншеях. Это объясняется наличием механических повреждений, коррозии, осадков, оползней и других деформаций грунта. Поэтому способ прокладки кабелей в траншеях уступает более прогрессивным и надежным в эксплуатации способам — прокладке на эстакадах, галереях, в туннелях и др.
Значительное число отказов возникает из-за повреждений кабелей вследствие заводских дефектов кабеля, механических повреждений при прокладке или перекладке их в процессе эксплуатации (надломы, вмятины, задиры), а также коррозии металлической оболочки.
К заводским дефектам кабелей относят: складки на бумажных лентах, поперечные и продольные порезы и разрывы, зазоры между бумажными лентами в результате их совпадения, дефекты жил и свинцовых оболочек и др. Многие заводские дефекты в изоляции кабеля остаются невыявленными при испытаниях постоянным током приводят к аварийному пробою кабеля в процессе работы. Коррозия металлической оболочки кабелей вызывается воздействием блуждающих токов или агрессивных грунтов. В условиях эксплуатации возникают отдельные случаи коррозионного повреждения алюминиевой оболочки кабеля ААШв из-за повреждения поливинилхлоридного шланга. Значительное число отказов кабельных линий происходит из-за повреждения соединительных муфт и концевых заделок вследствие низкого качества контактных соединений и оконцеваний жил (наличие глубоких пор, острых кромок и заусенцев, неудаленной литниковой прибыли, выкушенных или выгоревших проволок жилы и др.).
Отказы свинцовых соединительных муфт происходят из-за неудовлетворительной припайки свинцового корпуса к оболочке кабеля, образования пустот при восстановления изоляции роликами и рулонами, недоливки кабельной массы, отсутствия контроля за температурой заливочных и прошпарочных масс, кристаллизации заливочной массы в процессе эксплуатации и из-за других причин.
Отказы эпоксидных соединительных муфт, связаны с асимметрией жил внутри эпоксидного корпуса, наличием пор и свищей, отсутствием необходимой герметизации и др.
Значительное количество отказов концевых заделок внутренней установки происходит из-за установки в сырых и особо сырых помещениях заделок, не предназначенных для этих сред. Отказы концевых эпоксидных заделок объясняются неудовлетворительными обезжириванием и обработкой концов найритовых трубок, растрес­киванием трубок, неудовлетворительной герметизацией жил и др.
Соединительные и концевые муфты и заделки, как правило, не поддаются ремонту, поэтому после их отказа вырезаются и заменяются новыми.
Ремонт кабелей:
Определение характера повреждения кабеля — до начала работ производят измерения, позволяющие определить характер повреждения. Кабельную линию перед измерениями необходимо отсоединить от питающего источника, а электроприемники — от линии. В большинстве случаев характер повреждения может быть установлен с помощью мегаомметра.
Определение места повреждения кабеля — определяют в два приема: сначала находят зону повреждения, затем уточняют место повреждения непосредственно на трассе. Зону — повреждения определяют: импульсным методом, методом колебательного разряда, емкостным методом или методом петли. Место повреждения уточняют с помощью акустического или индукционного метода.
Ремонт брони кабеля — поврежденную часть снимают, после чего обрез брони спаивают со свинцовой оболочкой. Свинцовую оболочку кабеля, не покрытую броней, покрывают антикоррозионным составом.
Ремонт свинцовой оболочки и проверка бумажной изоляции — вид ремонта определяют в зависимости от того, проникла ли влага внутрь кабеля или нет. В сомнительных случаях удаляют часть оболочки по обе стороны от места ее повреждения, осматривают поясную изоляцию и проверяют верхний слой изоляции на отсутствие влаги. Для проверки снимают ленты бумажной изоляции с поврежденного кабеля и погружают в нагретый до 150 °С парафин. Потрескивания и выделения пены свидетельствуют о проникновении влаги внутрь кабеля под свинцовую оболочку. Если влаги внутри кабеля нет, на поврежденную часть оболочки надевают трубу (муфту) соответствующего размера с двумя заливочными отверстиями. После заливки муфты горячей мастикой и запайки шва на нее накладывают медный бандаж, который припаивают к свинцовой оболочке. Труба составляется из рольного свинца (две половинки). Она должна быть на 70-80 мм больше оголенной части кабеля. Если внутри кабеля есть влага, поврежденный участок вырезают и вместо него вставляют отрезок кабеля, соответствующий по марке, сечению и длине ремонтируемому. С обеих сторон кабельной вставки монтируют соединительные муфты.

Каждый электрик должен знать:  Обобщенные функции

Чтобы продолжить обсуждение в новой ветке считаю целесообразным подвести итоги тех двух веток.

Мы определились, что нельзя путать термин «кабельное изделие» (кабель, провод, шнур), которое дано в ГОСТ Р 53315, и кабельную линию, о которой идет речь в ГОСТ Р 53316.
Принципиальная разница в том, что кабельная линия характеризуется способом прокладки этого кабельного изделия. Сразу здесь подчеркну, что ГОСТ Р 53315, что ГОСТ Р 53316, что СП5 или СП6 все они имеют непосредственное отношение к кабельным линиям противопожарной защиты, в т.ч. шлейфам, СЛ и т.п., а не только к электропитанию (посмотрите сами определения в этих документах).
— ГОСТ Р 53315
п.3.1 кабельное изделие: Изделие (кабель, провод, шнур), предназначенное для передачи по нему электрической энергии, электрических и оптических сигналов информации или служащее для изготовления обмоток электрических устройств, отличающееся гибкостью.
— СП5. 13130.2009
13.15.3 Выбор электрических проводов и кабелей, способы их прокладки для организации шлейфов и соединительных линий пожарной сигнализации должен производиться в соответствии с требованиями ГОСТ Р 53315, ГОСТ Р 53325, ПУЭ-98, требованиями настоящего раздела и технической документации на приборы и оборудование системы пожарной сигнализации.
13.15.7 ….. Пожаростойкость проводов и кабелей обеспечивается выбором их типа, а также способами их прокладки.
— СП6. 13130.2009.
4.1 Кабельные линии систем противопожарной защиты должны выполняться огнестойкими кабелями с медными жилами, не распространяющими горение при групповой прокладке по категории А по ГОСТ Р МЭК 60332-3-22 с низким дымо- и газовыделением (нг-LSFR) или не содержащими галогенов (нг-HFFR).
4.15 Время сохранения работоспособности кабельных линий и электрических щитов определяется по ГОСТ Р 53316.
— ГОСТ Р 53316
п.3.2 кабельная линия: Линия, предназначенная для передачи электроэнергии, отдельных ее импульсов или оптических сигналов и состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и конечными муфтами (уплотнениями) и крепежными деталями проложенная, согласно требованиям технической документации в коробах, гибких трубах, на лотках, роликах, тросах, изоляторах, свободным подвешиванием, а также непосредственно по поверхности стен и потолков и в пустотах строительных конструкций или другим способом
п. 4.2.2.1 Образец представляет собой кабельную линию в проектном исполнении, которая устанавливается в испытательной печи в соответствии с технической документацией на данное изделие. При использовании коробов, лотков или труб образец устанавливают в испытательную печь горизонтально таким образом, чтобы место стыка находилось в середине испытательной печи. Места прохода образца через стены печи заделываются в соответствии с технической документацией. Элементы вентиляционных систем кабельных коробов, если они имеются, должны располагаться в наиболее неблагоприятном месте.

Мы определились, что сертификацию кабельного изделия проводит производитель кабельной продукции и он должен предоставлять сертификаты на кабельные изделия.

Чтобы использовать те или иные технические решения при выполнении кабельных линий они должны пройти сертификацию на соответствие ГОСТ Р 53316. Испытания в большой печке натурных образцов, в том числе и фрагментов стен с заштукатуренными в них кабельными изделиями.
Если при проведении испытаний по ГОСТ Р 53315 у горелки устанавливается температура 750-800 °С, то
при проведении испытаний на ГОСТ Р 53316 в печке температура должна изменяться по следующей зависимости:
t, мин 5 10 15 30 45 60 90 120 150 180 240 360
Т — То, °С 556 659 718 821 875 925 986 1029 1060 1090 1133 1193
Именно таким испытаниям должны быть подвергнуты все используемые варианты выполнения кабельных линий на сохранения работоспособности в условиях пожара.
Используемые кабели и способы прокладки кабельных линий должны соответствовать необходимому времени эвакуации. Где-то для этого достаточно 10 минут, где-то и час или два, все зависит от расчетов времени эвакуации. Тут и нужны различные варианты, ведь они будут отличаться по затратам.
Кто какие варианты предпочитает, такие и сертифицирует. Есть сертификат — реализуй, нет и надо фантазировать. Нашли приемлемый тип короба или кабельного бокса — проверили, получили документ — работайте. Проще всего эти работы реализовать в составе СРО. Это и дешевле и можно будет использовать в рамках внутреннего стандарта СРО.
Производитель отдельного изделия будь то кабель, муфта, бокс, короб не может отвечать за пожароустойчивость Вашей композиции (а именно так надо относиться к ней) в виде кабельной линии.
Опыт показал, что замечательные кабели в плохих условиях показывают не очень удовлетворительные характеристики, и наоборот, не самые лучшие кабели неплохо ведут себя в хороших кабельных системах, что подтверждает опыт Гефеста, который одним из первых прошел эту процедуру. Кстати он еще и предлагает воспользоваться его услугами.
Что еще выяснилось при испытаниях за рубежом по методике, похожей на изложенную в ГОСТ Р 53316. Это то, что негорючая оболочка достаточно быстро превращается в спекшуюся золу (почему по ней и не распространяется огонь) и теряет свои механические свойства. После этого жилы такого кабеля с этой спекшийся золой должен «кто-то» поддержать в исходном положении, чтобы они или не оборвались или не замкнули между собой, что более всего вероятно. Это как раз самое тонкое место.
В итоге надо отметить, что статьи 82 и 103 ФЗ№123 это намного серьезнее, чем можно было подумать. Просто жалко, что с момента появления всех этих документов, а прошел почти год, мало, что реально сделано.
А теперь в новой ветке с новыми силами предлагаю вернуться к красным проводам, закрепленных с помощью проволочек к фарфоровым изоляторам – дешево и сердито.

Кабельные линии предназначены для передачи электроэнергии по одному или нескольким силовым кабелям с соединительными и концевыми муфтами. Силовые кабели состоят (рис. 1) из одной, двух, трех или четырех изолированных токопроводящих жил 1, находящихся в герметичной защитной оболочке 5.

Токопроводящие жилы, медные или алюминиевые, могут быть однопроволочными и многопроволочными. Они изолируются друг от друга (2) и от оболочки (4). Изоляция жил выполняется из резины, пластмассы или чаще всего из пропитанной кабельной бумаги.

Защитная оболочка (5) защищает изоляцию жил кабеля от влаги и воздуха и выполняется из свинца, алюминия, поливинилхлорида и негорючей резины. Для предохранения оболочки от повреждений при наложении брони и изгибах кабеля на нее накладывается защитный покров (6), пропитанный антикоррозийным битумным составом. Броня (7), выполняемая из ленточной стали или оцинкованной проволоки, играет роль защиты оболочки от внешних механических воздействий. Снаружи кабель защищен защитным покровом (8) на синтетической или битумной основе.

Рисунок 1. 1 — токопроводящие жилы; 2 — изоляция жилы относительно других жил; 3 — бумажный наполнитель; 4 — изоляция жил относительно оболочки; 5 — защитная оболочка; 6 — защитный покров оболочки; 7 — стальная броня; 8 — наружный защитный покров

Для обозначения силового кабеля указывают его марку, а также номинальное напряжение и сечение жил. Маркировка зависит от материала токопроводящих жил, герметической оболочки и типа наружного защитного покрова. Например, четырехжильный силовой электрический кабель с однопроволочными алюминиевыми жилами в алюминиевой оболочке с наружным покровом, позволяющим прокладку в земле, рассчитанный на напряжение до 1 кВ, с сечением всех жил по 185 мм 2 имеет следующее обозначение: ААБв (ож)4* 185-1.

Обозначения марок кабелей соответствует их конструкции. Кабели с бумажной изоляцией и алюминиевыми жилами имеют марки: ААБ, ААГ, ААП, ААШв, АСБ, АСБГ, АСПГ, АСШв. Первая буква обозначает материал жил (А — алюминий, отсутствие впереди буквы А в маркировке означает наличие медной жилы), вторая буква — материал оболочки (А — алюминий, С — свинец). Буква Б означает, что кабель бронирован стальными лентами; буква Г — отсутствие наружного покрова; Шв — наружный покров выполнен в виде шланга из поливинилхлорида.

Изоляция обозначается: Р — резиновая, П — полиэтиленовая, В — поливинилхлоридная, отсутствие обозначения — бумажная с нормальной пропиткой.

В настоящее время находят широкое применение кабели с изоляцией из сшитого полиэтилена, которые выпускаются трехжильными и одножильными.

Броня обозначается: при выполнении стальными лентами — Б, плоской оцинкованной стальной проволокой — П, круглой оцинкованной стальной проволокой — К.

Например, марка кабеля СБШв обозначает кабель с медными жилами в свинцовой оболочке, бронированный стальной лентой, с наружным покровом в виде шланга из поливинилхлорида.

Области применения силовых кабелей с различными видами изоляции приведены в табл. 1.

Таблица 1. Области применения силовых кабелей с бумажной, пластмассовой и резиновой изоляцией при отсутствии механических воздействий и растягивающих усилий при эксплуатации

ПУЭ 7. Правила устройства электроустановок. Издание 7

Раздел 7. Электрооборудование специальных установок

Глава 7.1. Электроустановки жилых, общественных, административных и бытовых зданий

Электропроводки и кабельные линии

7.1.32. Внутренние электропроводки должны выполняться с учетом следующего: ¶

1. Электроустановки разных организаций, обособленных в административно-хозяйственном отношении, расположенные в одном здании, могут быть присоединены ответвлениями к общей питающей линии или питаться отдельными линиями от ВРУ или ГРЩ. ¶

2. К одной линии разрешается присоединять несколько стояков. На ответвлениях к каждому стояку, питающему квартиры жилых домов, имеющих более 5 этажей, следует устанавливать аппарат управления, совмещенный с аппаратом защиты. ¶

3. В жилых зданиях светильники лестничных клеток, вестибюлей, холлов, поэтажных коридоров и других внутридомовых помещений вне квартир должны питаться по самостоятельным линиям от ВРУ или отдельных групповых щитков, питаемых от ВРУ. Присоединение этих светильников к этажным и квартирным щиткам не допускается. ¶

4. Для лестничных клеток и коридоров, имеющих естественное освещение, рекомендуется предусматривать автоматическое управление электрическим освещением в зависимости от освещенности, создаваемой естественным светом. ¶

5. Питание электроустановок нежилого фонда рекомендуется выполнять отдельными линиями. ¶

7.1.33. Питающие сети от подстанций до ВУ, ВРУ, ГРЩ должны быть защищены от токов КЗ. ¶

7.1.34. В зданиях следует применять кабели и провода с медными жилами*. ¶

* До 2001 г. по имеющемуся заделу строительства допускается использование проводов и кабелей с алюминиевыми жилами.

Питающие и распределительные сети, как правило, должны выполняться кабелями и проводами с алюминиевыми жилами, если их расчетное сечение равно 16 мм 2 и более. ¶

Питание отдельных электроприемников, относящихся к инженерному оборудованию зданий (насосы, вентиляторы, калориферы, установки кондиционирования воздуха и т.п.), может выполняться проводами или кабелем с алюминиевыми жилами сечением не менее 2,5 м. ¶

В музеях, картинных галереях, выставочных помещениях разрешается использование осветительных шинопроводов со степенью защиты IP20, у которых ответвительные устройства к светильникам имеют разъемные контактные соединения, находящиеся внутри короба шинопровода в момент коммутации, и шинопроводов со степенью защиты IP44, у которых ответвления к светильникам выполняются с помощью штепсельных разъемов, обеспечивающих разрыв цепи ответвления до момента извлечения вилки из розетки. ¶

В указанных помещениях осветительные шинопроводы должны питаться от распределительных пунктов самостоятельными линиями. ¶

В жилых зданиях сечения медных проводников должны соответствовать расчетным значениям, но быть не менее указанных в таблице 7.1.1. ¶

Таблица 7.1.1. Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях

Наименьшее сечение кабелей и проводов с медными жилами, мм

Линии групповых сетей

Линии от этажных до квартирных щитков и к расчетному счетчику

Линии распределительной сети (стояки) для питания квартир

7.1.35. В жилых зданиях прокладка вертикальных участков распределительной сети внутри квартир не допускается. ¶

Запрещается прокладка от этажного щитка в общей трубе, общем коробе или канале проводов и кабелей, питающих линии разных квартир. ¶

Допускается не распространяющая горение прокладка в общей трубе, общем коробе или канале строительных конструкций, выполненных из негорючих материалов, проводов и кабелей питающих линий квартир вместе с проводами и кабелями групповых линий рабочего освещения лестничных клеток, поэтажных коридоров и других внутридомовых помещений. ¶

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего освещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный — L, нулевой рабочий — N и нулевой защитный — РЕ проводники). ¶

Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий. ¶

Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим. ¶

Сечения проводников должны отвечать требованиям п. 7.1.45. ¶

7.1.37. Электропроводку в помещениях следует выполнять сменяемой: скрыто — в каналах строительных конструкций, замоноличенных трубах; открыто — в электротехнических плинтусах, коробах и т.п. ¶

В технических этажах, подпольях, неотапливаемых подвалах, чердаках, вентиляционных камерах, сырых и особо сырых помещениях электропроводку рекомендуется выполнять открыто. ¶

В зданиях со строительными конструкциями, выполненными из негорючих материалов, допускается несменяемая замоноличенная прокладка групповых сетей в бороздах стен, перегородок, перекрытий, под штукатуркой, в слое подготовки пола или в пустотах строительных конструкций, выполняемая кабелем или изолированными проводами в защитной оболочке. Применение несменяемой замоноличенной прокладки проводов в панелях стен, перегородок и перекрытий, выполненной при их изготовлении на заводах стройиндустрии или выполняемой в монтажных стыках панелей при монтаже зданий, не допускается. ¶

7.1.38. Электрические сети, прокладываемые за непроходными подвесными потолками и в перегородках, рассматриваются как скрытые электропроводки и их следует выполнять: за потолками и в пустотах перегородок из горючих материалов в металлических трубах, обладающих локализационной способностью, и в закрытых коробах; за потолками и в перегородках из негорючих материалов* — в выполненных из негорючих материалов трубах и коробах, а также кабелями, не распространяющими горение. При этом должна быть обеспечена возможность замены проводов и кабелей. ¶

* Под подвесными потолками из негорючих материалов понимают такие потолки, которые выполнены из негорючих материалов, при этом другие строительные конструкции, расположенные над подвесными потолками, включая междуэтажные перекрытия, также выполнены из негорючих материалов.

7.1.39. В помещениях для приготовления и приема пищи, за исключением кухонь квартир, допускается открытая прокладка кабелей. Открытая прокладка проводов в этих помещениях не допускается. ¶

В кухнях квартир могут применяться те же виды электропроводок, что и в жилых комнатах и коридорах. ¶

7.1.40. В саунах, ванных комнатах, санузлах, душевых, как правило, должна применяться скрытая электропроводка. Допускается открытая прокладка кабелей. ¶

В саунах, ванных комнатах, санузлах, душевых не допускается прокладка проводов с металлическими оболочками, в металлических трубах и металлических рукавах. ¶

В саунах для зон 3 и 4 по ГОСТ Р 50571.12-96 «Электроустановки зданий. Часть 7. Требования к специальным электроустановкам. Раздел 703. Помещения, содержащие нагреватели для саун» должна использоваться электропроводка с допустимой температурой изоляции 170 °С. ¶

7.1.41. Электропроводка на чердаках должна выполняться в соответствии с требованиями разд. 2. ¶

7.1.42. Через подвалы и технические подполья секций здания допускается прокладка силовых кабелей напряжением до 1 кВ, питающих электроприемники других секций здания. Указанные кабели не рассматриваются как транзитные, прокладка транзитных кабелей через подвалы и технические подполья зданий запрещается. ¶

7.1.43. Открытая прокладка транзитных кабелей и проводов через кладовые и складские помещения не допускается. ¶

7.1.44. Линии, питающие холодильные установки предприятий торговли и общественного питания, должны быть проложены от ВРУ или ГРЩ этих предприятий. ¶

7.1.45. Выбор сечения проводников следует проводить согласно требованиям соответствующих глав ПУЭ. ¶

Однофазные двух- и трехпроводные линии, а также трехфазные четырех- и пятипроводные линии при питании однофазных нагрузок должны иметь сечение нулевых рабочих (N) проводников, равное сечению фазных проводников. ¶

Трехфазные четырех- и пятипроводные линии при питании трехфазных симметричных нагрузок должны иметь сечение нулевых рабочих (N) проводников, равное сечению фазных проводников, если фазные проводники имеют сечение до 16 мм 2 по меди и 25 мм 2 по алюминию, а при больших сечениях — не менее 50% сечения фазных проводников. ¶

Сечение PEN проводников должно быть не менее сечения N проводников и не менее 10 мм 2 по меди и 16 мм 2 по алюминию независимо от сечения фазных проводников. ¶

Сечение РЕ проводников должно равняться сечению фазных при сечении последних до 16 мм 2 , 16 мм 2 при сечении фазных проводников от 16 до 35 мм 2 и 50% сечения фазных проводников при больших сечениях. ¶

Сечение РЕ проводников, не входящих в состав кабеля, должно быть не менее 2,5 мм 2 — при наличии механической защиты и 4 мм 2 — при ее отсутствии. ¶

Общие сведения по проводам и кабелям.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

В.Н. Черкасов, В.И. Зыков, А.Н. Петренко, В.Е. Мереняшев

ЛЕКЦИЯ № 1

ПО ДИСЦИПЛИНЕ

«Пожарная безопасность электроустановок»

Специальность 20.05.01 «Пожарная безопасность»

Общие сведения об электроснабжении и электроустановках (ЭУ).

Общие сведения по проводам и кабелям.

Учебный вопрос №1: Общие сведения об электроснабжении и электроустановках (ЭУ)

Электроустановками называется – совокупность машин, аппаратов, линий электропередачи и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другой вид энергии.

Электротехническое устройство – устройство, в котором при работе его в соответствие с назначением производится, преобразуется, передается, распределяется или потребляется электрическая энергия.

Электрооборудование – совокупность электротехнических устройств и (или) изделий.

Электроустановки по условиям электробезопасности разделяются на электроустановки до 1 кВ и электроустановки выше 1 кВ (по действующему значению напряжения). Статистика пожаров от электроустановок и причины пожароопасных отказов и загораний в электротехнических устройствах

Наиболее часто пожары от электротехнических устройств возникают при их эксплуатации от таких пожароопасных явлений, как: короткие замыкания (КЗ), перегрузки и большие переходные сопротивления в местах соединений, ответвлений и подключений к клеммным устройствам потребителей.

Электротехнические устройства можно объединить в группы по наиболее существенным признакам: конструктивному исполнению, электрическим характеристикам, функциональному назначению. Шесть основных групп электроустановок охватывают практически все многообразие применяемых на практике электротехнических устройств. Это провода и кабели, электродвигатели; генераторы и трансформаторы; осветительная аппаратура, распределительные устройства, электрические аппараты пуска, переключения, управления и защиты; электронагревательные приборы, аппараты, установки; электронная аппаратура и ЭВМ.

Промышленные электроустановки по функциональному назначению подразделяются на следующие виды:

генераторы – вырабатывающие электрическую энергию;

преобразователи напряжения (трансформаторы), преобразователи частоты – преобразующие электрическую энергию;

провода, кабели – передающие электрическую энергию от пунктов выработки и преобразования до электроприемников;

распределительные подстанции, узлы, щиты, устройства – распределяющие электрическую энергию;

электродвигатели, электроосветительные электротермические, электросварочные, и другие – потребляющие электрическую энергию электроприемники.

Около 75% всей вырабатываемой в нашей стране электрической энергии потребляется промышленными электроприемниками, которые по виду потребляемого тока делятся на следующие группы:

электроприемники трехфазного тока напряжением до 1000 В частотой 50 Гц;

— трехфазного тока до 1000 В частотой 50 Гц;

— однофазного тока до 1000 В частотой 50 Гц;

— работающие с иной частотой, питаемые от преобразовательных подстанций и установок;

— постоянного тока, питаемые от преобразовательных подстанций и установок.

По требованиям обеспечения надежности электроснабжения электроприемники делятся на три категории. Нарушение электроснабжения электроприемников I категории может вызвать опасность для жизни людей, угрозу безопасности государства, повредить оборудование, привести к массовому браку продукции, а также к трудновосстанавливаемым нарушениям технологического процесса. Электроприемники этой категории должны питаться, по меньшей мере, от двух независимых источников, и обрыв питания допускается только на время автоматического переключения с основного вида на резервный.

В I категорию включена также особая группа электроприемников, бесперебойная работа которых необходима для безаварийного приостановления производства в целях предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования.

Примерная схема электроснабжения объекта с электроприемниками особой группы приведена на рис. 1.1.

Рис. 1.1. Принципиальная схема электроснабжения объекта с потребителями

особой группы I категории

Подстанции глубокого ввода (ПГВ) питаются от двух независимых источников (НИ1) и (НИ2) – трансформаторов Тр1 и Тр2 110/10 кВ. Электроэнергия для дальнейшего распределения между потребителями поступает от указанных источников питания соответственно на распределительные устройства (РУ1) и (РУ2) напряжением 10 кВ. Шины РУ1 и РУ2 электрически могут быть связаны устройством автоматического включения резерва (АВР1) посредством масляного выключателя В1, который в нормальном режиме работы схемы находится в положении «выключено». Распределительные устройства ПГВ питают распределительные пункты РП1, РП2, РП3. Распределительные пункты РП2 и РП3 имеют секции электроснабжения потребителей особой группы. Для надежного электроснабжения потребителей особой группы в данной схеме применено многоступенчатое резервирование.

При отказе одного из двух независимых источников питания (НИ1 и НИ2) срабатывают устройства электрической защиты, аварийная цепь отключается выключателем Вп. Далее срабатывает устройство АВР1 и электрически соединяет шины РУ1 и РУ2 посредством включения выключателя В1. При полной потере питания от двух независимых источников НИ1 и НИ2 подстанцией глубокого ввода аварийное электроснабжение секций особой группы РП2 и РП3 после отключения поврежденных участков осуществляется вводом резервного источника питания Г, который находится в «горячем» резерве (включаются выключатели В2).

К электроприемникам II категории относятся такие потребители, перерыв питания которых приводит к резкому снижению выпуска продукции, длительным простоям механизмов, транспорта.

Эти электроприемники можно питать от одной воздушной линии электропередач напряжением 6 кВ и выше, осуществляя резервирование на пониженном напряжении, а также от одного трансформатора, если есть централизованное резервирование трансформаторов на складе внутри объекта или на небольшом расстоянии от него

К электроприемникам III категории относятся все остальные потребители.

Основным элементом схемы электроснабжения являются электрические сети, которые по конфигурации разделяются на разомкнутые и замкнутые. Разомкнутые электрические сети делятся на радиальные и магистральные (рис. 1.2); замкнутые электрические сети – на двусторонние, кольцевые, двойные магистральные, сложнозамкнутые (рис. 1.3).

Рис. 1.2. Конфигурация разомкнутых электрических сетей:

а — распределенная радиальная; б — сосредоточенная радиальная; в – магистральная

Магистральной сетью называется схема питания нескольких главных или цеховых подстанций от одной магистрали с общим отключающим аппаратом со стороны питания. Магистральные сети осуществляют дробление подстанций наиболее экономичным образом, особенно при применении в качестве магистралей линий электропередачи или токопроводов.

Рис. 1.3. Конфигурация замкнутых электрических сетей:

а –двухсторонняя; б -кольцевая; в – двойная магистральная; г — сложнозамкнутая

Радиальные сети (см. рис. 1.2а, б) могут применяться в случаях, когда магистральные сети не дают экономического эффекта или не удовлетворяют заданнным требованиям, например, при питании:

крупных сосредоточенных нагрузок, в частности, если питание производится кабельными линиями или линиями, пропускная способность которых недостаточна для одновременного питания нескольких подстанций;

средних и крупных обособленных нагрузок;

ударных и резко колеблющихся нагрузок (электропечных подстанций, прокатных станов и т.п.).

Радиальные сети обладают большей гибкостью и удобством в эксплуатации, поскольку место повреждения может быть обнаружено быстрее и проще.

Радиальные сети бывают одноступенчатые, когда территория предприятия невелика и распределяемая мощность также мала, двухступенчатые, когда применяются промежуточные распределительные пункты, питающие радиальные сети другой ступени. В таком случае освобождаются более крупные подстанции, например: главные понизительные подстанции (ГПП), от большего числа присоединений.

По конструкции электросети разделяются на электропроводки, токопроводы, кабельные и воздушные линии электропередач.

Электропроводкой называется совокупность проводов и кабелей с относящимися к ним креплениями, поддерживающими защитными конструкциями и деталями, установленными в соответствии с ПУЭ [1].

Токопроводом называется устройство, предназначенное для передачи и распределения электроэнергии, состоящее из неизолированных или изолированных проводников и относящихся к ним изоляторов, защитных оболочек, ответвительных устройств, поддерживающих и опорных конструкций.

Кабельной линией называется линия для передачи электроэнергии или отдельных ее импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями.

Воздушной линией электропередачи до 1 кВ называется устройство для передачи и распределения электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам, стойкам на зданиях и инженерных сооружениях (мостах, путепроводах и т.п.).

Электропроводки в электрических сетях до 1000 В бывают наружными и внутренними, с защищенными и незащищенными изолированными проводами, открытые и скрытые. Открытые проводки могут быть стационарными, передвижными и переносными. Во всех случаях необходимо полное соответствие типов проводки свойствам среды, особенно химически агрессивной, пожаро- и взрывоопасной

Вопрос№ 2: Общие сведения по проводам и кабелям

Для передачи электрической энергии непосредственно к потребителям широко используются провода и кабели.

Провод– кабельное изделие, содержащее одну неизолированную или одну и более изолированных жил, которые в зависимости от условий прокладки и эксплуатации могут быть покрыты неметаллической оболочкой и (или) оплеткой, либо одну изолированную или несколько изолированных друг от друга проволок, имеющих общую обмотку и (или) оплетку из изолирующего материала.

Кабель – кабельное изделие, содержащее одну или несколько изолированных жил (проводников), заключенных в металлическую или неметаллическую оболочку, поверх которой в зависимости от условий прокладки и эксплуатации накладывается защитный покров.

На рис. 1.4 приведены конструкции силовых электрических кабелей.

Рис. 1.4. Конструкция силового электрического кабеля:

1 — токоведущая жила; 2 — фазная изоляция (бумага, пропитанная маслом, или теплостойкая резина); 3 — джутовый заполнитель;4 — поясная изоляция (бумага, пропитанная маслом, или теплостойкая резина); 5 — защитная оболочка (свинцовая или алюминиевая); 6 – джутовая прослойка; 7 – стальная ленточная броня; 8 – джутовый покров

Провода и кабели маркируются в зависимости от того, из каких металлов выполнены токоведущие жилы. В обозначении маркировки первая буква «А» означает, что токопроводящая жила алюминиевая (например, АВВГ). Если маркировка начинается с другой буквы (например, ВВГ), то это означает, что жила у кабеля медная.

Изоляция у проводов и кабелей может быть из резины (знак «Р»), ПВХ пластикатов разных марок (знак «В»), полиэтилена (знак «П»). У кабелей старых марок изоляция может быть из специальной кабельной бумаги, пропитанной маслами и смолами. В этом случае знак, обозначающий материал изоляции отсутствует и это подтверждает, что изоляция из кабельной бумаги.

Если для примера расшифровать маркировку кабелей марок ВВГ, ВВБ, ВВБГ и КВВГ, то данную маркировку следует понимать следующим образом:

— отсутствие буквы «А» на первом месте означает, что жила кабеля медная;

— первая буква «В» означает, что изоляция из ПВХ пластиката;

— вторая буква «В» означает, что защитная оболочка тоже из ПВХ пластиката;

— буква «Г» означает, что кабель голый, т.е. других защитных покровов нет;

— буква «Б» означает, что кабель бронированный, т.е. поверху защитной оболочки наложена броня из стальной ленты;

— буква «Г» после буквы «Б» означает, что на броне отсутствует защитный покров, например, из джута, пропитанного маслами и смолами.

У кабеля марки АВВГ, буква «А» указывает на то, что жила алюминиевая. А у кабеля марки КАВВГ или КВВГ, КАВВБГ буква «К» означает, что этот кабель контрольный и, как правило, многожильный.

Максимально допустимый ток нагрузки Iдоп на провода и кабели зависит от многих факторов, например, от сечения жилы; марки; способа прокладки, температуры среды и др. Величина Iдоп определяется по табличкам в ПУЭ [4]. В ряде случаев в каталожных данных на современные кабельные изделия такие таблицы приводятся на серии конкретных марок кабелей.

Для питания электроэнергией мощных потребителей в «тяжелых» условиях и средах, как правило, используются кабели.

по условиям пожаро- и взрывобезопасности [1, 2, 4, 6] во взывооопасных зонах 0, 1 и 2 должны использоваться провода и кабели только с медными жилами. Во взрывоопасных зонах остальных классов допускается применять провода и кабели с алюминиевыми жилами в том случае, если соединения и оконцевания производятся пайкой, сваркой или опрессовкой и если у машин, аппаратов и приборов есть вводные устройства и контактные зажимы, предназначенные для присоединения проводов и кабелей с алюминиевыми жилами.

Провода и кабели должны иметь изоляцию, соответствующую напряжению сети, а защитные оболочки – условиям и способу прокладки. В пожаро- и взрывоопасных зонах изоляция провода и кабеля должна соответствовать номинальному напряжению сети, но быть не ниже 660 В.

Во взрывоопасных зонах всех классов допускается применение проводов и кабелей с резиновой, полихлорвиниловой и бумажной изоляцией. В пожароопасных зонах для электропроводок рекомендуется применять провода и кабели (бронированные и небронированные) с алюминиевыми и медными жилами, оболочками и покровами из материалов, не поддерживающих горения. Применение проводов и кабелей с полиэтиленовой изоляцией и оболочкой запрещается в пожаро- и взрывоопасных зонах всех классов.

Применение кабелей из сшитого полиэтилена и этиленпропиленовой резины, не имеющих индекса «НГ», не допускаются.

Современные кабельные изделия имеют сложное устройство и маркировку. Для примера рассмотрим конструкцию и маркировку одного из кабелей марки ПвБбШнг на 1000 В (см. рис. 1.5) – силовой кабель с медными жилами, с изоляцией – из силанольносшитого полиэтилена с защитным покровом типа БбШв (пониженной горючести).

Рис. 1.5. Конструктивные особенности силового электрического кабеля

Конструкция кабельного изделия включает в себя следующие элементы:

1. Токопроводящая жила – медная, однопроволочная или многопроволочная, круглой или секторной формы;

2. Изоляция – из силанольносшитого полиэтилена (изолированные многожильные кабели имеют отличительную расцветку, причем изоляция нулевых жил выполняется голубого цвета);

3. Скрутка – изолированные жилы кабеля скручены; кабели выполняются четырехжильными и имеют все жилы одинакового сечения или одну жилу меньшего сечения (нулевую). Номинальные сечения нулевых жил (меньшего сечения) зависит от сечения фазной жилы (например, 6/4, 10/6, 16/10, 25/16, 35/16, 50/25, 70/35 и т.д.);

4. Внутренняя оболочка – накладывается поверх скрученных жил из мелонаполненнойневулканизированной резиновой смеси с заполнением промежутков между жилами;

5. Поясная изоляция – в кабелях с защитным покровом типа ВбШввыпрессована из ПВХ пластиката или материала изоляции, или другого равноценного материала;

6. Защитный покров – типа ВбШв состоит: броня из двух стальных лент, наложенных таким образом, чтобы верхняя лента перекрывала зазоры между витками нижней ленты; защитный шланг, выпрессованный из ПВХ пластиката, в кабелях марки ПвБбШнг из ПВХ пластиката пониженной горючести. Такие кабели применяются для грунтовой прокладки в кабельных сооружениях. Срок службы таких кабелей 30 лет.

Требования пожарной безопасности к электропроводкам, как результат многолетних исследований и нормативных обобщений, приводятся в монографии [5], где подробно рассмотрены: нормативные требования; рекомендации по выбору, выполнению и применению электропроводок; преимущественные области применения кабельных изделий в зависимости от показателей их пожарной безопасности, а также приводятся примеры основных типов кабелей нового поколения с улучшенными противопожарными свойствами.

| следующая лекция ==>
Решение задач по топографической карте | Облік власного капіталу і розподілу прибутку в товариствах.

Дата добавления: 2015-10-05 ; просмотров: 2535 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Добавить комментарий