Вольт-амперные характеристики схемы с ОБ

Вольт-амперные характеристики схемы с ОБ

Статические ВАХ транзистора в схеме с ОБ. Схемы замещения транзисторов. Усилители эл. сигналов. Характеристики и параметры усилителей. Обратные связи в усилителях. Генераторы синусоидальных колебаний

Страницы работы

Содержание работы

18. Статические ВАХ тр-ра в схеме с ОБ; модуляция шири-ны базы. Тр-р в каждой схеме включения хар-ся 4 семейства-ми статических хар-тик: 1) Iк=f(Uк) при Iвх=const–это выходные или колл-ые хар-ки; 2) Iвх=f(Uвх) при Uк=const– входные хар-ки; 3) Iк=f(Iвх) при Uк=const – хар прямой передачи по току; 4) Uвх= =f(Uвых) при Iвх=const – хар обратной связи по U. Значит I и U при построении хар-тик не учитываются, что позволяет унифи-цировать их для тр p-n-p и n-p-n типов. Входные (эмм-ые) стат хар тр в схеме с ОБ пред собой зависимость Iэ=f(Uэб) при Uк=const (рис1). Входная хар-ка при Uк=0 подобна прямой ветви ВАХ диода. При подаче на p-n-p тр отриц-го колл-гоU, вх хар-ка смещается влево. Влияние Uк на положение вх хар-ки свидетельствует о наличие в тр внутр обратной связи. При подаче или увел по модулю Uк появл-ся или увел-ся Iкбо и ум-ся составляющая Iэрек из-за расширения К перехода и соответствующего этому,ум-ие ширины Б. Этот эффект расширения К перехода и ум-ия эфф-ой ширины Б при ув-ии Uк наз модуляцией ширины базы.

Выходные (колл-ые) хар-ки тр в схеме с ОБ пред собой зависи-мость Iк=f(Uк) при Iэ=const. Вых хар-ка при Iэ=0 явл обратной вествью ВАХ диода. Увел-е Iэ ведет к сдвигу хар-ки вверх и влево. При обратносмещенном К переходе наблюд-ся незначи-

тельное ув-ие наклона хар-к при повышении Iэ. Это объясняется

косвенным влиянием Uк на вел-ну Iкр, т.е.с ув-ием Uк ум-ся толщина Б и Iэрек, ═> сост Iкр несколько ув-ся, причем это увеличение тем больше, чем больше сам ток Iкр, т.е. чем больше Iэ. При от-носительно больших Iэ вых хар-ки сближаются, т.к. при этом происходит относит-ое ув-ие Iэрек и Iэн, т.е. статич-ий коэф пря-мой передачи по току α ум-ся. Начальные участки вых хар-ик снимаются при изменении полярности Uк.

19. Статические ВАХ тр-ра в схеме с ОЭ. Вх и вых статич хар-ки пред собой зависимости: Iб=f(Uбэ) при Uк=const; Iк=f(Uк) при Iб=const и они имеют вид:

При Uк=0 нулевая вх хар-ка пред собой суммарную хар-ку Э и К переходов, соединенных ║ и подключенных к источнику пи-тания в прямом направлении, т.е. Iб=Iэ+Iк. Отключ-ие К не сущ-но влияет на вх хар, т.к. Iб в основном опр-ся rб, т.е. при Iк=0. При небольшом отриц U на К Iк меняет свое направл на обыч-ное и Iб=Iэ-Iк. В рез-те Iб резко ум-ся, а вх хар располагается значительно ниже нулевой. При дальнейшем ув-ии по модулю Uк вх хар незначит-но смещается вправо и практически сливается с хар-ми, снятыми при дальней-шем ув Uк. Вых хар-ки – это зависимости Iк от Uк, при различ-ных знач iб=const. Нулевая вых хар, т.е. обратный ток К-Э про-ходит ч/з начало координат и в рабочей области, т.е. │Uк│≥1 В располагается на уровне βi∙Iкбо. При ув-ии Iб вых статич хар-ки сдвигаются вверх и по сравнению с общей Б имеют примерно в β раз больший наклон и более разковыраженное сближение при значительных Iб. Статич ВАХ тр с ОЭ и ОК примерно одинаковы.

20. Схемы замещения транзисторов. СЗТ могут соответство-вать их физ пар-рам, а также пар-рам, харак-щих их как линей-ный 4-х полюсник. Достоинство физ пар-ров в том, что они на-глядны и непоср-но хар-ют физ св-ва 3-х слойной п/п структу-ры. Их можно рассчитать по геометрии слоев и пар-рам мате-риала, но их прямое изменение невозможно. Дост-вом пар-ров 4-х полюсника явл то, что их можно измерить. СЗ позволяют упростить расчеты электронных схем. СЗТ в физ пар-рах предс в виде Т-образной схемы, отражающей его структуру. Для включ тр-ра с ОБ и ОЭ они имеют вид:

Эти схемы справедливы для лин уч-ков статич-ких ВАХ тр-ра, когда его пар-ры можно считать неизменными, т.е. для малых изменений I и U. Пар-ры СЗ с ОБ: 1) rэ=dUэб/diэт/Iэ (Uкб=const) дифференц сопр эм-го перехода позволяет учесть связь м/у U на Э переходе и протекающим ч/з него Iэ. Его вел-на, в зависимости от Iэ, м/б от единиц до десятков Ом; 2) объемное сопр Б rб. Оно опр-ся в напр-ии прохождения Б тока в слое Б от границы Э перехода. rб>rэ и составляет сотни Ом; 3) эквивал-ый источник тока αIэ. Он учитывает транзитную составляющую приращения Iэ, проходящую ч/з Б в К; 4) rк=dUкб/diк (Iэ=const)-дифферен-ое сопр К перехода (включ в обратном напр). Оно учитывает измене-ние Iк с изменением Uкб вследствие модуляции ширины Б. Его вел-на от 0,5 до 2 МОм; 5) источник напряж μUкб. Он опр-ет напряж внутр полож обратной связи и отражает влияние эффекта модуляции Б на вх цепь тр-ра. Т.к. μ мало (10 -4 …10 -3 ), то этот источник часто в схему не входит; 6) емкости Э и К переходов Сэ, Ск. Диф-ая и барьерная емк-ти Э перехода больше таковых К перехода, но т.к. Сэ зашунтировано значительно меньшим сопр (rэ), чем Ск зашунтир (rк), то начиная с десятков кГц емкость Ск приходится учитывать, а Сэ на этих частотах пренебрегают; 7)α=dIk/dIЭ|Uкб=const диффер коэф передачи тока зависит от частоты усиливаемого сигнала. В обл-ти повышен-ных частот, где начинает сказываться время прохождения дырок ч/з Б, Iк и Iб отличаются по фазе от Iэ, а коэф α ум-ся. Одним из основных пар-ров тр-ра явл-ся граничная частота fα, при к-ой модуль комплексного коэф тока ‌ α ‌ ум-ся в √2 раз. В Т-образной СЗТ с ОЭ пар-ры rэ и rб имеют тот же физ смысл, что и в схеме с ОБ. Источник тока здесь показан, как βIб, т.к. вх током в этой схеме явл Iб. Диффер сопр К перехода r*к=rк/(β+1), ана-логично С*кк(β+1) и влияние ее в обл-ти повышенных частот значительно больше, чем Сэ, поэтому Сэ обычно не учитывают. Диф коэф передачи тока с ОЭ также частотнозависимый. Граничная частота fβ=fα/(β+1), т.е. частотные св-ва тр-ра в схеме с ОЭ хуже, чем в схеме с ОБ.

Тиристоры. Вольт-амперная характеристика

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или болееp-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Рис. 2. Вольтамперная характеристика тиристора

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

· Между точками 0 и (Vвo,IL) находится участок, соответствующий высокомусопротивлению прибора — прямое запирание (нижняя ветвь).

· В точке Vво происходит включение тиристора (точка переключения динистора во включённое состояние).

· Между точками (Vво, IL) и (Vн,Iн) находится участок с отрицательным дифференциальным сопротивлением-неустойчивая область переключения во включённое состояние. При подаче разности потенциалов между анодом и катодом тиристора прямой полярности больше Vно происходит отпирание тиристора (динисторный эффект).

· Участок от точки с координатами (Vн,Iн) и выше соответствует открытому состоянию (прямой проводимости)

· На графике показаны ВАХ с разными токами управления (токами на управляющем электроде тиристора) IG (IG=0; IG>0; IG>>0), причём чем больше ток IG, тем при меньшем напряжении Vbo происходит переключение тиристора в проводящее состояние

· Пунктиром обозначен т. н. «ток включения спрямления» (IG>>0), при котором тиристор переходит в проводящее состояние при минимальном напряжении анод-катод. Для того, чтобы перевести тиристор обратно в непроводящее состояние необходимо снизить ток в цепи анод-катод ниже тока включения спрямления.

· Участок между 0 и Vbr описывает режим обратного запирания прибора.

· Участок далее Vbr — режим обратного пробоя.

Схемы включения тиристоров

В данной схеме включения тиристора, тиристор переходит в открытое состояние когда напряжение на входе 1 оптопары достигает 1,8-2,5В силой тока 5-7мА. Небольшой недостаток включения тиристора через диодный мост — это потери напряжения на нем, порядка 20В. Свечение лампы по данной схеме будет чуть тускнее нежели при прямом включении.

На рисунке 2 показана схема включения тиристора через транзистор. Управляющий ток проходящий через резистор R2 невелик и составляет не более 30мА. Условие выбора транзистора должно быть следующим, что бы максимальное напряжение коллектор эмитер было не менее 300В.

Тиристоры

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (напримертринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).

Схемы вкл. тиристоров

3 с помощью оптопары 4 по аноду

Свето фотодиоды

Фотодио́д — приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.

Светодио́д — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Биполярный транзистор

Биполярный транзистор представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода. Поэтому транзистор можно представить в виде двух встречно включенных диода. В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.

База – слой полупроводника, который является основой конструкции транзистора.

Эмиттером — слой полупроводника, функция которого инжектирование носителей заряда в слой базы.

Коллектором — слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.

При включении транзистора в режиме усиления, эмиттерный переход получается открытым, а переход коллектора закрыт. Это получается путем подключения источников питания.

Поскольку эмиттерный переход открыт, то через него будет проходить эмиттерный ток, возникающий из-за перехода дырок из базы в эмиттер, а так же электронов из эмиттера в базу. Таки образом, ток эмиттера содержит две составляющие – дырочную и электронную. Коэффициент инжекции определяет эффективность эмиттера. Инжекцией зарядов именуют перенос носителей зарядов из зоны, где они были основными в зону, где они делаются неосновными.

Каждый электрик должен знать:  Розетки и выключатели LK60 – обзор продукции

В базе электроны рекомбинируют, а их концентрация в базе восполняется от плюса источника ЕЭ. В результате этого в электрической цепи базы будет течь довольно слабый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под разгоняющим воздействием поля запертого коллекторного перехода, как неосновные носители, будут перемещаться в коллектор, создавая коллекторный ток. Перенос носителей зарядов из зоны, где они были неосновными, в зону, где они становятся основными, именуется экстракцией электрических зарядов.

ВОЛЬТ-АМПЕ́РНАЯ ХАРАКТЕРИ́СТИКА

В книжной версии

Том 5. Москва, 2006, стр. 687

Скопировать библиографическую ссылку:

ВОЛЬТ-АМПЕ́РНАЯ ХАРАКТЕРИ́СТИКА (ВАХ), за­ви­си­мость си­лы элек­трич. то­ка $I$ от при­ло­жен­но­го к дан­но­му эле­мен­ту на­пря­же­ния $U$ или за­ви­си­мость па­дения на­пря­же­ния на дан­ном эле­мен­те от си­лы про­те­каю­ще­го че­рез не­го то­ка. Про­стей­шая ВАХ иде­аль­но­го про­вод­ника, имею­ще­го элек­трич. со­про­тив­ле­ние $R$ , не за­ви­ся­щее от си­лы то­ка, оп­ре­де­ля­ет­ся Ома за­ко­ном , $U=RI$ , и пред­став­ля­ет со­бой пря­мую ли­нию, про­хо­дящую че­рез на­ча­ло ко­ор­ди­нат. По­сколь­ку со­про­тив­ле­ние ре­аль­ных про­во­дя­щих сред ме­ня­ет­ся при из­ме­не­нии ус­ло­вий, их ВАХ, как пра­ви­ло, не­ли­ней­на. Напр., ВАХ элек­трич. раз­ря­да в га­зе (или жид­ко­сти) за­ви­сит от дав­ле­ния и ро­да га­за, раз­ме­ров уст­рой­ст­ва, ти­па при­ло­жен­но­го на­пря­же­ния (по­сто­ян­ное или пе­ре­мен­ное), на­ли­чия маг­нит­но­го по­ля и т. д. На ВАХ ши­ро­ко ис­поль­зуе­мо­го на прак­ти­ке тлею­ще­го раз­ря­да име­ет­ся па­даю­щий уча­сток при ма­лой си­ле то­ка, по­сто­ян­ный уча­сток ( $U=const$ ) для нор­маль­но­го раз­ря­да при про­ме­жу­точ­ных $I$ и уча­сток, рас­ту­щий при боль­шой си­ле то­ка (ано­маль­ный раз­ряд). В од­нород­ных по­лу­про­вод­ни­ках вслед­ст­вие за­ви­си­мо­сти под­виж­но­сти но­си­те­лей за­ря­да от при­ло­жен­но­го по­ля ВАХ мо­жет быть не­од­но­знач­ной – т. н. ВАХ $N$ -об­раз­но­го (рис.) и $S$ -об­раз­но­го ти­пов. В не­од­но­род­ных по­лу­про­вод­ни­ках ВАХ силь­но не­сим­мет­рич­на, что ис­поль­зу­ет­ся для вы­прям­ле­ния пе­ре­мен­но­го то­ка.

Вольт-амперные характеристики схемы с ОБ

Рассмотрим несколько примеров нелинейных элементов с симметричными характеристиками:

а) лампа накаливания

С ростом тока сопротивление нити увеличивается и возрастание тока замедляется (рис.6). Сопротивление не зависит от направления тока.

С ростом тока сопротивление нити уменьшается (рис.7). Терморезистор применяют для компенсации изменений сопротивлений элементов, изготовленных из металлических проводников, сопротивление которых увеличивается с увеличением тока в цепи. При последовательном же включении общее сопротивление цепи не изменяется.

в) тиритовые и вилитовые элементы

С увеличением напряжения их проводимость увеличивается. Например:

при увеличении напряжения в 2 раза ток I увеличивается в 10 раз (рис.8). Из тиритовых дисков выполняют разрядники, предназначенные для защиты установок высокого напряжения от перенапряжений.

К нелинейным элементам с несимметричной вольт-амперной характеристикой относятся электронные лампы, полупроводниковые диоды, транзисторы, электрическая дуга при неоднородных электродах и прочие.

а) полупроводниковый диод

Проводит электрический ток, если к аноду приложен положительный потенциал, а к катоду — отрицательный (рис.9).

Ток коллектора различен для разных токов базы (рис.10)

Нелинейные элементы характеризуются двумя параметрами: статическим Rст и дифференциальным Rдиф сопротивлениями. Эти сопротивления изменяются от точки к точке вольт-амперной характеристики.

Статическим сопротивлением называется отношение напряжения к току в данной точке (рис.11)

Дифференциальное сопротивление определяется производной к ВАХ в точке А, т.е. тангенсом угла наклона касательной в точке А.

Схемы для снятия ВАХ.

ВАХ транзисторов устанавливают связь между токами в электродах и напряжениями, приложенными к электродам. При любой схеме включения в транзисторе всегда связаны между собой четыре величины.

Зависимость между этими величинами определяется из двух семейств статических характеристик:

В зависимости от схемы включения транзистора значения будут различными. Поэтому и внешний вид характеристик будет различным.

В справочниках по транзисторам, как правило, приводятся типовые семейства характеристик, представляющие собой усредненные характеристики большого числа однотипных транзисторов для схем включения с ОБ и с ОЭ.

Для схем ОБ характеристики определяются зависимостями:

ВАХ в схеме с ОБ могут быть сняты по следующей схеме:

Схема для снятия статических ВАХ

транзистора n-p-n типа в схеме с ОБ.

Изменяя положение регуляторов резисторов RЭ и RК снимают показания вольтметров V1, V2 и амперметров А1, А2. По полученным показаниям строятся входные и выходные ВАХ.

Входная характеристика при UКБ=0 точно соответствует ВАХ диода, включенного в прямом направлении. Увеличение UКБ смещает ВАХ влево, ближе к оси токов, что связано с модуляцией толщины базы (уменьшение толщины и снижение поперечного сопротивления базы) и увеличением IЭ при неизменном UЭБ. При UКБ равном нескольким вольтам ВАХ практически сливаются, что объясняется уменьшением влияния UКБ на эмиттерный переход. Довольно часто для схем с ОБ приводят только одну ВАХ при UКБ=const.

Выходная характеристика при (обрыв цепи эмиттера) соответствует (обратный неуправляемый ток коллектора, который практически не зависит от UКБ), что соответствует ВАХ диода, включенного в обратном (запорном) направлении. При увеличении IЭ, ток IК тоже растёт, т.к. IК=αIЭ и слабо зависит от UКБ. Небольшая зависимость IК от UКБ связана с эффектом Эрли, т.к. уменьшается толщина базы и повышается α за счет снижения рекомбинации в более тонкой базе (повышается коэффициент переноса ).

При IЭ≠0 ток IК также не равен нулю даже при UКБ=0, что обусловлено экстракцией электронов в коллектор из базы за счёт ускоряющего поля потенциального барьера коллекторного перехода и падения напряжения на продольном сопротивлении базы от базового тока.

При изменении полярности UКБ (UКБ>0) ток IК быстро уменьшается до нуля и даже может изменить направление, т.к. переход база-коллектор оказывается включенным в прямом направлении.

Для схемы с ОЭ характеристики определяются зависимостями:

ВАХ в схеме с ОЭ могут быть сняты по следующей схеме:

Схема для снятия статических ВАХ

транзистора n-p-n типа в схеме с ОЭ.

Изменяя положение регуляторов RЭ и RК снимают показания вольтметров V1, V2 и амперметров А1, А2. По полученным показаниям строятся входные и выходные ВАХ.

Входные ВАХ Выходные ВАХ

в схеме с ОЭ в схеме с ОЭ

Входная характеристика при UКЭ=0 представляет собой ВАХ прямого тока p-n перехода (эмиттерного перехода).

Увеличение UКЭ смещает ВАХ правее и ниже, что связано с уменьшением эффективной толщины базы за счёт её модуляции и снижением рекомбинации. Это уменьшает величину базового тока при одном и том же напряжении UБЭ. Уменьшение IБ происходит ещё и за счёт перераспределения IЭ в коллекторную цепь.

При наличии напряжения UКЭ и его изменении, ветви входной ВАХ располагаются плотно друг к другу, поэтому можно ограничиться только одной входной ВАХ, снятой при одном фиксированном напряжении UКЭ, например, равном 5В.

При малых значениях UБЭ, например при UБЭ=0, ток базы может быть отрицательным, например IБ= -IК0.

Выходные характеристики имеют как правило, значительно больший наклон, чем в схеме с ОБ, что объясняется более существенным уменьшением толщины базы при повышении UКЭ, а так же усилением эффекта лавинного размножения носителей в коллекторном переходе.

При IБ=0, т.е. при разрыве цепи базы, в коллекторной цепи протекает начальный сквозной ток коллектора , который в β раз больше IК0 ( ), что существенно увеличивает мощность рассеивания на коллекторе и может привести к выходу транзистора из строя. Поэтому подача напряжения на коллектор транзистора с оборванной базой – недопустима.

Дата добавления: 2020-08-04 ; просмотров: 495 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Что такое ВАХ диода, типы диодов

Сегодня диоды можно встретить практически в любом бытовом приборе. Многие даже собирают некоторые устройства в своей домашней лаборатории. Но, чтобы правильно использовать эти элементы электросхемы, нужно знать, что собой представляет ВАХ диода. Именно этой характеристики и будет посвящена данная статья.

Что это такое

ВАХ расшифровывается как вольт-амперная характеристика диодного полупроводника. Она отражает зависимость тока, который проходит через p-n переход диода. ВАХ определяет зависимость тока от величины, а также полярности приложенного напряжения. Вольт-амперная характеристика имеет вид графика (схема). Данный график имеет следующий вид:

Для каждого вида диода график ВАХ будет иметь свой конкретный вид. Как видим, график содержит кривую. По вертикали вверху здесь отмечены значения прямого тока (прямом включении), а внизу – в обратном. Но горизонтали схема и график отображают напряжение, аналогично в прямом и обратном направлении. Таким образом схема вольт-амперной характеристики будет состоять из двух частей:

  • верхняя и правая часть – элемент функционирует в прямом направлении. Она отражает пропускной ток. Линия в этой части идет резко вверх. Она характеризует значительный рост прямого напряжения;
  • нижняя левая часть – элемент действует в обратном направлении. Она соответствует закрытому (обратному) току через переход. Здесь линия идет практически параллельно горизонтальной оси. Она отражает медленное нарастание обратного тока.

Обратите внимание! Чем круче будет вертикальная верхняя часть графика, и ближе к горизонтальной оси нижняя линия, тем более лучше будут выпрямительные свойства полупроводника.

Стоит отметить, что ВАХ сильно зависит от температуры окружающей среды. К примеру, повышение температуры воздуха может привести резкому повышению обратного тока.
Построить своими руками ВАХ можно следующим образом:

  • берем блок питания;
  • подключаем его к любому диоду (минус на катод, а плюс на анод);
  • с помощью мультиметром делаем замеры.

Из полученных данных и строится вольт-амперная характеристика для конкретного элемента. Ее схема или график могут иметь следующий вид.

На графике видна ВАХ, которая в таком исполнении называется нелинейной.
Рассмотрим на примерах различных типов полупроводников. Для каждого отдельного случая данная характеристика буде иметь свой график, хотя они все будут носить единый характер лишь с небольшими изменениями.

ВАХ для шотки

Одним из наиболее распространенных диодов на сегодняшний день является шоттки. Этот полупроводник был назван в честь физика из Германии Вальтера Шоттки. Для шоттки вольт-амперная характеристика будет иметь следующий вид.

Как видим, для шоттки характерно малое падение напряжения в ситуации прямого подключения. Сам график носит явный ассиметричный характер. В зоне прямых смещений наблюдается экспоненциальное увеличение тока и напряжения. При обратном и прямом смещении для данного элемента ток в барьере обусловлен электронами. В результате этого такие элементы характеризуется быстрым действием, поскольку у нет диффузных и рекомбинационных процессов. При этом несимметричность ВАХ будет типичной для структур барьерного типа. Здесь зависимость тока от напряжения определена изменением количества носителей, которые берут участие в зарядопереносных процессах.

Кремниевый диод и его ВАХ

Кроме шоттки, большой популярностью на данный момент пользуются кремниевые полупроводники. Для кремниевого типа диода вольт-амперная характеристика выгляди следующим образом.

ВАХ кремниевого и германиевого диода

Для таких полупроводников данная характеристика начинается примерно со значения 0,5-0,7 Вольт. Очень часто кремниевые полупроводники сравнивают с германиевыми. Если температуры окружающей среды равны, то оба устройства будут демонстрировать ширину запрещённой зоны. При этом кремниевый элемент будут иметь меньший прямой ток, чем из германия. Это же правило касается и обратного тока. Поэтому у германиевых полупроводников обычно сразу наступает тепловой пробой, если имеются обратное большое напряжение.
В итоге, при наличии одинаковой температуры и прямого напряжения, потенциальный барьер у кремниевых полупроводников будет выше, а ток инжекции ниже.

Каждый электрик должен знать:  Применение саморегулирующихся нагревательных кабелей

ВАХ и выпрямительный диод

В завершении хотелось бы рассмотреть данную характеристику для выпрямительного диода. Выпрямительный диод – одна из разновидностей полупроводника, который применятся для преобразования переменного в постоянный ток.

ВАХ для выпрямительного диода

На схеме показана экспериментальная ВАХ и теоретическая (пунктирная линия). Как видим, они не совпадают. Причина этого кроется в том, для теоретических расчетов не учитывались некоторые факторы:

  • наличие омического сопротивления базовой и эмиттерной областей у кристалла;
  • его выводов и контактов;
  • наличие возможности токов утечки по кристальной поверхности;
  • протекание процессов рекомбинации и генерации в переходе для носителей;
  • различные типы пробоев и т. д.

Все эти факторы могут оказывать различное влияние, приводя к отливающейся от теоретической реальной вольт-амперной характеристики. Причем значительное влияние на внешний вид графика в данной ситуации оказывает температура окружающей среды.
ВАХ для выпрямительного диода демонстрирует высокую проводимость устройства в момент приложения к нему напряжения в прямом направлении. В обратном же направлении наблюдается низкая проводимость. В такой ситуации ток через элемент практически не течет в обратном направлении. Но это происходит только при определенных параметрах обратного напряжения. Если его превысить, то на графике видно лавинообразное повышение тока в обратном направлении.

Заключение

Вольт-амперная характеристика для диодных элементов считается важным параметром, отражающем специфику проведения тока в обратном и прямом направлениях. Она определяется в зависимости от напряжения и температуры окружающей среды.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n — p — n ; по мощности: малая (Р мах 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние — с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n — перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером — это область транзистора для инжекции носителей заряда в базу. Коллектором — область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

Входной характеристикой является зависимость:

I Э = f ( U ЭБ) при U КБ = const (а).

Выходной характеристикой является зависимость:

I К = f ( U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f ( U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f ( U КЭ) при I Б = const (а).

Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n — перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n — перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы — усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

Вольт-амперная характеристика двухполюсника

Аббревиатурой ВАХ (англ. I-V) принято обозначать вольт-амперную характеристику (current–voltage characteristic) двухполюсника.

Двухполюсник — это абстрактное представление о реальном элементе электрической цепи, которое изображается в виде прямоугольника имеющего два вывода, являющихся входом и выходом. Через такой объект проходит электрический ток (electrical current) — это один показатель, а между входом и выходом существует разность потенциалов в виде ЭДС или падения напряжения — это другой показатель. Отношение между двумя этими величинами, током и напряжением, и есть вольт-амперная характеристика.

ВАХ — это математическая функция зависимости тока от напряжения. Изображается в виде графика. Как и любая алгебраическая функция может быть линейной и нелинейной (кривой). Если имеется ещё и третий параметр, от которого зависит функция тока, тогда следует говорить о семействе вольт-амперных характеристик (ВАХ). Таким параметром может быть температура, влажность, время, освещённость, давление.

Например, трёхполюсник, которым является простой биполярный транзистор, можно рассматривать как три варианта двухполюсников, где третий вывод и будет дополнительным параметром. Для серии значений третьего параметра у двухполюсника образуется целое семейство ВАХ.

Каждый электрик должен знать:  Вихревые теплогенераторы

Самым простым примером двухполюсника является резистор, у которого ВАХ представляет собой прямую линию (линейная характеристика) в полном соответствии с Законом Ома. Но даже такое простое устройство имеет зависимость от внешних факторов таких как температура. Это проявляется в том, что его ВАХ максимально приближена к линейной, но в реальности есть много факторов оказывающих влияние математическую функцию тока для этого элемента.

Вольт-амперная характеристика резистора представляет собой функцию тока по Закону Ома и показывает свойства проводимости и сопротивления двухполюсника.

Двухполюсником с нелинейной характеристикой может быть полупроводниковый фотоэлемент, у которого проводимость зависит от освещённости. Естественным образом полупроводниковый диод (вентиль) также имеет нелинейную ВАХ.

Многие производители устройств и компонентов в предоставляемой документации (datasheet) приводят снятые вольт-амперные характеристики (current–voltage characteristic) своей продукции для разных режимов работы. ВАХ позволяют оперативно выбрать оптимальный режим работы устройств, а также подобрать им функциональную и параметрическую замену.

Визуально в режиме реального времени ВАХ можно наблюдать с помощью осциллографа.

Кроме применения в электронике и электротехнике, вольт-амперные характеристики (ВАХ) используются, например, в электрофизиологии для исследования биоэлектричества. Биологическая мембрана рассматривается как двухполюсник и с неё снимается ВАХ. Везде, где есть электрический ток, в любой среде, где возможно возникновение и изменение разности потенциалов, возможно построение вольт-амперной характеристики.

Возможно Вам будут интересны следующие статьи из этого раздела:

Если Вы не нашли ничего интересного в этом разделе, тогда Вам следует воспользоваться левым вертикальным меню, чтобы попасть в интересующий Вас раздел сайта.

Это сайт рассказывает и объясняет теоретические и практические таких предметов как: электротехника, механика, автоматизация, теория управления и регулирования, электроника, проектирование радиоэлектронной аппаратуры, энергетика и безопасность и т.д.

Вольт-амперные характеристики схемы с ОБ

вольт-амперная характеристика — Зависимость электрического напряжения на выводах элемента электрической цепи от электрического тока в нем. [ГОСТ Р 52002 2003] [ОАО РАО «ЕЭС России» СТО 17330282.27.010.001 2008] вольт амперная характеристика Зависимость тока от… … Справочник технического переводчика

вольт-амперная характеристика — зависимость напряжения от тока (или тока от напряжения) на участке электрической цепи; выражается обычно в виде графика или таблицы. * * * ВОЛЬТ АМПЕРНАЯ ХАРАКТЕРИСТИКА ВОЛЬТ АМПЕРНАЯ ХАРАКТЕРИСТИКА, зависимость напряжения от тока (или тока от… … Энциклопедический словарь

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА — зависимость напряжения от тока (или тока от напряжения) на участке электрической цепи; выражается обычно в виде графика или таблицы … Большой Энциклопедический словарь

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА — зависимость тока от приложенного к элементу электрич. цепи напряжения или зависимость падения напряжения на элементе электрич. цепи от протекающего через него тока. Если сопротивление элемента не зависит от тока, то В. а. х. прямая линия,… … Физическая энциклопедия

Вольт-амперная характеристика — зависимость электрического напряжения на выводах элемента электрической цепи от электрического тока в нем. Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N … Официальная терминология

вольт-амперная характеристика — 93 вольт амперная характеристика Зависимость электрического напряжения на выводах элемента электрической цепи от электрического тока в нем Источник: ГОСТ Р 52002 2003: Электротехника. Термины и определения основных понятий оригинал документа … Словарь-справочник терминов нормативно-технической документации

вольт-амперная характеристика — voltamperinė charakteristika statusas T sritis automatika atitikmenys: angl. current voltage characteristic; voltage current characteristic; volt ampere characteristic vok. Stromspannungscharakteristik, f; Strom Spannungs Kennlinie, f;… … Automatikos terminų žodynas

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА — зависимость напряжения от тока (или тока от напряжения) на участке электрич. цепи; выражается обычно в виде графика или таблицы … Естествознание. Энциклопедический словарь

Вольт-амперная характеристика — 1. Зависимость электрического напряжения на выводах элемента электрической цепи от электрического тока в нем Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и определения основных понятий … Телекоммуникационный словарь

вольт-амперная характеристика прибора М-типа — вольт амперная характеристика Зависимость тока анода прибора М типа от напряжения анода при заданных значениях магнитного поля, фазы высокочастотной нагрузки и коэффициента стоячей волны по напряжению. [ГОСТ 23769 79] Тематики приборы и… … Справочник технического переводчика

Статические вольт-амперные характеристики транзистора, включенного по схеме с общей базой

При любом включении транзистор характеризуется семейством входных и выходных характеристик. На рис. 6.9,а показаны зависимости коллекторного тока от разности потенциалов между коллектором и базой UКБ для pnp-транзистора или выходные ВАХ транзистора с ОБ (или выходными ВАХ), поскольку они характеризуют выходную цепь транзистора.

На рис. 6. 9,б показаны зависимости тока эмиттера от разности потенциалом между эмиттером и базой UЭБ, или входныеВАХ транзистора с ОБ (или просто входными ВАХ), поскольку они характеризуют входную цепь транзистора.

а б
Рис. 6. 9.Выходные и входные ВАХ pnp-транзистора с ОБ

Следует напомнить, что для pnp-транзисторов при нормальном включении эмиттерный переход должен быть смещен в прямом направлении, а коллекторный переход – в обратном. Соответственно для npn-транзисторов при нормальном включении Uэб 0 и Iэб 0. Обычно все ВАХ рисуют в первом квадранте, т.е. по существу по осям откладывают модули соответствующих токов и напряжений.

В зависимости от того, в каких состояниях находятся переходы транзистора, различают режимы его работы. Поскольку в транзисторе имеется два перехода (эмиттерный и коллекторный), и каждый из них может находиться в двух состояниях (открытом и закрытом), различают три режима работы транзистора. Основным режимом является активный режим, при котором эмиттерный переход находится в открытом состоянии, а коллекторный – в закрытом. Транзисторы, работающие в активном режиме, используются в усилительных схемах.

В импульсных схемах транзистор работает в режиме электронного ключа. При этом ток коллектора в открытом состоянии транзистора (когда ключ замкнут) ограничивается не транзистором, а внешними сопротивлениями. Говорят, что ток не растёт с ростом входного тока, а достигается насыщение роста. Отсюда возник термин – «режим насыщения». В режиме насыщения оба pn-перехода смещены в прямом направлении. Разомкнутому состоянию электронного ключа соответствует режим отсечки тока, или просто «режим отсечки». В режиме отсечки оба перехода смещены в обратном направлении. Таким образом, возможны три состояния (три режима работы транзистора) – активный, насыщения и отсечки.

Учитывая симметричную структуру транзистора, функции эмиттера и коллектора можно поменять местами. При этом включение транзистора называют инверсным. Очевидно, что как и при нормальном включении, здесь также возможны три режима – активный, насыщения и отсечки.

Рассмотрим влияние режимов работы транзистора (и его ВАХ) более подробно. Если положить UКБ=0, то, как видно из рис. 6.9,б входная характеристика транзистора соответствует характеристике pn-перехода, включенного в прямом направлении. Если UКБ ¹ 0, то входная характеристика изменяется, т.е. транзистор – прибор, в котором существует обратная связь и сигнал в выходной цепи может оказывать влияние на сигнал входной цепи.

При UЭБ=0 и UКБ концентрация в базе равновесная pn, градиент концентрации в базе отсутствует, токи через эмиттерный и коллекторный переходы равны нулю (т.0). В случае узкой базы распределение концентрации неосновных носителей в базе можно считать линейным.

На ВАХ можно выделить три области, соответствующие различным режимам работы транзистора: активную область, область насыщения и область отсечки.

Если эмиттер смещен в прямом направлении, происходит инжекция носителей заряда в базу и, доходя до коллектора, они создают ток в выходной цепи (т. А на рис. 6.9).

Активная область (т. А на рис. 6.9, б) соответствует усилительному режиму. Для нее выполняются условия UЭБ>0, UКБ pn , pn(W) >| |, поэтому можно считать pn(W)≈0.

Возрастание UЭБ будет сопровождаться увеличением тока эмиттера, а также ростом pn(0) и ростом градиента концентрации неосновных носителей заряда ∂pn/∂x, а, следовательно, возрастанием тока через базу (т. В на рис. 6.9), изменяет скорость рекомбинации и ток базы.

Отметим тот факт, что в активном режиме переходы транзистора имеют различную ширину: запертый коллекторный переход значительно шире открытого эмиттерного перехода.

Если при постоянном токе эмиттера увеличивать обратное смещение на коллекторе, ширина ОПЗ коллекторного перехода будет возрастать, ширина базы уменьшается (эффект Эрли, рис. 6.10,б) и градиент концентрации в базе в этом случае может остаться постоянным только при уменьшении концентрации неосновных носителей у ЭП. Это соответствует уменьшению напряжения на эмиттере и смещению характеристик влево (т. С на рис. 6.9).

а б
нормальное включение, UКБ=const, UЭБ – переменное нормальное включение, UЭБ =const, UКБ – переменное
Рис. 6.10 Распределение неосновных носителей в базе pnp-транзистора при нормальном включении в схеме с ОБ

Если напряжение на ЭП равно нулю, отрицательное напряжение на коллекторе приводит к уменьшению концентрации дырок в базе, состояние термодинамического равновесия на ЭП нарушается, что в свою очередь вызывает приток дырок из эмиттера, и ток эмиттера при UКБ 0 и UКБ≥0, следовательно, pn(0)>pn , pn(W)≥pn0. В точке А UЭБ>0 и UКБ=0, соответственно pn(0)>pn и pn(W)=0, в точке Е UКБ>0 и Uк.б>0, соответственно pn(0)>pn и pn(W)>pn . (рис. 6.11).

а б
UЭБ– положительное, UКБ=0 (т. А) оба перехода смещены в прямом направлении (т.Е)
Рис. 6.11 Распределение неосновных носителей в базе pnp-транзистора в режиме насыщения по схеме с ОБ

В этом режиме и эмиттер, и коллектор инжектируют электроны в базу, в структуре протекают два встречных сквозных потока дырок (нормальный и инверсный). От соотношения этих потоков зависит направление токов, протекающих в цепях эмиттера и коллектора.

Вследствие двойной инжекции база транзистора очень сильно насыщается избыточными носителямими (электронами для npn-транзистора и дырками для pnp-транзистора), из-за чего усиливается их рекомбинация с основными носителями, и рекомбинационный ток базы оказывается значительно выше, чем в активном или инверсном режимах. Ток коллектора не обеспечивает отвод всех подходящих к коллектору инжектированных носителей заряда (говорят об ограничении тока коллектора).

В связи с насыщением базы транзистора и его переходов избыточными носителями заряда, их сопротивления становятся очень маленькими. Поэтому цепи, содержащие транзистор, находящийся в режиме насыщения, можно считать короткозамкнутыми, в этом режиме транзистор представляет собой эквипотенциальную точку.

В режиме отсечки (см. т. F на рис. 6.9) оба перехода транзистора находятся в закрытом состоянии.

Рис. 6.12 Оба перехода смещены в обратном направлении (режим отсечки) т. F

Сквозные потоки электронов в режиме отсечки отсутствуют. Через переходы транзистора протекают потоки неосновных носителей заряда, создающие малые и неуправляемые тепловые токи переходов. База и переходы транзистора в режиме отсечки обеднены подвижными носителями заряда, в результате чего их сопротивления оказываются очень высокими. Поэтому считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.

Режимы насыщения и отсечки используются при работе транзисторов в импульсных (ключевых) схемах.

Рассмотренные процессы инжекции и собирания носителей коллектором не зависят от схемы включения, соответственно, и рассмотренные режимы – будут иметь место и в каскадах с общим эмиттером и общим коллектором.

Добавить комментарий