Ветровая электроэнергия экономия электричества


СОДЕРЖАНИЕ:

Сколько стоит ветряная электростанция

Дата публикации: 29 ноября 2013

Корыстная дружба с ветром

Что бы там ни говорили, какие бы домыслы ни предъявляли, а дружба с ветром выгодна во всех отношениях. И во все времена. Скептики могут спорить до хрипоты и утверждать обратное. Это их проблемы. А реальность говорит: с ветром дела иметь стоит.

И совсем не случайно энергия, полученная при бескорыстной помощи ветра, приобретает всё большую востребованность у жителей всех республик бывшего Советского Союза. Всего один раз заплатив за ветрогенератор, вы можете долгие годы получать бесплатную электроэнергию и обеспечивать свой дом освещением, сигнализацией, смотреть телевизор и работать на компьютере.

Представьте себе такую идеальную картину. Если бы все жители бывших советских республик дружно приобрели для себя ветроустановки, то разбогатевшие энергетические компании остались бы без нижней рубашки.

И ведь монтируется ветряная электростанция очень быстро и начинает работать на ваши нужды буквально сразу же после её установки при минимальной скорости движения воздуха от трёх метров в секунду. Устанавливается она на небольшой штанге высотой около трёх метров и может выдерживать самые сильные ураганные напоры.

Купить ветрогенераторы любых мощностей и размеров можно в специализированных интернет-магазинах, где выбор – на любой вкус и кошелёк. Стоит только сделать заказ и вы получите самое большее через неделю своего бескорыстного помощника.

И что мы будем иметь?

Законный вопрос. Переходим к конкретике. Допустим, что при ветре 10 м/сек ваш ветрогенератор имеет мощность 10 киловатт. Мачта высотой 10 метров, 8 аккумуляторных батарей, один инвертор на 6 киловатт. Стоимость такой электростанции – чуть меньше полумиллиона рублей.

Такой расклад возможностей установки, её цены и отдачи, конечно же, приблизительный, но близкий к реальным расценкам. И любой из нас может эти цифры изменять в ту, или в другую сторону. Например, вы сами можете решать, уменьшить или увеличить высоту мачты, количество лопастей на ветряке, мощность генератора, емкость аккумуляторов и так далее. В зависимости от уменьшения или увеличения мощности зависит и общая цена установки.

Те показатели ветрогенератора, которые приведены в первом абзаце, показывают на его способность снабжать электроэнергией и горячей водой среднее фермерское хозяйство. Если его месячная производительность достигает 1500 квт/час, то этого будет достаточно, чтобы обеспечить электроэнергией дом до 6 человек проживания, плюс работу всех коммунальных агрегатов (насосов, водонагревателей, стиральных машин, электрочайников, телевизоров).

Если вас и такие возможности не устраивают, и вы бы хотели работать ещё и сварочным аппаратом на дармовой электроэнергии, то достаточно заменить инвертор на 18 киловатт.

Вернулись деньги – пошла прибыль

Речь идёт об окупаемости. Давайте займёмся простейшей арифметикой. Соберите все квитанции об оплате за электроэнергию в течение одного года и посчитайте сколько отдали денег. Одна цифра есть. Записали? Идём дальше.

Переходя из комнаты в комнату вы тут же выключаете свет, стараясь экономить, лишний раз не включаете нагревательную батарею, хотя в комнате не совсем тепло, выключаете на ночь лампочку во дворе дома, хотя в целях безопасности её можно было бы не выключать, и так далее. Прикиньте, сколько вы могли бы потерять денег, если бы не соблюдали меры бережливости. Плюсуем к той сумме. И знаете почему? Да потому, что имея дармовую электроэнергию вы и не подумали бы выключать лампочку на ночь, или батарею в холодной квартире. У вас всё бы горело и нагревалось. Вы бы забыли об экономии.

Таким образом, за год набирается солидная сумма. Теперь те полмиллиона рублей, что составили стоимость установки, поделите на цифру, полученную от подсчёта годового расхода и вы получите количество лет, в течение которых истекает срок окупаемости. В среднем он длится от пяти до семи лет, после чего идёт бесплатное использование ветровой электроэнергии. То есть, пошла ваша прибыль.

Как решить проблему окупаемости

Вопрос вопросов. Он самый ходовой и актуальный был, есть и будет. Особенно для жителей средней полосы России, где не настолько сильные ветры. Как при таких условиях выбрать оптимальный ветрогенератор, чтобы не прогореть и быстро окупить его стоимость?

Существует два направления решения проблемы:

  1. Снижение до минимума всяческих затрат в ходе эксплуатации ветряной электростанции;
  2. И увеличение её производительности.

Первый выход найден и он до обидного простой, как пареная репа. Специалисты советуют вместо одного мощного ветрогенератора устанавливать несколько малых ветряков, которые начинают работать при самых слабых дуновениях ветерка, так как имеют лёгкие и податливые лопасти. Для малых установок не требуется заливать бетоном большие фундаменты и они монтируются несколькими рабочими, а не бригадами специалистов с использованием различной техники.

И второй выход решения проблемы – устанавливать вместо горизонтальных вертикальные ветрогенераторы. Они наиболее чувствительны к «дыханию» ветров, не требуют особого ухода при эксплуатации и готовы работать на небольшой высоте от поверхности.

Считаем. При среднегодовой скорости движения воздушных масс в средней полосе России 4 м/сек промышленный горизонтальный ветряк при номинальной мощности 10 киловатт за месяц выдаст около 800 квт/час. Для того, чтобы сравняться с ним, потребуется семь малых бытовых вертикальных ветряков, которые неприхотливы в работе и просты при их установке.

Какую мощность можно с них получать? По реальным наблюдениям и расчетам каждая даёт примерно 20-40 ватт с квадратного метра ветряка. То есть, существует возможность твёрдо рассчитывать на получение стабильной мощности 140 – 280 ватт. Значит, на энергоёмкие приборы и потребители, такие, как электроплита, сауна, мощности не хватит. Зато вполне по силам зарядка аккумулятора, питание телевизора, компьютера, освещение. А при грамотном хранении и накоплении энергии можно запускать водяной насос и отопление дома.

Так что, использование ветряных мини-электростанций в средней полосе России вполне правомерно и экономически выгодно.

В следующем видео эксперты обсуждают стоимость и перспективность использования ветрогенераторов:

Окупаемость Ветроэнергетических установок в условиях средней полосы России

Окупаемость Ветроэнергетических установок в условиях средней полосы России

Самый актуальный вопрос в области ветроэнергетики в России на сегодняшний день — как окупить затраты на приобретение и эксплуатацию Ветрогенератора в условиях слабых ветров средней полосы России.

С учетом нашего опыта эксплуатации Ветроустановок , есть несколько советов, которые помогут при выборе Альтернативного источника энергии уже сегодня получить действительное подспорье в хозяйстве, а не дорогую и бесполезную игрушку .

По опыту работы с ветрами средней полосы России, с Ветрогенератора получается получить, в лучшем случае, до 10% мощности от номинала ВУ летом и 25 — 30 % на зимних ветрах.

Например: Потребитель, установив Ветряк, в центральной части РФ, номинальной мощностью 5 кВт, будет получать реальную мощность 0,5 кВт летом и 1,5 кВт в зимний период.


Очевидным решением проблемы производительности ветряков, при работе на «слабых» ветрах, является добавление солнечных батарей. Гибридные системы (Ветрогенератор + Солнечная батарея = Ветросолнечная электростанция) помогают увеличить мощность Альтернативной электростанции, особенно в летних условиях. Однако темой статьи является повышение окупаемости самой Ветроэнергетической установки, а добавление дополнительных элементов в систему, этому не способствует.

Но вернемся к проблеме окупаемости Ветряных электростанций, для этого есть два направления:

1. Снижение капитальных и эксплуатационных затрат на ВЭС.

2. Повышение производительности ветроэлектростанции.

Однако, рассматривая проблему окупаемости Альтернативной энергетики, нам лучше объединить в обсуждении эти направления в одну общую тему, т.к. они взаимно пересекаются с друг другом, дополняя и усиливая себя.

Первое, на что бы мы обратили внимание — установку не одного мощного Ветрогенератора, а нескольких небольших ветряков. Это диктуется следующими характеристиками Ветроустановок:

— мощные Ветрогенераторы оснащаются мультипликаторами (коробками скоростей), электроприводами разворота «на ветер», дисковыми тормозными системами, жидкостными системами охлаждения и системами электронного контроля под управлением компьютера

/ малые ветряки имеют три — максимум четыре подшипника и механическую систему «буревого» торможения (обычно за счет складывания «хвоста»);

— мощные Ветроустановки имеют большие и тяжелые лопасти с большим диаметром, раскрутить которые под силу хорошему ветру

/ малые модели имеют легкие лопасти, иногда больше трех, и начинают вращаться от ветра 1,5 м/с, одним словом — небольшие Ветряки производительнее больших Ветрогенераторов;

— мощные Ветрогенераторы требуют значительного объема строительных работ, что объясняется большим фундаментом, применением специальной техники и коллективом профессионалов / малые Ветроустановки устанавливаться силами нескольких работников или за счет лебедки. Иногда с использованием автомобиля или трактора, а более тяжелые модели за счет гидравлического цилиндра.

— мощные Ветроустановки просто дороги. При этом они не только в разы могут превышать стоимость нескольких малых систем (равной суммарной мощности — Ветропарк), мощные ВУ дороги в транспортировке, монтаже и наладке, а при эксплуатации — в обслуживании и ремонте / малые Ветрогенераторы за счет своей простоты, дешевы и не требуют, практически, ни какого обслуживания.

— дорогие и мощные модели, даже именитых производителей, легко ломаются и в случае выхода из строя одного, но мощного Ветрогенератора, можно потерять все / ремонт небольших моделей подпадает под правило: «Чем меньше деталь — тем она дешевле как запчасть», и конечно, выход из строя одной единицы, из двух/пяти/десяти ВУ единой Ветроэнергосистемы или Ветропарка, не остановит энергоснабжение объекта.

Второе относиться к потребителям, имеющим хоть какое то подключение к сетям, но не удовлетворенных ее качеством или выделенной мощностью — это Сетевые Альтернативные энергетические системы .

Сетевой комплект = Ветрогенератор (ВУ + СБ или СБ) + сетевой контроллер + сетевой инвертор, предназначен для работы в уже существующую сеть (220 или 380 В) объекта снабжения. Сетевое оборудование, получая непригодную для прямого использования энергию от Альтернативных источников, настраивается на частоту сети и начинает ее снабжение, перерабатывая энергию ветра (и/или солнца) в привычные нам 220 или 380 вольт переменного тока, «бесплатно» и качественно снабжая потребителя.
Для работы этого комплекта не требуется аккумуляторная батарея и средства ее контроля и подзарядки. Это значительно сокращает стоимость Альтернативной энергетической системы и ее эксплуатации, что значительно сокращает сроки окупаемости системы.

При этом, предлагаемые ООО «ТЕРМОДИНАМИКА» сетевые комплекты , имеют дополнительные возможности для организации выделенных линий и подключения любого количества АКБ, на случай необходимости обеспечить бесперебойное питание на объекте. Хотя такое усложнение системы отодвигает сроки окупаемости на годы.

И третье . Как ни странно, в данном случае, мы предлагаем использовать более дорогое Ветроэнергетическое оборудование , но изначально подготовленное для работы на слабых ветрах.

То есть — мы предлагаем, вместо «недорогих» горизонтальных Ветроустановок, дорогие вертикальные Ветрогенераторы VAWT с поворотным крылом, но с меньшим номиналом производительности для каждого конкретного случая.

С учетом того, что данные модели в условиях слабых ветров центральной части РФ, вырабатывают 40% от номинальной мощности летом и 70% зимой, там, где требуется установка 50 кВт горизонтального Ветрогенератора потребуется всего один VAWT с регулируемыми лопастями мощностью 15 кВт.

И, несмотря на то, что новый тип Вертикальной Ветроустановки VAWT в два раза дороже обычного горизонтального Ветрогенератора, при сравнении моделей номинальной мощности, он (VAWT) на треть дешевле обычных ветряков при расчете оборудования на реально полученные киловатты.

Единственный недостаток такой, во всех отношениях «прекрасной» модели Вертикальной Ветроустановки — необходимость периодического обслуживания (смазки) поворотного механизма лопастей.

Давайте подведем итог нашему разговору: возможно ли на сегодня получить окупаемую Ветряную электростанцию работающую в условиях «слабых» ветров.

Подсчитаем:
Например, если среднегодовая скорость ветра составляет 4 м/с, современный горизонтальный полупромышленный ветряк мощностью 10 кВт будет выдавать около 800 — 900 кВтч в месяц. За год работы оборудования выход составит 10200 кВтч. Для выработки такого же количества энергии нам понадобиться семь бытовых киловаттных ветряков (125 кВтч х 7 в месяц) или одна трех киловаттная Ветроустановка VAWT нового типа.
Теперь рассмотрим среднюю стоимость 10200 кВтч за год (при 4 м/с) в виде различных типов комплектаций оборудования «под ключ»:

• Сетевая ВЭС на базе горизонтального ВУ 10 кВт: 900 000,00 руб.

• Сетевой Ветропарк на базе горизонтальных ВУ 1 кВт в количестве 7* шт: 90 000,00** руб. х 7

• Сетевая ВЭС на базе вертикального ВУ 3 кВт с поворотными лопастями: 580 000,00 руб .

При этом стоимость 1 кВтч, (для МО) на сегодня равна, в среднем, 3,00 руб. за кВтч. Считайте.

Вывод очевиден: на сегодняшний день, при ресурсе Ветроустановки в 20 лет, второй и третий варианты — окупаемы , а при некоторых условиях — рентабельны:

— мы рассматриваем наихудший вариант для эксплуатации ветрогенератора — среднюю скорость ветра 4 м/с. Уже при скорости в 5 м/с, все варианты комплектации ВЭС становиться не только окупаемы, но и начинают приносить прибыль. То же произойдет при повышении цен на электроэнергию — при стоимости 1 кВтч = 4,00 руб. затраты окупаются по всем вариантам, а при стоимости 5,00 руб. за кВтч становятся рентабельным даже первый вариант;

— электроэнергия будет только дорожать, а производство бытовых и полупромышленных Ветрогенераторов в мире растет, с появлением новых, более производительных и легких моделей ветряков, а следовательно и более дешевых.

Примечания:

* — то или иное количество ВУ подбирается с учетом ТУ заказчика, путем просчета всех возможных вариантов;

** — без учета монтажных работ, для ВУ мощностью до 1 кВт (включительно) работы по монтажу могут быть выполнены заказчиком самостоятельно, в виду их не сложности.

Ветрогенератор вертикальный: цена, размеры, установка

Приобретая ветрогенератор с вертикальной осью вращения, следует обратить внимание на следующие характеристики:

  • — начальная, номинальная и максимальная скорость ветра;
  • — номинальная и максимальная мощность;
  • — габариты деталей (лопастей, мачты, ротора);
  • — общий вес.

Самый большой ветрогенератор в мире – горизонтальный Энеркон Е-126. Он был впервые установлен в Германии в 2007 году. Его общая высота составляет 198 м, диаметр ротора – 127 м, вес – 6000 т, а мощность – 7,58 МВт! Сейчас в Европе используют несколько десятков таких моделей.

Вертикальные ветряки непромышленного назначения при высоте мачты 5 м имеют диаметр ротора 3 м, вес 120 кг и при средней скорости ветра 5-8 км/ч вырабатывают энергию от 4 тыс. до 10 тыс. кВт ч. в год.

Установить ветрогенератор вертикального типа допустимо, в том числе, и в городских условиях с плотной застройкой. Компактные модели можно устанавливать на крышах зданий на высоту до 6 м. На высотных небоскрёбах высота мачты может достигать 15 м. Ветряное колесо нуждается в надёжном закреплении. При установке следует учитывать его диаметр и вес, которые задаются необходимой мощностью. Основание конструкции должно быть крепким и массивным, т.к. оно испытывает существенные нагрузки. Установка ветрогенератора с вертикальным вращением, в отличие от горизонтального, возможна в любой местности.

Как самому сделать ветрогенератор

С целью самостоятельного изготовления ветряка в домашних условиях необходимо, в первую очередь, собрать саму турбину. В зависимости от выбранной конструкции лопастей понадобится фанера (для рёбер и стрингеров) и алюминиевые листы для обшивки (можно заменить на ПВХ) или ABS пластик для изготовления лопастей на верхней и нижней опорах. В качестве оси подойдёт оцинкованная труба.

Установка генератора – важнейший этап. Существуют самостоятельные, но весьма трудоёмкие способы сборки генератора. При этом используются неодимовые магниты для ротора и катушки индуктивности – для статора. Кронштейн статора выполняется из прочного материала, например, из стальных пластин. Его можно вырезать с помощью гидроабразивной или лазерной резки.

Кроме этого, в различных источниках встречаются советы использовать для самодельных ветряков генераторы — двигатели от авто или стиральных машин. А интернет-ресурсы содержат множество детальных схем сборки подобных систем в домашних условиях.

Ветрогенератор – это сложный механизм, и прежде чем приступать к реализации планов по его сборке, необходимо тщательно взвесить все «за» и «против». Ведь для создания надёжного в длительной эксплуатации ветряка понадобится произвести точные расчёты. Также необходимо наличие такого оборудования, как сварочный аппарат, станок для резки металла и прочего расходного материала и инструментов (карбонатное волокно, стекловолокно, эпоксидная смола, уголки, подшипники и многое другое).

Обязательно нужно учитывать сложности при сбалансировании самодельной конструкции – это довольно сложный процесс. Поэтому самодельные ветряки не рекомендуется устанавливать на высоту более полутора метров.

В качестве альтернативы можно рассмотреть вариант сборки ветрогенератора из готовых комплектующих, специально предназначенных для подобной работы. Принимаясь за самостоятельную сборку, помните, что это потребует определённых навыков, будет довольно затратным и займёт много времени. И в любом случае придётся приобретать инвертор. Желательно с функцией контроллера заряда и стабилизацией напряжения.

Вертикальные ветрогенераторы. Цена

Цены колеблются в зависимости от характеристик. Средняя стоимость непромышленных моделей составляет примерно 2000 у.е:

  • — мощность 50 Вт, диаметр ветряного колеса (ротора) 1 м, высота 0,6 м, цена зависит от производителя — в районе 1 тыс. у.е;
  • — мощность 10 кВт, диаметр ротора 8 м, высота — 6 м, цена около 3,5 тыс. у.е.

Ветряные генераторы электроэнергии для домашнего использования

Здесь вы узнаете:

Высокая стоимость коммунальных услуг, в совокупности с постоянным ростом тарифов, приводит к тому, что потребители пытаются как-то изворачиваться, стремясь снизить расходы. Дело доходит даже до использования альтернативных источников электроэнергии. Такими источниками являются ветряные электростанции для дома – агрегаты, использующие для выработки электричества энергию ветра. В этом обзоре мы обсудим основные особенности ветроэлектростанций и расскажем об их эксплуатации.

Нехватка энергоресурсов и коммунальные услуги

Ветряные электростанции – это далеко не новое слово в области электротехники. Эти громоздкие, но не очень сложные агрегаты активно используются для выработки электроэнергии во многих странах мира. В России они применяются только в частном порядке, хотя интерес к этим экологически чистым аппаратам постоянно растет. Основная причина – беспощадный рост тарифов на коммунальные услуги.

И действительно, цены на электроэнергию постоянно растут, а поставщики вводят какие-то безумные нормативы, целью которых является взимание как можно большей ежемесячной платы с потребителей. Неудивительно, что люди стремятся найти какой-то разумный выход из ситуации. Таких выходов несколько:

  • Отказаться от потребления электроэнергии – интересный подход, но мы же с вами не пещерные люди. Поэтому данный вариант будет интересен крайне ограниченному кругу лиц;
  • Начать обманывать счетчики – это незаконно, да еще и грозит крупным штрафом, которого бы хватило на несколько мегаватт электричества;
  • Воспользоваться альтернативными источниками электричества – это солнечные и ветряные электростанции.
Каждый электрик должен знать:  Выбор светильников для освещения производственных помещений

Солнечные электростанции требуют большого количества солнечных батарей и наличия большого количества солнечных дней в год для местности, в которой будет производиться их эксплуатация. Что касается ветряных электростанций, то они используют энергию ветра – они работают почти в любую погоду.

Ветровые электростанции для дома получают все большее распространение, несмотря на свою дороговизну. Их выбирают те, кто устал «кормить» государство ежемесячными платежами. Также они востребованы при электрификации загородного жилья – иногда проще купить ВЭС (ветряную электростанцию), чем оплатить гигантский счет за подключение к электрическим сетям.

Производство и использование промышленной ветряной электростанции требует огромных затрат, однако, такие вложения легко окупаются в будущем, поскольку с их помощью поставщики энергии могут делать деньги по сути «из воздуха».

О ветряных электростанциях задумываются и поставщики электроэнергии. Атомные станции слишком опасны, гидроэлектростанции наносят вред руслам рек и окружающей биосфере, угольные станции извергают в воздух тонны углекислого газа и прочих продуктов сгорания. Кроме того, угля в земле все меньше и меньше – уголь и газ являются невозобновляемыми природными ресурсами.

Электроэнергия от ветряных электростанций

Ветряной генератор электричества не нуждается в угле, нефти, мазуте, солярке, дровах или ядерном топливе – он работает исключительно за счет энергии ветра. Для этого ветряки устанавливаются в местности, где практически непрерывно перемещаются гигантские количества воздушных масс, вызывая мощные ветра, вращающие лопасти. Их основой являются производительные генераторы, вырабатывающие электроэнергию. Получаемое электричество стабилизируется, после чего сразу же направляется к потребителям или накапливается в аккумуляторах.

Ветряные электростанции требуют для своей работы мощных воздушных потоков. Эти потоки улавливаются с помощью лопастей той или иной конструкции. Соответственно, в местности, где стоит ветряк, должны дуть сильные ветра. Причем должны дуть регулярно, на протяжении долгого времени. При этом вокруг должна располагаться открытая местность, не снижающая энергию дующих ветров.

Именно этот фактор и накладывает ограничение на использование ветряных электростанций – мест, где постоянно дуют ветра, в России не так уж и много. Как показывают наблюдения метеорологов, то этим места располагаются в восточной части нашей страны – это Дальний Восток, Чукотка. Кстати, именно Чукотка бьет все рекорды по ветреной погоде. Причем местное население на них особо не реагирует – привыкли.

Принцип действия ветряных электростанций

Давайте рассмотрим, как работает ветряная электростанция. Мы уже говорили, что ее основой является генератор. Он вырабатывает электроэнергию, которая поступает на вспомогательное оборудование. Здесь она запасается в аккумуляторах. Постоянный ток с помощью инверторных преобразователей превращается в переменный, после чего поступает к потребителям. Дополнительное оборудование здесь крайне необходимо, так как ветер дует порывами, что сказывается на скорости вращения вала генератора.


Виды ветрогенераторов

Сам генератор приводится во вращение с помощью лопастей. За счет этих лопастей ветровые электростанции подразделяются на две большие категории:

  • C горизонтальной осью – генератор здесь располагается горизонтально, а лопасти направлены по основному направлению ветра. Для того чтобы получить от ветра максимум энергии, ветряки снабжаются килем, который заставляет генератор с лопастями поворачиваться по направлению самого мощного потока;
  • С вертикальной осью – таким ветряным электростанциям совершенно все равно, в какую сторону дует ветер.

Существует великое множество дизайнов ветряков самой причудливой формы. Это обусловлено в первую очередь большим количеством внешних факторов, значительно влиящих на КПД всей системы.

Ветровые генераторы с горизонтальной осью подходят для использования там, где ветер дует преимущественно в одну сторону. Они отличаются своей дешевизной, простотой конструкции и повышенной мощностью. Что касается моделей с вертикальной осью, то они могут работать в самых сложных условиях, например, при постоянно изменяющемся направлении ветра. Стоят они дороже, но КПД у них меньше, чем у горизонтальных моделей.

Подбирая ветряк для частного дома, необходимо ориентироваться на местную розу ветров. Если наблюдения показывают наличие ветровых потоков, постоянно дующих в одном и том же направлении, целесообразно приобрести ветряную электростанцию с горизонтальной осью. Если ветер каждый день дует в разных направлениях, следует потратиться и приобрести вертикальный ветряк.

Достоинства и недостатки

Для начала рассмотрим достоинства ветряных электростанций:

  • Дармовая электроэнергия практических из ниоткуда – ветер дует совершенно бесплатно, он является возобновляемым ресурсом, если его вообще можно назвать ресурсом;
  • Возможность обрести независимость от местных поставщиков электричества – отличный способ сэкономить на коммунальных платежах;
  • Экологическая чистота – ветряные электростанции не вредят окружающей среде;
  • Возможность полностью обеспечить дом электроэнергией – для этого достаточно купить мощный ветряк и установить его в подходящей местности.

Есть и недостатки:

  • Высокая стоимость электрогенератора – стоимость модели с генератором на 3 кВт и напряжением 48 Вольт составит около 190-200 тыс. рублей. За эти деньги потребители получат трехлопастный ветряк с контроллером. В продаже присутствуют и более дешевые образцы, но они отличаются пониженной надежностью, не самыми приличными характеристиками или бедной комплектацией;
  • Большой срок окупаемости – может пройти до 10-15 лет, прежде чем ветряная электростанция начнет работать в плюс. Но если поставщики электроэнергии «заламывают» больше, чем стоит сама станция, то она оправдает себя уже в первый день работы;
  • Шум – его интенсивность растет прямо пропорционально скорости вращения оси генератора;
  • Зависимость от скорости ветра – это требует дополнительного оборудования, отвечающего за стабилизацию напряжения и накопление электрической энергии.

Дополнительно оборудование хорошего качества, необходимое для работы всей системы, по стоимости вполне может сравниться с самим ветряком.

Первые два минуса являются довольно серьезными, ведь к затратам на приобретение ветряной электростанции необходимо прибавить расходы на покупку дополнительного оборудования – это аккумуляторы и инверторы, вспомогательные источники питания.

Где выгодно ставить ветряки

Ветрогенераторы для дома востребованы в местностях, где постоянно дуют ветра. То есть, если в месте, где стоит ваш дом, постоянно ветреная погода, вы можете задуматься над приобретением ветряка. Если ветра мало, следует присмотреться к солнечным батареям последнего поколения, которые могут вырабатывать большое количество электроэнергии.

Ветряные электростанции выгодно ставить в восточных районах России, для которых характерно большое количество ветров. При этом рядом с вышкой станции не должно быть построек и элементов ландшафта, перекрывающих воздушные потоки – это могут быть холмы, многоэтажные здания, кромки лесов, скалы, иные преграды. Оптимальная высота расположения лопастей варьируется в районе 10-15 метров. Можно и выше, но тогда под угрозой окажется целостность ветряка – он может разрушиться из-за слишком сильного ветра.

Даже если есть все условия для установки ветряной электростанции, следует призадуматься над дополнительными источниками электроэнергии. Например, рядом с ветряком можно поставить небольшую солнечную панель, которая будет давать электричество в безветренные дни. Нередко для этих целей используются вспомогательные бензиновые, дизельные или газовые генераторы, которые могут работать в любую погоду и в любое время дня и ночи.

Как выбрать ветряную электростанцию

Главным параметром ветряной электростанции является ее мощность. Необходимо помнить, что своего пикового значения она достигает только при максимальной скорости вращения. А для того чтобы добиться максимальной скорости, необходимо обеспечить подходящую высоту установки ветряка и выбрать модель с оптимальным количеством лопастей. В большинстве случаев потребители останавливаются на трехлопастных моделях. Если выбрать модель мощностью 3 кВт, то этого вполне хватит для большинства нужд.

Кроме ветряков, советуем вам также присмотреться и к солнечным батареям. В зависимости от климатических и географических условий такой вид получения энергии может оказаться даже более выгодным.

Если энергия от ветряной электростанции будет тратиться не только на освещение и работу маломощной бытовой техники, потребуется более мощная модель. Это актуально при использовании микроволновых печей, множества морозильных камер, электропечей и прочих электроприборов. Впрочем, для приготовления еды лучше задействовать газовое оборудование, работающее на сжиженном газе.

Поговорим о производителях – наибольшим спросом пользуются ветрогенераторы из Европы, в частности – из Германии и Австрии. Отзывы владельцев говорят, что именно здесь изготавливаются самые надежные и долговечные агрегаты, способные прослужить до 30-40 лет. Востребованы и ветряки российского производства – они отличаются ценовой доступностью. Что касается китайской продукции, то она не только дешевая, но и не самая надежная.

Вспомогательное оборудование

Полный комплект необходимого оборудования для получения электроэнергии из энергии ветра включает в себя следующие наименования:

  • Генератор для ветрогенератора – он поставляется в комплекте, но может приобретаться отдельно (например, на замену вышедшему из строя узлу или для постройки самодельного агрегата);
  • Контроллер – обеспечивает стабилизацию выходного напряжения;
  • Аккумуляторы и контроллеры заряда – обеспечивают накопление электроэнергии;
  • Инверторы – необходимы для преобразования постоянного тока в переменный (ветряные электростанции выдают постоянный ток низкого вольтажа, что требует применения инверторных преобразователей для питания бытовой техники).

Также для домашней ветряной электростанции понадобятся вспомогательные источники электроэнергии, необходимые в периоды отсутствия ветра.

Да, ветрогенераторы для дома поражают своей баснословной стоимостью – один только ветряк с мощным генератором обойдется в целое состояние, не говоря уже о вспомогательных узлах. Поэтому многие люди задумываются о самостоятельной сборке данного оборудования. Для этого необходимо приобрести подходящий электрогенератор, собрать систему лопастей и разместить все это хозяйство на устойчивой мачте. Такой подход позволит сэкономить круглую сумму, которую можно потратить на приобретение контроллера, инвертора и аккумуляторов.

Бизнес-идея: устанавливаем ветряные электростанции

Еще пару десяток лет назад о ветряных электростанциях отзывались с легким пренебрежением, а людей, которые ими занимались, называли их не иначе, как чудаками-изобретателями. В современном же мире отношение к ветряной энергетике более чем трепетное. Она вошла в обиход каждого цивилизованного государства.

Первые ветряные электростанции промышленного назначения строились в прибрежной зоне, поскольку морские ветры дуют с завидным постоянством. В начале нынешнего столетия особенно широкое распространение ветрогенераторы получили в Нидерландах, Дании, Великобритании и Швеции. Сейчас к этому списку присоединились Германия и Франция.

Поиск альтернативных источников электроэнергии вызван, прежде всего, её дороговизной и дефицитом. О её важности и востребованности говорит тот факт, что Мэр Нью-Йорка Майкл Блумберг озадачился установкой ветряных генераторов на крышах небоскребах, дабы обезопасить город в условиях пиковых нагрузок. Немцы вообще решились отказаться от атомной энергетики в пользу ветряной.

«Электроэнергия ежегодно дорожает на 10-15%, — говорит в этой связи установщик ветряных генераторов Артем Ковельский, — но люди по-прежнему скептически смотрят на ветряки. Да, сейчас у нас крайне мало заказов, но уже появился устойчивый интерес. Это говорит о надвигающем буме». По словам Ковельского, в его активе немало положительных примеров. Особенно, с установкой ветряков на загородных домах.

Ветряк для дачи: за и против

Для дачи вполне подойдёт ветрогенератор мощности до 0,3-0,5 кВт. Этого достаточно для трех энергосберегающих лампочек (3Х15 Вт), ноутбука (10-20 Вт), телевизора (из расчета 0,139 ватт на квадратный дюйм, или 50 Вт) и небольшого экономного холодильника (до 160 Вт). Обычно такой ветряк надо покупать в комплекте с аккумулятором, который способен обеспечивать дачу двое суток в безветрие, и синусоидальным конвертором.

Мнение экспертов по поводу того, что выгоднее потребителю – покупная электроэнергия и ветровая? – разделились. Если дача уже подключена к сети, то устанавливать ветряк в сегодняшнем соотношении стартовых трат и экономии электроэнергии, однозначно является проигрышным вариантом. Однако эта оценка кардинально меняется, если дача не запитана к сетевой электроэнергии. Тогда целесообразно приобрести ветряк (отечественный – 12 тысяч рублей, плюс аккумулятор и конвертор – еще 4-6 тысяч рублей).

Комментируя дачный вариант, Артем Ковельский, прежде всего, акцентирует внимание на климатических особенностях местности. «Надо посмотреть погодные архивы, и определится, как часто дует ветер, — говорит он. – Понятно, что при цене 3 рубля за кВт и 12 тысяч за генератор потребуется десятилетие, что окупить ветряк. Однако ситуация меняется. Ветряки дешевеют со скоростью 10-15 % в год, а сетевой киловатт с такой же скоростью дорожает».

Несложный расчет показывает, что, если указанная ценовая тенденция сохранится, то через пять лет ветровые электростанции станут чрезвычайно выгодным приобретением даже для тех дачников, у которых есть сетевая электроэнергия. И в самом деле, когда дует ветер, можно будет использовать альтернативную энергию; в штиль – сетевую.

Продавцы маломощных генераторов утверждают, что их установка может производиться без специалистов. На этот счет Ковальский говорит «и да, и нет». Во-первых, надо залить фундамент для мачты и правильно сделать растяжки. Во-вторых, специального опыта требует электротехническая часть, включающая в себя ветряк, регулятор заряда, аккумулятор и конвертор.

Электроэнергия из ветра: от кафе до теплицы

Для обеспечения даже самого маленького производства или бизнеса ветряной электроэнергией, следует установить ветряной электрогенератор от 5 кВт. Для этого, безусловно, потребуется специальный проект. Специалисты определят оптимальное месторасположение мачты, оснастят её грозозащитой, зальют под неё фундамент и выполнят специальные пуско-наладочные работы.

Как правило, установщики промышленных ветряков «берут» за свои труды от 10% стоимости энергетической установки, плюс – за проект еще шесть и более тысяч рублей. При этом заказчику помимо ветрогенератора с ценником от ста тысяч рублей, придется купить контроллер за десять тысяч, грозозащиту – от шести тысяч; инвертор – за сорок-пятьдесят тысяч рублей и недешевые аккумуляторные батареи от двадцати тысяч. Полная стоимость этого промышленного ветряка, готового к генерации тока, в конечном итоге превысит двести тысяч рублей.

В день такая энергетическая установка выдаст почти 100 кВт и сэкономит производителю 300-400 рублей. При двух сотнях ветровых дней в году, он окупится за три неполных года. «Чем выше мощность, тем выгоднее ветреная электроэнергия», — уверяет Артем Ковельский.

Сфера применения промышленных ветряков может быть самой разнообразной: от гостиниц на краю Света до теплиц на берегу Ледовитого Океана

Оценка бизнеса по установке ветряков

На сегодняшний день бизнес по установке ветряков вряд ли можно назвать высокодоходным, однако по мере снижения их цены будет расти портфель заказов. В условиях нулевой конкуренции подобная тенденция приведет к опережающему росту стоимости работ, вплоть до прейскуранта на ветрогенераторы.

Даже сейчас, покупая простой ветряк для дачи, люди все равно ищут специалистов, справедливо считая, что это слишком дорогое приобретение, чтобы доверить его дилетанту, т. е. себе. За монтаж с выездом на место монтажники простеньких ветрогенераторов берут 10% от устанавливаемого оборудования, но не меньше трех тысяч рублей.

«Если не знаешь нюансов, то обязательно неправильно ветряк не поставишь, — констатирует Артем Ковельский, — слишком близко от дома будет шумно. Как минимум, метров тридцать должно быть. Плюс, важно определится с местом, это уже требует специальных знаний».

Особенно много заказов весной. Народ пробуждается от зимней «спячки» и спешит за город. Бывает так, приезжают, а «света – нет». Трансформатор сгорел, проводку украли, электросети отключили за «соседские долги» весь поселок. Набор причин, по которым можно остаться в «темном» доме – велик. Решение не всегда является быстрым. Вот, и, вздыхая, едут дачники в конторы, по установке ветряков.

«Раньше я устанавливал сплит-системы, — делится Ковельский, — ветряками занимался время от времени. Сейчас, думаю, специализироваться только на них. Уверен, что очень скоро «за ветром» выстроится очередь».

***
Россия влилась в мировое экономическое пространство, а, это значит, ей не избежать общемировых тенденций, в том числе, с обузданием энергии ветра, как основного источника альтернативной энергетики.

Домоведы

Интересные статьи о дизайне интерьера, идеи создания интерьера своими руками, варианты перепланировки квартир с иллюстрациями, полезные советы

Способы экономии электроэнергии

Здравствуйте! Сегодня хотелось бы поговорить о способах экономии электроэнергии в доме и на даче.

Еще с момента открытия электричества, светила науки озадачились вопросом более рационального и экономного использования этой самой энергии. Шли годы, коэффициент полезного действия (КПД) электроприборов повышался, снижались потери энергии. Не смотря на то, что дизайн и технические решения, применяемые в быту и бытовой технике, увеличивают КПД приборов, это тупиковый путь развития. Рано или поздно наступит момент, когда техника будет обладать практически 100 процентным КПД, и тогда придется искать иные, более дешевые, или условно бесплатные источники энергии.

В современном мире энергоносители дорожают каждый день, а потому наша статья может оказаться полезной для вас. Предлагаю рассмотреть основных «пожирателей» электроэнергии и денег из вашего кармана. А также предложим несколько решений, для экономии электроэнергии и не только.

Экономия на освещении.

Длина светового дня жителей равнинной части Сибири и Восточного Урала зимой составляет чуть менее 8 часов с сутки. Несложно предположить, что в остальное время нам требуется достаточно большой объем электроэнергии для освещения нашей жизнедеятельности. Нам нужен свет на дорогах, в метро, в магазинах, в различных кафе и закусочных. Наконец, нам жизненно необходим свет дома! Рынок электротехнической продукции на данный момент предлагает нам достойный ассортимент выбора решений, направленных на экономию электроэнергии. Из экономичных источников света можно сказать о люминесцентных энергосберегающих лампах и светодиодных лампах. Эти представители потребляют меньше энергии на 65-90% в сравнении с классической лампой накаливания при равных показателях количества света. Еще один представитель это галогенные ламы. Их эффективность в сравнении с обычными около 60% в зависимости от конструкции последних.

Из дополнительных способов экономии отметим таймеры, реле времени и умные выключатели. Принцип действия у них схожий: прибор, подключенный к ним, обесточивается спустя определенное время, установленное на устройстве. Например, свет в комнате зажигается и будет гореть около пяти минут, после чего сам погаснет. Этот способ хорош для тех, кто частенько забывает сам выключать свет.

Экономия при использовании датчиков движения

Датчики движения это очень полезный апгрейд освещения там, где нужно включать свет лишь в момент присутствия человека. Тем самым экономится громадное количество электроэнергии, в периоды, когда освещение не нужно. Эти датчики можно условно разделить на несколько видов: звуковые, световые, емкостные. В быту применяются только первые два вида. Например для освещения придомовой территории или подъезда.

Энергосберегающие электроприборы.

Последние годы еще одной прорывной технологией стали LED телевизоры и мониторы. Ученым и конструкторам удалось сильно сократить энергопотребление так полюбившегося нам телевизора. Основа этой технологии это те же светодиоды. Такие устройства позволят сэкономить около 50% энергии.

Вообще стоит отметить, что все производители бытовой электроники стремятся улучшить показатели экономии приборами энергоресурсов. На каждом изделии имеется информация о классе энергопотребления. Обозначается этот параметр латинской буквой, и чем она ближе к началу алфавита, тем экономичнее прибор. К примеру, класс энергопотребления холодильника указывается на фронтальной поверхности, на специальной наклейке.

Теперь поговорим о дополнительных источниках электроэнергии. Природа дает нам энергию повсюду, главное ее «поймать» и направить в нужное нам русло. Человечество научилось получать электроэнергию из солнечного света, ветра и конечно же воды. Каждый способ рассмотрим более подробно.

Солнечная энергетика как способ экономии.

Это достаточно затратный на первоначальном этапе, но достаточно эффективный способ получения электричества там, где светит солнце, но куда еще не дошла «цивилизация» с ее всеобъемлющей электрификацией. Отлично подойдет для дачи, или отдаленного от благ цивилизации дома. Для получения готового решения по выработке 1,5 киловатт электроэнергии необходимо 10-12 солнечных модулей размером 1х1,4 м, контроллер заряда батарей, 5-6 автомобильных или специализированных аккумуляторов емкостью 90 А. ч, инвертор постоянного напряжения в переменное. Это позволит вам получить источник энергии, достаточный для работы среднего телевизора, холодильника, освещения и прочих приборов на 5,5-7 часов в сутки. Для дачного домика этого более чем предостаточно.

Ветряные генераторы -Ветряки.

Тоже достойное решение для выработки электричества, но к сожалению, подходит только для тех мест, где присутствуют постоянные ветры. Общая схема примерно такая же, как и у солнечной батареи, но вместо модулей подключается сам ветровой генератор. Производительность данных агрегатов разная и зависит от конструкции и габаритов прибора.

Каждый электрик должен знать:  Каким будет 2019 год с точки зрения инноваций

Производим энергию сами на Мини ГЭС.

Более редкое, но применимое техническое решение. Использование такого устройства возможно лишь вблизи достаточного источник проточной воды. В остальном конструктив схож с ветряными генераторами.

Как не надо экономить на электричестве

Мифы и заблуждения

Привет, меня зовут Юля, мой муж электрик. Недавно мы переехали в новый дом.

На второй день после переезда мой муж поменял все лампочки. Говорит, так экономнее. Но когда я предложила поменять холодильник на более энергоэффективный, он отказался. Оказалось, что не всякая экономия на электричестве имеет смысл.

Техника с высоким классом энергоэффективности казалась мне хорошим способом экономии. Это был один из аргументов, чтобы поменять холодильник и стиральную машину на новые.

Выяснилось, что экономия здесь не так очевидна, как казалось по этикетке. Современная бытовая техника более высокого класса потребляет ненамного меньше энергии, чем техника классом ниже. Просто на те же киловатт-часы она морозит сильнее, греет жарче и крутит барабан быстрее.

Энергоэффективно? Да, но с обратной стороны: энергии не меньше, просто эффективность больше.

Например, холодильник с классом энергопотребления Б расходует 485 киловатт-часов в год. У аналогичного по объему и количеству камер холодильника с классом А+ расход — 272 киловатт-часа в год.

Для сравнения мы постарались найти максимально похожие холодильники

Разницу в потреблении умножили на 5,38 рубля по московским тарифам и получили 1146 рублей экономии в год.

Новый холодильник стоит 30 000 рублей. Значит, с точки зрения экономии он окупится через 30 лет. Так что пока старый исправно работает, его замена не принесет ощутимой экономии. Но даже если старый сломается, стоит обратить внимание на модели подешевле. Разница в 10—15 тысяч рублей выгоднее для семейного бюджета, чем экономия 1000 рублей в год на электроэнергии.

В квартире, куда мы переехали, довольно старая алюминиевая проводка, но она хорошо проложена и может проработать еще с десяток лет. Мы решили выяснить, поможет ли ее замена экономить на электричестве.

Специалисты советуют менять алюминиевую проводку на медную, потому что в медной меньше потерь электричества, а значит, она экономичнее. Чтобы рассчитать потери мощности при алюминиевой проводке и сравнить их с потерями при медной проводке, мы воспользовались специальным калькулятором.

Чтобы посчитать потери в вашей квартире, измените значение длины проводки и материал. Остальные данные взяты из справочников и подходят для обычных квартир

Калькулятор показал разницу в потерях напряжения между алюминиевой и медной проводкой 4,75 вольта. Но электрический счетчик учитывает не вольты, а киловатт-часы.

Чтобы превратить одно в другое, мы умножили напряжение 4,75 вольта на силу тока 4,12 ампера и получили мощность 19,57 ватта в час или 0,0196 кВт-ч. Умножили это значение на 24 часа, на 365 дней в году и на 5,38 рубля по тарифу и получили 922 рубля экономии в год.

922 Р в год экономит медная проводка

Для нашей квартиры работы по замене проводки будут стоить около 100 тысяч рублей плюс отделка стен и потолков. Получается, она окупится примерно за 100 лет.

Менять проводку обязательно в том случае, если вы живете в очень старом доме, ваша проводка то и дело искрит, дымится или в сети бывают частые перепады напряжения. Тогда новая проводка может спасти вам жизнь. И на этом уже экономить не стоит.

Свет в квартире можно выключать кнопками, а можно датчиками. Датчик — это коробочка, которая висит на стене или потолке и включает свет, когда становится темно или когда кто-то к нему приближается. Например, пока вы ходите по коридору, свет горит. Вышли — выключился.

Простой проводной датчик работает как обычный выключатель, реагирует на степень освещенности, движение или звук и стоит от 300 рублей. С его установкой и подключением справится один электрик.

Датчики помогут сэкономить, если вы часто забываете выключать свет в общих помещениях. Они выключат лампочки или не дадут им включиться, когда на улице слишком светло или когда в комнате пусто.

Проводной датчик, реагирующий на движение, стоит от 300 рублей

В обычной городской квартире трудно найти место для эффективного применения таких датчиков. Чаще всего их ставят в туалетах. Если у вас небольшой туалет, то для него подойдет датчик, который реагирует на движение. В больших или вытянутых помещениях придется ставить несколько датчиков и согласовывать их между собой. Такая система менее надежна.

Сэкономит такой датчик совсем немного. Даже если представить, что забытая лампа горит всю ночь, по тарифу за это придется заплатить 4 рубля. Но если вы забываете выключать свет каждую ночь, то за год он сэкономит 1460 рублей.

4 Р придется заплатить за включенную на ночь лампочку

Проводные датчики полезны владельцам домов или коттеджей. Во дворе можно установить датчик, который реагирует и на степень освещенности, и на движение. Тогда свет будет загораться только в темное время суток, когда кто-то выйдет на улицу или подойдет к дому. В гараже нужен простой датчик движения. Он зажжет свет, когда машина заедет в гараж, и потушит его, когда в помещении никого не останется.

Обычные проводные датчики встраиваются в силовую сеть — грубо говоря, врезаются между линией электропередач и лампочкой, которую нужно зажечь. А есть еще беспроводные датчики.


Беспроводные датчики — современный, модный, полезный, но очень дорогой способ экономить. Они должны быть подключены к системе «умный дом», которая включает специальный контроллер и кучу других механизмов.

Датчики включают и выключают свет в зависимости от освещенности, реагируют на звуки и движения и слушаются команд от пульта или контроллера. Они не просто выключают свет, если он не нужен, но позволяют приглушать освещение или, наоборот, добавлять яркости. С их помощью можно управлять освещением дома на расстоянии, например, когда вы уехали в отпуск. Больше никаких забытых утюгов или горящих ламп в пустых комнатах.

Установка такой системы обойдется примерно в 200 000 рублей. Еще около 200 000 стоит солнечная батарея или ветряк. При максимальной экономии 10 000 рублей в год эти затраты окупятся минимум за 20 лет. Такие инвестиции имеют смысл в частном доме, который вы хотите сделать энергонезависимым.

Зарядные устройства в розетках часто называют пассивными потребителями. Энтузиасты провели исследование, в котором подсчитали, что 7 включенных в розетку зарядных устройств потребляют за год всего 2,5 киловатт-часа, что обходится в 13 рублей 45 копеек.

Но оставлять зарядники в розетках всё равно нельзя, потому что они могут стать причиной пожара — особенно если это зарядники за три копейки из Китая. Внутренний трансформатор может перегреться из-за перепадов в сети, и зарядное устройство может загореться.

Мы посчитали, что по сравнению с обычной лампой накаливания одна светодиодная лампа тратит на 84% меньше электричества. За 100 часов работы лампа накаливания сжигает 7,5 киловатта, или 40,35 рубля. У нас в квартире я насчитала 20 лампочек. Каждая из них горит около 300 часов в год. Итого в год за все лампочки мы платим 2421 рубль. Если заменить их на светодиодные, будем платить 387,36 рубля.

У светодиодных ламп есть отдельная характеристика — световая температура. Она варьируется от теплого света, как у обычных ламп накаливания, до холодного, как у солнца в пасмурную погоду. Световая температура обозначена на упаковке. Общий совет: в общественных помещениях — холодный свет, в личных — теплый.

Чтобы не переборщить с яркостью света, выбирайте лампы из расчета 100—200 люмен на квадратный метр.

Светодиодные лампы стоят дороже обычных, но и служат в разы дольше, так что компенсируют разницу цен. Общая экономия — 2000 рублей в год.

Помогают сэкономить, если вы много работаете, рано уходите из дома и поздно возвращаетесь с работы. Если часы вашей активности будут приходиться на ночное время с 23 часов до 7 утра, то двух- или трехтарифный счетчик снизит затраты на электричество в 2 или даже 3 раза.

Обычный тариф в Москве — 5,38 рубля за киловатт-час. При двухтарифном счетчике ночной тариф ниже в три раза — 1,64 рубля за киловатт-час. Конкретная величина экономии будет зависеть от вашего образа жизни и от того, как организован ваш быт.

Мы платим за электричество около 6000 рублей в год. Если бы мы сдвинули часы нашей активности на ночное время и перешли на двухтарифную оплату, то смогли сэкономить 3000 рублей в год. Экономить больше вряд ли получится, потому что некоторые приборы работают постоянно, а в выходные дни мы вряд ли смогли проводить вечера без света.

Если вы решили, что вам подходит такой способ экономии, позвоните в Мосэнергосбыт и сделайте заявку на установку нового счетчика. За сам счетчик и работу мастера вы заплатите около 5000 рублей. Эта инвестиция окупится в течение двух лет.

В обычной квартире постоянно включены: телевизор в режиме stand-by — потребляет 0,01 кВт-ч в час, или 87,6 кВт-ч в год, персональный компьютер с монитором — 700,8 кВт-ч в год, лазерный принтер — 438 кВт-ч в год, домашний кинотеатр — 131,4 кВт-ч в год, микроволновка с таймером — 52,6 кВт-ч в год.

Мы сложили всё это и умножили на тариф. Получили 7 588 рублей в год. Ровно столько сэкономить не получится, ведь эти приборы всё равно будут работать сколько-то часов в сутки, но 3—5 тысяч рублей в год — вполне.

Чтобы не бегать каждый раз по дому и не выдергивать приборы из розеток, можно один раз вызвать электрика и попросить вывести розетку холодильника на отдельный автомат в щитке. Тогда остальные приборы можно будет выключать в щитке перед уходом из дома.

Щиток с отдельным автоматом для холодильника

Некоторые люди считают, что лучший способ экономить — это кража. Они придумали разные способы незаметно сломать счетчик.

Самый незамысловатый — отсоединить нулевой провод от счетчика, а второй конец заземлить на батарею. Но современный счетчик не обращает на эти манипуляции внимания и продолжает считать. А вот батарея, которая бьет током, — неприятная вещь.

Способ сложнее — прервать электрическую цепь и пустить ток в обход счетчика с помощью тайной перемычки. Самостоятельно проложенные перемычки и другие манипуляции с проводкой могут привести к пробою, короткому замыканию, пожару и гибели людей. Будьте осторожны сами и предупредите других.

Мосэнергосбыт регулярно проверяет счетчики в домах и квартирах. Если проверка обнаружит, что счетчик сломан, владельцев заставят оплатить разницу, которую насчитает Мосэнергосбыт, и административный штраф.

Бесплатное электричество: как получить электрический ток из земли и воздуха своими руками

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

Добыча из Земли

Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.

От заземления

Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]

Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).

Другие способы

Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.

Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.

На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.

Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.

Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

Приборы для экономии электроэнергии: миф или реальность?

Не так давно, на наших рынках, в интернете, в некоторых печатных изданиях и даже на телевидении, появилась реклама чудо-прибора, который, по словам рекламирующих, способен экономить до 30-35% электроэнергии. Что же это за прибор? Как он устроен? И неужели это правда, что он способен экономить столько энергии?
Примерно в одно время, в разных регионах, эти приборы появились под разными названиями. Вот примерные названия этих самых приборов: SberBox, smartBox, Energy Saver, Pover Saver, Saving-box, Powersave, Экономыч и т.д.
По словам производителей, и соответственно распространителей, прибор достаточно просто воткнуть в розетку, и он начинает работать, то есть, экономить наши кровные.

Стоимость данного девайса, в зависимости от региона распространения и «щедрости» продавцов, колебалась от 10$ до 70$. В самом простом исполнении, прибор рассчитан на 15 кВт нагрузки для однофазной сети, то есть на средний дом. Также существуют приборы и для трех фазных сетей. К примеру, такой прибор для экономии электроэнергии, рассчитанный для работы в трех фазной сети, на нагрузку до 48 кВт, имеет размеры с обыкновенную пачку от стирального порошка.

Первое знакомство с описанием этого устройства для экономии электроэнергии вызывает у электротехников восторг, смешанный с ощущением собственной некомпетентности. Прибор имеет солидный перечень возможностей, реализованных с помощью загадочных, патентованных технических новаций.

Специалистам трудно представить, как можно реализовать в одном приборе такие функции, как компенсация реактивной мощности, фильтрация помех, защита от перекоса фаз и ударов молнии. Революционная возможность преобразования реактивной электрической энергии в активную энергию вообще не имеет аналогов. Такая перспектива сразу приводит энергетиков промышленных предприятий в состояние экстаза.

Давайте внимательно присмотримся к чудесному изделию и подумаем, можно ли реализовать все заявленные характеристики в одном приборе. И не слишком ли мало за него запрашивают? Ведь автоматические конденсаторные установки сравнимой мощности стоят в 4-6 раз дороже.

Каждый электрик должен знать:  Монтаж пленочного теплого пола

Стабилизаторы для выравнивания перекоса напряжений в фазах тоже не дешевы. Фильтры гармоник, громоздкие изделия, содержащие большое количество железа и меди, низкой ценой тоже не страдают. Совмещение возможностей всех этих устройств в одном изделии – это действительно впечатляющее достижение.

Энергосберегающее устройство Smart Boy

В рекламных статьях приведены великолепные фотографии внешнего вида прибора, схемы подключения. А вот изображений устройств с открытым корпусом практически невозможно найти. И можно понять почему: вместо заявленных 5 блоков и модулей, таких как программируемый контроллер и управляющий (?) трансформатор, присутствует простейший, убогий набор деталей.

Итак, мы приобрели один из таких приборов, для того, чтобы попробовать разобраться с ним. Что же он из себя представляет. Это небольшая коробочка, напоминающая обыкновенное зарядное устройство, на передней панели находятся два светодиода.

Взяв на себя смелость, мы попробовали заглянуть внутрь этого чудо-прибора. Что мы увидели внутри? Внутри был диодный мостик, конденсатор неопределенной емкости и небольшой блок питания, от которого питались светодиоды. И …. собственно все. Самой дорогой деталью является стильный корпус с вилкой подключения к сети. Общая стоимость комплектующих вряд ли превышает 3-4 долларов, а самая дешевая модель уже продается за 40. О какой экономии электроэнергии можно говорить при такой схеме?

Как Smart Boy позволяет экономить электроэнергию

Так все-таки за счет чего происходит экономия электроэнергии при использовании такого типа энергосберегающих приборов? А вот тут придется окунуться немного в теорию, без этого никуда. Попробуем изложить все простым, понятным языком.

Итак, энергия бывает активная и реактивная. Останавливаться на высших гармониках, помехах в электросети, сдвигами по фазе и прочих премудростях, мы не станем, рассмотрим лишь то, с чем действительно можно столкнуться в реальной жизни, в бытовых, так сказать, условиях.

Обыкновенные бытовые потребители электричества, то есть, мы с вами, платим за потребление активной энергии. Большие предприятия оплачивают еще и реактивную энергию. Для этого у них установлены специальные счетчики, которые подсчитывают этот самый реактив.

На самом деле они, предприятия, не потребляют, они ее производят. То есть, оборудование с большой индуктивной составляющей, выделяет реактивную энергию, которая дополнительно нагружает сети. Для того чтобы «разгрузить» электрические сети от негативной нагрузки, существуют специальные устройства- Компенсаторы Реактивной Мощности, то есть КРМ.

Эти самые КРМы, достаточно громоздкие и сложные устройства, причем, они изначально рассчитываются под определенную нагрузку. А этот чудо-прибор, о котором собственно сейчас и идет речь, если и может что-то сэкономить, теоретически, то только при строго определенной нагрузке. А подсчитать эту самую нагрузку практически нереально.

Многие современные приборы уже изначально оснащены приборами для компенсирования реактивной составляющей. Так, к примеру, практически все компьютерные блоки питания оснащены Passive PFC, что позволяет сократить потребляемую энергию на 5-10 %. Но в данном случае, номиналы емкости, дросселя и прочего железа, очень тщательно подсчитывалось, что и позволило сократить потребление электричества.

Из всего, что было написано выше, можно сделать вывод, что компенсировать, что-либо в домашних, бытовых условиях — бессмысленно.

Но, справедливости ради, проведенные нами эксперименты на производстве, показали, что, при применении трехфазного статического КРМ, дало некоторые результаты. А именно, позволило стабилизировать перекос по фазам на 10-15 %, то есть, равномерно распределить нагрузку между фазами. Но это на производстве, где нагрузки были относительно постоянные. Так что, выводы делайте сами.

Как чудо-прибор преобразует реактивную энергию в активную

Отдельно поговорим о преобразовании реактивной энергии в активную. Сейчас только энергосберегающее устройство Smart Boy декларирует подобную возможность. В электротехнике нет ни теоретических обоснований подобной возможности, ни практических реализаций устройств. Все попытки получить у дилеров более подробную техническую информацию об этой удивительной возможности оказались неудачными. Они или цитировали рекламные презентации, или ссылались на «ноу-хау» разработчиков.

Торжество современной техники или грандиозная афера?

То, что настораживает специалистов, совершенно непонятно остальному населению, далекому от электротехники. Ну, как можно устоять, когда на экране телевизора седоватый доктор технических наук (а доктор ли?) проникновенно описывает выгодность приобретения прибора, со скидкой для пенсионеров? Судя по размаху и длительности показа рекламных роликов, дела с продажами обстоят неплохо.

Из рекламы устройства для экономии электроэнергии Pover Saver

В заключение можно сказать, что, к сожалению, огромное количество людей, в том числе знакомых с электротехникой, оказались жертвами гигантской аферы под названием «Энергосберегатель Smart Boy» и подобных приборов для экономии электроэнергии. Нет у этих устройств никаких уникальных или революционных свойств, они абсолютно бесполезны в производстве и, тем более, в быту.

Ссылки на то, что изделия сертифицированы в странах СНГ (подразумевается, что потребительские свойства подтверждены серьезными организациями)- это просто лукавство, рассчитанное на незнание процедур сертификации. Проверка проводится только по показателям безопасности изделий, потребительские свойства вообще не рассматриваются. Другими словами: если вы приобрели горькую, как полынь, шоколадку, то она может быть абсолютно безопасна для вас, а вот на вкус – извините.

Автономное электричество для частного дома и квартиры

Сегодня мы поговорим про автономное электричество, какое оно бывает, как оборудовать дом таким источником электроэнергии, как проводить подбор оптимальных систем. И самое главное, «стоит ли овчинка выделки».


СОДЕРЖАНИЕ (нажмите на кнопку справа):

Особенности подключения к сетям ЛЭП

Без электричества сейчас трудно представить комфортабельное жилье. Благодаря ему жилище освещается, обогревается, выполняется готовка пищи, и нагрев воды. Вот только далеко не всегда есть возможность обеспечить электричеством жилье, особенно если дом находится далеко от города.

Многим владельцам загородных домов и дачных участков, особенно если они находятся далеко от цивилизации, приходится решать вопрос с энергообеспечением дома.

Самым распространенным решением является подключение дома к сетям ЛЭП, однако они далеко не везде имеются или же ближайшая линия находится на приличном удалении от дома.

В таком случае обеспечение электричеством дома может оказаться очень дорогим удовольствием. Ведь придется согласовывать вопросы по поставкам этого источника энергии с соответствующими органами, оплачивать установку подстанции и опор ЛЭП для подведения к дому.

И особенно неприятно то, что приобретаемое оборудование, причем за немалые деньги (подстанция, провода, опоры) перейдут на баланс местных энергосетей, то есть владельцем всего будут являться они, а владельцу дома еще придется и платить за поставки электроэнергии.

Поэтому такой вариант для многих может стать нецелесообразным, достаточно хлопотным и дорогостоящим.

Автономные источники электроэнергии

Второй вариант обеспечить загородный дом электричеством – использовать автономные источники энергообеспечения. Такими источниками могут стать ветер, солнце, вода и горючие материалы.

Используя автономное энергообеспечение, владелец дома становится полностью независимым в плане получения электроэнергии для потребления.

Не требуется никаких согласований, протяжки ЛЭП и т. д. Конечно, получение электроэнергии все равно будет связано затратами. И на начальном этапе они будут достаточно весомыми, поскольку необходимое оборудование стоит немало.

В дальнейшем необходимо еще и проведение обслуживания всех составляющих системы энергообеспечения, но в итоге все окупиться.

Коротко рассмотрим самые распространенные автономные источники электроэнергии.

Солнечные панели

Сейчас все большую популярность завоевывают солнечные источники электроэнергии. Суть такого источника проста – имеются полупроводниковые фотоэлементы, в которых при попадании на них солнечных лучей генерируется электрический заряд.

Количество вырабатываемой энергии напрямую зависит от площади фотоэлементов, поэтому они собираются в панели.

Панель площадью в 1 м. кв. способна выдать 100 Ватт мощности с напряжением 20-25 В.

Чтобы полностью обеспечить дом электричеством площадь панелей должна быть значительной.

Из положительных качеств такого источника электроэнергии является его долговечность, полная экологичность, бесшумность.

Панели требуют минимум обслуживания, а электроэнергия, выработанная ими, является полностью бесплатной и доступной.

Но есть и недостатки. Для обеспечения электроэнергии в необходимом количестве, площадь панелей может достигать значительных размеров, которые еще нужно и правильно расположить.

Энергия эта непостоянна. В солнечные дни панели будут работать с максимальным выходом, но бывают же и пасмурные дни. Поэтому общее количество выработанной электрической энергии зависит от того, сколько солнечных дней в году в регионе, где располагается дом.

Еще один недостаток, причем весомый – это стоимость панелей. Цена за каждый Ватт выработанной энергии составляет сейчас примерно 1,5 $, то есть только за панели, вырабатывающие 1 кВт электроэнергии, придется выложить 1,5 тыс. долларов. А еще потребуется покупать и остальное оборудование, необходимое для работы системы.

Ветроэлектрические установки

Вторая по популярности автономная система энергообеспечения – ветряная. Для получения электроэнергии используются ветрогенераторы.

По сути, это обычные генераторы, на ротор которых надеты лопасти. За счет ветра ротор вращается и происходит генерация электричества.

Из положительных качеств ветрогенераторов отмечается достаточно компактные размеры, относительная бесшумность работы, экологичность, долговечность. Также существует возможность самодельного изготовления такого генератора.

Но недостатков у ветряной системы больше. Первый из них – стоимость, обойдутся ветряные генераторы не дешево.

Учитывая то, что КПД ветрогенераторов невысокая, то для полного обеспечения дома электричеством, потребуется установка трех и более ветряков небольшой мощности или же одного, но достаточно производительного. И в обоих случаях затраты на приобретение будут значительными.

Опять же необходимо учитывать и климатические условия. В зонах, где средний годовой показатель скорости ветра не превышает 8 м/с, использовать ветрогенераторы будет нецелесообразно, поскольку они неспособны будут работать в оптимальном режиме.

Стоит также учитывать, что в дни полнейшего безветрия можно остаться без электричества, поэтому использовать ветряную автономную систему энергообеспечения лучше, если имеется резервный источник электроэнергии.

Топливные генераторные установки

Резервным источником электроэнергии могут стать генераторы, работающие на жидком или газообразном топливе (бензин, дизтопливо, газ).

Здесь все просто: установка состоит из двигателя внутреннего сгорания и генератора. Двигатель вращает ротор, и генератор вырабатывает энергию.

Полностью автономной такую систему назвать нельзя, все-таки необходимо топливо, которое еще и дорожает постоянно. Но как резервный источник электроэнергии такие генераторные установки являются самыми оптимальными.

В случае, когда пасмурная погода стоит уже несколько дней или же наблюдается безветрие, всегда можно запустить генераторную установку для восполнения заряда батарей.

Из положительных качеств генераторных установок, работающих от топлива, отмечается постоянная доступность электроэнергии, такие установки сравнительно дешевые, они обеспечивают хороший выход энергии.

К недостаткам же их относится потребность в топливе, что обеспечивает постоянные затраты. Такие установки не могут работать длительный период, а двигатели внутреннего сгорания требуют технического обслуживания.

Также для использования генераторных установок необходимо отведение отдельного помещения и организацию отвода выхлопных газов, ну и, естественно, ни о какой экологичности и речи быть не может.

Гидроэлектростанции

Реже всего в качестве автономного источника питания используется гидроэлектростанция по одной простой причине, далеко не у всех возле дома протекает река или мощный ручей.

Суть работы такой станции заключается в том, что вода вращает лопасти турбины, за счет чего генератор вырабатывает электричество.

Положительные качества гидростанций таковы: стабильная подача энергии круглосуточно, поскольку вода в реке или ручье не замедляет скорость движения. Такие станции полностью экологичны, долговечны и практически не требуют обслуживания.

Главным же их недостатком является необходимость установки на берегу реки или возле ручья. При этом скорость движения воды должна быть высокая.

Гидростанция способна вырабатывать энергию и при медленном движении воды, но в таком случае река зимой будет покрываться льдом, и использовать станцию уже не получиться.

Большая же скорость воды будет являться гарантией того, что река или ручей не перемерзнут. Второй недостаток – стоимость станции.

И все же концепция обеспечения дома автономной системой энергообеспечения является перспективной и многие ею интересуются.

Выше мы рассмотрели основные виды источников электричества, но их одних недостаточно, чтобы в доме была электроэнергия.

Дополнительно стоит отметить, что эффективность любой автономной системы зависит от правильности расчетов.

Особенности установки и эксплуатации автономных источников

Перед тем как приобретать и устанавливать любую из систем, нужно правильно произвести все необходимые расчеты ведь со временем количество потребителей электроэнергии в доме может увеличиться, к примеру вы решите установить систему обогрева кровли и водостоков и это нужно учесть в расчетах.

Рассмотрим для начала на примере солнечной системы.

Солнечная автономная система.

Все расчеты нужно начинать с подсчетов суммарного потребления электроэнергии в доме, то есть подсчитать мощность всех потребителей. При этом важно их разделить.

Дело в том, что часть потребителей электроэнергии без проблем работают от сети с постоянным током и напряжением в 12 или 24 В. Такими потребителями могут быть те же светодиодные лампы, которые лучше установить вместо обычных ламп накаливания. Да и вообще, все работы следует начинать с оснащения дома экономичными потребителями электроэнергии.

Исходя из суммарной мощности потребления тока, производится подбор аккумуляторных батарей и инвертора. И только после этого переходят к подсчету количества солнечных панелей, а также подбора контроллера.

Можно и не заниматься вычислением площади солнечных панелей, емкостью АКБ и инвертора.

Многие производители предлагают уже готовые комплекты, включающие все необходимое оборудование. При приобретении такого комплекта достаточно знать только суммарное потребление электроэнергии.

Причем при выборе комплекта важно учитывать, чтобы у него имелся некий запас по мощности, чтобы вся система не работала на предельных значениях. Общая стоимость такой системы во многом зависит от ее мощности.

Достаточно правильно выбрать место установки панелей, контроллера, АКБ и инвертора. Затем следует все правильно подсоединить.

Что касается техники безопасности при использовании такой системы, то сводится она к правильности размещения АКБ. Они хоть и являются герметичными и необслуживаемыми, но для них лучше отвести отдельное помещение, причем вентилируемое.

Важно обратить внимание на надежность крепления всех составных элементов, использование соответствующей проводки и правильности подключения элементов в систему.

С расчетов начинается и установка ветрогенераторов. Все начинается с расчета суммарной мощности потребителей электроэнергии. Исходя из этого уже и подбирается комплект, включающий все необходимое – ветроэлектрическую установку (ВЭУ), контроллер, АКБ, инвертор и остальные комплектующие.

При использовании такой системы важно подобрать место установки ВЭУ. Ветряки при работе издают шум, хоть и несильный, поэтому рекомендуется их устанавливать на определенном удалении от дома.

Что касается безопасности, то здесь все сводится к правильному монтажу мачты ВЭУ, поскольку она достаточно высокая.

Далее же безопасность сводится к правильному подключению и эксплуатации системы.

Топливные генераторные установки.

Генераторные установки – самые простейшие по монтажу. После подсчета суммарного потребления электроэнергии просто подбирается необходимая по мощности станция, работающая на предпочтительном для владельца дома топливе.

Оборудуются генераторно-аккумуляторные-инверторные системы.

Но обычно такие станции продаются отдельно, поэтому придется правильно подобрать контроллер, комплект АКБ и инвертор.

При использовании такой системы условия безопасности строже, чем у других систем.

Во-первых, генераторную установку необходимо устанавливать в отдельном помещении.

Во-вторых, должна быть организована система отвода отработанных газов.

В-третьих, должна соблюдаться правильность хранения горючих материалов.

Системы энергообеспечения, в которых используется гидроэлектростанции, рассматривать не будем, поскольку они применяются редко.

Подбор оптимальной системы

Теперь немного о том, какую систему лучше использовать в разных случаях.

На дачном участке или загородном доме можно использовать любое автономное энергообеспечение. Все зависит от климатических условий.

В южных регионах, где много солнечных дней в году, предпочтительнее использовать солнечную систему энергообеспечения, в северных же районах – ветряную.

При этом лучше сразу делать комбинированную систему, чтобы имелся резервный источник питания, и для этого отлично подходят установки, работающие на топливе.

Что же касается городских условий, то для автономного обеспечения энергией квартиры подойдут только солнечная и ветряная системы, основные элементы которой (панели, ВЭУ) можно установить на крыше здания.

Другие же автономные системы в квартирных условиях использовать не получится.

Подводим итог

Автономное электричество в доме является достаточно интересным решением. Но стоимость его пока достаточно высока, поэтому не всем будет по карману.

Но с другой стороны, при отсутствии подключения к промышленным ЛЭП, и больших расстояниях до цивилизации, лучше все же потратиться на автономное энергообеспечение, чем протянуть новую линию. Но в каждом отдельном случае хозяин дома принимает решение сам.

Энергия ветра: преимущества и недостатки

Освоение энергии ветра по всему миру, в последние годы, происходит весьма стремительно. Лидерами на данный момент являются Китай и США, однако и остальной мир постепенно развивает это перспективное направление «чистой» энергетики, базирующейся на неисчерпаемом природном ресурсе – энергии ветра. С каждым годом в мире устанавливается все больше и больше ветрогенераторов, и налицо тенденция к дальнейшему распространению технологии.

Давайте рассмотрим преимущества и недостатки использования ветроэлектрических установок.

1. Используется полностью возобновляемый источник энергии. В результате действия солнца, в атмосфере постоянно движутся воздушные потоки, для создания которых не требуется добывать, транспортировать, и сжигать никакое топливо. Источник принципиально неисчерпаем.

2. В процессе работы ветряной электростанции полностью отсутствуют вредные выбросы. Это значит, что отсутствуют как любые парниковые газы, так и какие бы то ни было отходы производства вообще. То есть технология экологически безопасна.

3. Ветряная станция не использует воду для своей работы.

4. Ветряная турбина и основные рабочие части таких генераторов расположены на значительной высоте над землей. Мачта, на которой установлена ветряная турбина, занимает небольшую площадь на земле, поэтому окружающее пространство может быть с успехом использовано для хозяйственных нужд, там могут быть размещены различные здания и сооружения, например, для сельского хозяйства.

5. Применение ветрогенераторов особенно оправдано для изолированных территорий, куда обычными способами электроэнергию не доставить, и автономное обеспечение для таких территорий является, пожалуй, единственным выходом.

6. После введения в эксплуатацию ветряной электростанции, стоимость киловатт-часа генерируемой таким образом электроэнергии значительно снижается. Например, в США специально исследуют работу вновь установленных станций, оптимизируют эти системы, и таким образом удается снижать стоимость электроэнергии для потребителей до 20 раз от первоначальной стоимости.

7. Техническое обслуживание в процессе эксплуатации минимально.

1. Зависимость от внешних условий в конкретный момент. Ветер может быть сильным, или его может не быть вообще. Для обеспечения непрерывной подачи электроэнергии потребителю в таких непостоянных условиях, необходима система хранения электроэнергии значительной емкости. Кроме этого, требуется инфраструктура для передачи этой энергии.

2. Сооружение ветровой установки требует материальных затрат. В некоторых случаях привлекаются инвестиции в масштабах регионов, что не всегда легко обеспечить. Именно стартовый этап, само возведение проекта является весьма дорогостоящим мероприятием. Упомянутая выше инфраструктура — немаловажная часть проекта, которая также стоит денег.

В среднем, стоимость 1 кВт установленной мощности составляет $1000.

3. Некоторые эксперты считают, что ветряки искажают природный ландшафт, что их вид нарушает естественную природную эстетику. Поэтому крупным фирмам приходится прибегать к помощи профессионалов по дизайну и ландшафтной архитектуре.

4. Ветряные установки производят аэродинамический шум, который может причинить дискомфорт людям. По этой причине в некоторых странах Европы принят закон, по которому расстояние от ветряка до жилых домов не должно быть меньше 300 метров, а уровень шума не должен превышать 45 дБ днем и 35 дБ ночью.

5. Есть небольшая вероятность столкновения птицы с лопастью ветряка, однако она настолько мала, что вряд ли нуждается в серьезном рассмотрении. А вот летучие мыши более уязвимы, поскольку строение их легких, в отличие от строения легких птиц, способствует получению смертельной баротравмы, при попадании млекопитающего в область пониженного давления около края лопасти.

Несмотря на недостатки, преимущества ветряных генераторов по части пользы для окружающей среды очевидны. Для наглядности стоит отметить, что работа ветрогенератора мощностью 1 МВт позволяет сэкономить за 20 лет около 29000 тонн угля или 92000 баррелей нефти.

Добавить комментарий