Второй закон Кирхгофа в опе­раторной форме


Второй закон Кирхгофа в операторной форме

Рассмотрим контур сложной электрической цепи в которой происходит коммутация (рис. 2.3)

Составим уравнения по второму закону в классической форме для выделенного контура.

Переходим к изображениям: (2.22)

Или для общего случая

Здесь Евн – те э.д.с., которые обусловленные начальными условиями.

Последние выражения отражают второй закон Кирхгофа в операторной форме. Законы Ома и Кирхгофа в операторной форме имеют такой же вид как и для цепей постоянного тока (при нулевых начальных условиях), следовательно расчет цепей в операторной форме можно вести теми же методами, что и цепей постоянного тока.

Операторные схемы

Для составления операторных изображений можно использовать так называемые операторные схемы. В этих схемах все элементы и токи обозначаются их операторными выражениями. Начальные условия учитываются дополнительными источниками, включенными последовательно с индуктивностью и емкостью соответственно. Причем направление источника, учитывающего ток в индуктивности, совпадает с направлением тока, а величина равна Li(0). Последовательно с емкостью включается источник э.д.с. направленный против тока. Величина его равна uc(0)/p .

Не нашли, что искали? Воспользуйтесь поиском:

Законы Кирхгофа — формулы и примеры использования

Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Законы Кирхгофа справедливы для линейных и нелинейных цепей при постоянных и переменных напряжениях и токах.

Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где – число токов, сходящихся в данном узле. Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 — I2 + I3 — I4 + I5 = 0

В этом уравнении токи, направленные к узлу, приняты положительными.

Физически первый закон Кирхгофа – это закон непрерывности электрического тока.

Второй закон Кирхгофа: алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii , Ri – ток и сопротивление i -й ветви.

Так, для замкнутого контура схемы (рис. 2 ) Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4

Замечание о знаках полученного уравнения:

1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;

2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

Физически второй закон Кирхгофа характеризует равновесие напряжений в любом контуре цепи.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа

Метод законов Кирхгофа заключается в решении системы уравнений, составленных по первому и второму законам Кирхгофа.

Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b , следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.

Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.

Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b — (y — 1) = b — y +1 .

Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.

Составим систему уравнений Кирхгофа для электрической цепи (рис. 3 ). Схема содержит четыре узла и шесть ветвей.

Поэтому по первому закону Кирхгофа составим y — 1 = 4 — 1 = 3 уравнения, а по второму b — y + 1 = 6 — 4 + 1 = 3 , также три уравнения.

Произвольно выберем положительные направления токов во всех ветвях (рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

Составляем необходимое число уравнений по первому и второму законам Кирхгофа

Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.
Потенциальная диаграмма – это графическое изображение второго закона Кирхгофа, которая применяется для проверки правильности расчетов в линейных резистивных цепях. Потенциальная диаграмма строится для контура без источников тока, причем потенциалы точек начала и конца диаграммы должны получиться одинаковыми.

Рассмотрим контур abcda схемы, изображенной на рис. 4. В ветке ab между резистором R1 и ЭДС E1 обозначим дополнительную точку k.

Рис. 4. Контур для построения потенциальной диаграммы

Потенциал любого узла принимаем равным нулю (например, ?а= 0), выбираем обход контура и определяем потенциалы точек контура: ?а = 0, ?к = ?а — I1R1 , ? b = ? к + Е1, ?с = ? b — I2R2 , ? d = ?c — Е2, ? a = ?d + I3R3 = 0

При построении потенциальной диаграммы необходимо учитывать, что сопротивление ЭДС равно нулю (рис. 5 ).

Рис. 5. Потенциальная диаграмма

Законы Кирхгофа в комплексной форме

Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений.

Первый закон Кирхгофа : «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

Второй закон Кирхгофа : «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплексных напряжений на всех пассивных элементах этого контура».

ЗАКОНЫ ОМА И КИРХГОФА В ОПЕРАТОРНОЙ ФОРМЕ

Выделим в некоторой сложной цепи ветвь ab (рис.1.18)

Замыкание ключа во внешней цепи приводит к возникновению переходного процесса, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые.

Для мгновенных значений можно записать:

Тогда на основании приведенных выше соотношений для операторных изображений получим:

Обозначим — операторное сопротивление рассматриваемого участка цепи. Отметим, что операторное сопротивление соответствует комплексному сопротивлению в цепи синусоидального тока при замене оператора р на .

Полученное уравнение есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме.

В соответствии с ним для ветви на рис.1.18 можно изобразить операторную схему замещения(рис.1.19).

Величины Li(0) (направлена по току) и (направлена против тока) называются внутренними (добавочными) ЭДС.

Величина внутренней ЭДС Li(0) обусловлена запасом энергии в магнитном поле катушки индуктивности при протекании по ней тока i(0) ≠ 0 непосредственно до коммутации. Величина внутренней ЭДС обусловлена запасом энергии в электрическом поле конденсатора при наличии на нем напряжения uC (0) ≠ 0 непосредственно до коммутации.

В частном случае, когда в ветви ab нет ЭДС e и к моменту коммутации i(0) = 0 и uC (0) = 0 (нулевые начальные условия), закон Ома в операторной форме принимает более простой вид:

Сформулируем законы Кирхгофа в операторной форме:

Первый закон: алгебраическая сумма операторных изображений токов, сходящихся в узле, равна нулю

Второй закон: алгебраическая сумма операторных изображений напряжений на пассивных элементах в контуре равна алгебраической сумме операторных изображений ЭДС, действующих в этом контуре

Ненулевые начальные условия учитываются введением в уравнения внутренних ЭДС. С их учетом второй закон Кирхгофа принимает вид

Все основанные на законах Кирхгофа приемы и методы составления уравнений (методы контурных токов, узловых напряжений, эквивалентного генератора, наложения и т.п.) можно применять и при составлении уравнений для изображений

Дата добавления: 2020-09-01 ; просмотров: 949 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Операторный метод анализа переходных колебаний

1. Основные свойства преобразования Лапласа

2. Законы Кирхгофа и Ома в операторной форме

3. Операторные схемы замещения реактивных элементов при ненулевых начальных условиях

4. Библиографический список

1. Основные свойства преобразования Лапласа

Нахождение изображений функции времени (равно как и обратные переходы от изображений к

оригиналу) выполняются с помощью специальных интегральных преобразований, приводимых в курсе высшей математики. В настоящее время в большей части современной технической литературы операторные методы связывают с применением преобразования Лапласа, в основе которого лежит соотношение:

Важно отметить, что функции, описывающие реально возможные воздействия и соответствующие им реакции, всегда преобразуемы по Лапласу. Полученную в результате такого преобразования функцию называют иногда лапласовым изображением функции или ее -изображением и обозначают:

Каждый электрик должен знать:  Синтез параметров систем стабилизации скорости

Отыскание -изображения заданной функции называется прямым преобразованием Лапласа, а нахождение по известному – обратным преобразованием Лапласа. AAAAAAAAAAAAAAAAAAAAAAAAAAA

Основные свойства и правила этих преобразований:

Свойство единственности. Каждому оригиналу (исходной функции) соответствует единственное изображение и наоборот, каждому изображению соответствует единственный оригинал.

Свойство линейности. Линейной комбинации оригиналов соответствует такая же линейная комбинация изображений:

Преобразование операции дифференцирования. Если оригинал представляет производную от некоторой функции

то его изображение имеет вид: .

При нулевых начальных условиях (ННУ) и , т. е. дифференцированию оригинала соответствует умножение его изображения на оператор (при ННУ).

Преобразование операции интегрирования. Если оригинал представляет от некоторой функции интеграл:

то его изображение имеет вид: , т. е. интегрированию оригинала соответствует деление его изображения на оператор .

Теорема запаздывания (оригинала). Если , то , где — время запаздывания, т. е. запаздыванию оригинала на время соответствует умножение его изображения на экспоненциальный множитель .

Теорема смещения (изображения). Если , то , т. е. умножению оригинала на экспоненциальный множитель соответствует смещение его изображения на величину .

Решение задач прямого и обратного преобразований Лапласа существенно упрощаются в тех случаях, когда удается использовать справочные таблицы, которые содержат пары оригинал – изображение. Эти таблицы приводятся в справочниках.

Следует учесть, что при обратном преобразовании Лапласа полученные функции иногда не подходят под табличные. В этом случае используется разложение этой функции на простые дроби или в ряд с последующим применением обратного преобразования Лапласа.

2. Законы Кирхгофа и Ома в операторной форме

Возможность существенного упрощения решения задачи анализа колебаний в электрических цепях операторным методом основывается на том, что для -изображений колебаний формально верны законы Кирхгофа и Ома.

Действительно, согласно первому закону Кирхгофа:

Если обе части этого равенства подвергнуть преобразованию Лапласа, то оно переходит в равенство:

и следовательно, алгебраическая сумма -изображений токов в любом узле цепи равна нулю. Аналогично доказывается справедливость второго закона Кирхгофа для операторных напряжений в контуре:

При выводе закона Ома в операторной форме будем полагать, что реактивные элементы находятся при ННУ (конденсатор разряжен, через катушку индуктивности не протекает ток).

Рассмотрим соотношения в элементах электрических цепей.

Элемент резистивного сопротивления.

– операторное резистивное сопротивление,

– резистивная операторная проводимость.

Таким образом, операторное напряжение на резистивном сопротивлении равно произведению сопротивления на величину операторного тока.

– операторное индуктивное сопротивление,

– операторная индуктивная проводимость.

Следовательно, операторное напряжение на индуктивности равно произведению операторного индуктивного сопротивления на величину операторного тока.

Закон Кирхгофа, формулы первого и второго закона для тока и напряжения

В статье мы расскажем про законы Кирхгофа с иллюстрацией и формулой. Первый и второй закон Густава Кирхгофа.

Вступление

Закон Ома является одним из самых фундаментальных законов электрической науки, но из-за своей простоты он может быть не очень полезен при решении вопросов, касающихся сложных электрических цепей. Закон Кирхгофа, сформулированный немецким физиком Густавом Кирхгофом (1824-1887) в 1847 году, представляет собой инструмент для анализа как простых, так и очень сложных электрических цепей. Эти законы позволяют определить значения и направление токов, протекающих по электрической цепи, а также разность потенциалов (напряжений) между выбранной парой точек в цепи. В основном они являются законами сохранения заряда и электрической энергии применительно к электрическим цепям и описываются следующим образом.

Первый закон Кирхгофа для тока

Также известный под другими именами, такими как Закон Кирхгофа для тока, это закон сохранения заряда. В нем просто говорится, что в любой точке или соединении в электрической цепи общая величина тока, поступающего в это соединение, равна общей величине тока, который покидает это соединение.

Предположим, что есть электрическая цепь, которая имеет точку, обозначенную на рисунке 1, показанном ниже. Точка соединения действует как точка встречи для четырех проводников, каждый из которых проводит ток в направлении, указанном черными наконечниками стрел. Согласно закону Кирхгофа общая сумма тока, входящего в соединение, должна быть равна току, выходящему из него. Это может быть математически представлено следующим образом

Ia = Ib + Ic + Id

Где I — ток в каждом из проводников a, b, c и d соответственно.

В этой точке также следует отметить, что конденсатор представляет собой устройство, которое используется для накопления заряда в виде электростатической силы в диэлектрическом материале, окруженном пластинами проводника с обеих сторон. Есть некоторые исключения из первого правила Кирхгофа, если конденсатор присутствовал в каком-либо из узлов, но лучше не вдаваться в такие детали на этом базовом уровне. Следовательно, для всех практических целей в других ситуациях применяется закон Кирхгофа.

Первый закон Кирхгофа — применение

Чтобы продемонстрировать, как правильно применять первый закон Кирхгофа, мы будем использовать простой пример. На рисунке ниже показана электрическая цепь, состоящая из превосходного источника электродвижущей силы и двух резисторов с сопротивлениями R1 и R2.

Ток интенсивности I, исходящий из источника ЭДС, имеет то же значение в левой ветви (BAD), ток I 1 — в средней ветви (BD), а ток I 2 — в правой ветви (BCD). Сосредоточим внимание на узле B: электрический заряд поступает в этот узел от источника ЭДС вместе с током I и течет с токами I 1 и I 2 , протекающими через резисторы R 1 и R 2соответственно, Общий заряд в узле B не изменяется, поэтому в соответствии с первым законом Кирхгофа сумма токов, протекающих в этот узел, должна быть равна сумме токов, протекающих из этого узла, которые мы можем записать так:

Точно такое же выражение, как и выше для узла B, получаем узел D. В узел D влияют токи I 1 и I 2 , и ток протекает с интенсивностью I, являющейся суммой этих двух токов:

чтобы вычислить, сколько стоят значения этих токов, мы будем использовать второй закон Кирхгофа.

Второй закон Кирхгофа для напряжения

Алгебраическая сумма потенциальных изменений в замкнутой электрической цепи равна нулю.

Этот закон применяется, когда используется напряжениями вместо тока в отличие от первого закона и, следовательно, также известен как Закон Кирхгофа для напряжения. В нем говорится, что в замкнутой цепи алгебраическая сумма произведений токов и сопротивлений всех проводников плюс алгебраическая сумма ЭДС равна нулю. Пожалуйста, обратите внимание на слово «алгебраическая», которое просто означает, что значение имеет не только количество этих токов и напряжений, но и их направление. Это приводит нас к следующему вопросу, касающемуся определения знака напряжений и тока в замкнутой цепи, который объясняется следующим образом.

Напряжение — в случае ЭДС батареи повышение напряжения обозначается знаком + ve, а падение напряжения — знаком -ve. Этот знак не зависит от направления тока в этой конкретной ветви. Напротив, падение ИК-сопротивления на резисторе зависит исключительно от направления тока независимо от любой ЭДС, присутствующей в ветви.

Ток — выбор направления тока для целей расчета с использованием закона Кирхгофа в основном является делом удобства и может осуществляться как по часовой стрелке, так и против часовой стрелки, НО после выбора направления его необходимо придерживаться, в противном случае это приведет к путанице и неправильному расчеты.

Второй закон Кирхгофа — применение

Теперь давайте поговорим о практическом применении второго закона Кирхгофа, а именно об определении токов I , I 1 и I 2, протекающих через электрическую цепь, показанную на рисунке выше. Предположим, что ЭДС источника составляет ε = 12 В, а сопротивление (сопротивление) резисторов равно R 1 = 10 Ом и R 2.= 20 Ом. Для начала давайте проанализируем ситуацию еще раз: источник ЭДС «прокачивает» электрические заряды между отрицательным и положительным полюсами. Направление движения этих носителей и, следовательно, направление тока определяется стрелкой, направленной от отрицательного полюса к положительному полюсу, поэтому в случае нашей схемы это по часовой стрелке. Этот ток, обозначенный I , после подачи на узел B делится на ток I 1 , который протекает через резистор R 1, и на ток I 2 , который протекает через резистор R 2, Эти резисторы соединены параллельно, то есть их начало и конец соединены вместе с помощью одних и тех же проводов, к которым одинаковая разность потенциалов равна ЭДС источника ε. Чтобы упростить эту схему, мы заменим резисторы R 1 и R 2 эквивалентным резистором R 12 , что позволит нам определить ток I, генерируемый источником ЭДС (определение этого тока возможно, потому что этот ток не разветвляется на другие токи в цепи),

Сопротивление R заменителя резистора 12 стоимость , используя следующее уравнение (см последовательно и параллельно, соединяющие резисторы )

Следующим шагом является применение второй закон Кирхгофа к такой упрощенной электрической цепи. Правильное использование этого закона состоит в обходе всего контура в направлении или против часовой стрелки (выбор за нами), уделяя пристальное внимание потенциальным изменениям, встречающимся на этом пути. На данный момент мы должны сохранить два основных правила для анализа электрических цепей:

  1. Когда мы анализируем цепь в направлении протекания тока, изменение потенциала источника ЭДС составляет + ε. В противном случае, т.е. когда мы анализируем цепь в направлении, противоположном направлению потока тока, изменение потенциала источника равно -ε.
  2. Когда мы анализируем цепь в направлении протекания тока, изменение потенциала при прохождении через резистор составляет -IR. В противном случае потенциальное изменение равно + IR.
Каждый электрик должен знать:  Электротехнические термины и определения на букву Г

Изменение потенциала при прохождении через резистор, равное ± ИК, вытекает из определения электрического сопротивления: R = U / I. Отметим, что согласно рисунку выше положительный полюс источника ЭДС подключен к верхнему концу резистора R 12, а отрицательный полюс — к его нижнему концу. Это означает, что верхний конец резистора имеет более высокий потенциал, чем его нижний конец, и поэтому изменение потенциала при прохождении через резистор от конца с более высоким потенциалом к ​​концу с более низким потенциалом равно -IR (имеется уменьшение потенциала). В противном случае, то есть, когда движение нагрузок происходит от отрицательного полюса к положительному полюсу, изменение потенциала равно + IR, поскольку происходит увеличение электрического потенциала.

Используя эту информацию, давайте воспользуемся вторым законом Кирхгофа, минуя цепь в направлении потока тока, то есть по часовой стрелке, начиная с точки A:

начиная и заканчивая анализ цепи в точке A, мы, конечно, должны получить тот же потенциал V A (мы вернемся к этому та же точка), что подтверждается приведенной выше формулой. После уменьшения величины V A мы получим:

где из преобразования из тока я получаю:

(полностью равное значение тока, которое я получу после прохождения этой цепи в направлении против часовой стрелки)

Зная значение тока I мы можем вернуться к первой цепи с двумя параллельно подключенными резисторами, чтобы вычислить ток I1 и I2. Записав второе право Кирхгофа для левой сетки (BADB) и начав анализ в точке A, двигаясь в направлении потока тока, мы получим:

где из преобразования мы получим значение тока I 1 :

чтобы найти ток I 2, мы будем использовать первый закон Кирхгофа. Мы знаем, что ток интенсивности I после подачи в узел B делится на ток I 1 и I 2 , таким образом:

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Второй закон

Второй закон Кирхгофа

  • Алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре.
  • Алгебраическая сумма падений напряжений в замкнутом контуре равна сумме действующих ЭДС в этом контуре. Если в контуре нет источников электродвижущей силы, то суммарное падение напряжений равно нулю.

  • Алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю.
  • Алгебраическая сумма падений напряжений на пассивных элементах равна алгебраической сумме ЭДС и напряжений источников тока, действующих в этом контуре.

Т.е. падение напряжения на R1 со своим знаком плюс падение напряжения на R2 со своим знаком равно напряжение источника эдс 1 со своим знаком плюс напряжение на источнике электродвижущей силы 2 со своим знаком. Алгоритм расстановки знаков в уравнениях по закону Кирхгофа описан на отдельной странице.

Уравнение для второго закона Кирхгофа

Составлять уравнения по второму закону Кирхгофа можно разными способами. Самым удобным считается первая формула.

Так же можно уравнения писать в таком виде.

Физический смысл второго закона Кирхгофа

Второй закон устанавливает связь между падением напряжения на замкнутом участке электрической цепи и действием источников ЭДС на этом же замкнутом участке. Он связан с понятием работы по переносу электрического заряда. Если перемещение заряда выполняется по замкнутому контуру, возвращаясь в ту же точку, то совершенная работа равна нулю. Иначе бы не выполнялся закон сохранения энергии. Это важное свойство потенциального электрического поля описывает 2 закон Кирхгофа для электрической цепи.

Законы Кирхгофа простыми словами

Два закона Кирхгофа вместе с законом Ома составляют тройку законов, с помощью которых можно определить параметры электрической цепи любой сложности. Законы Кирхгофа мы будем проверять на примерах простейших электрических схем, собрать которые не составит никакого труда. Для этого понадобится несколько резисторов, пара источников питания, в качестве которых подойдут гальванические элементы (батарейки) и мультиметр.

Первый закон Кирхгофа

Первый закон Кирхгофа говорит, что сумма токов в любом узле электрической цепи равна нулю. Существует и другая, аналогичная по смыслу формулировка: сумма значений токов, входящих в узел, равна сумме значений токов, выходящих из узла.

Давайте разберем сказанное более подробно. Узлом называют место соединения трех и более проводников.

Ток, который втекает в узел, обозначается стрелкой, направленной в сторону узла, а выходящий из узла ток – стрелкой, направленной в сторону от узла.

Согласно первому закону Кирхгофа

Условно присвоили знак «+» всем входящим токам, а «-» ‑ все выходящим. Хотя это не принципиально.

1 закон Кирхгофа согласуется с законом сохранения энергии, поскольку электрические заряды не могут накапливаться в узлах, поэтому, поступающие к узлу заряды покидают его.

Убедиться в справедливости 1-го закона Кирхгофа нам поможет простая схема, состоящая из источника питания, напряжением 3 В (две последовательно соединенные батарейки по 1,5 В), три резистора разного номинала: 1 кОм, 2 кОм, 3,2 кОм (можно применять резисторы любых других номиналов). Токи будем измерять мультиметром в местах, обозначенных амперметром.

Если сложить показания трех амперметров с учетом знаков, то, согласно первому закону Кирхгофа, мы должны получить ноль:

Или показания первого амперметра А1 будет равняться сумме показаний второго А2 и третьего А3 амперметров.

Второй закон Кирхгофа

Второй закон Кирхгофа воспринимается начинающими радиолюбителями гораздо сложнее, нежели первый. Однако сейчас вы убедитесь, что он достаточно прост и понятен, если объяснять его нормальными словами, а не заумными терминами.

Упрощенно 2 закон Кирхгофа говорит: сумма ЭДС в замкнутом контуре равна сумме падений напряжений

ΣE = ΣIR

Самый простой случай данного закона разберем на примере батарейки 1,5 В и одного резистора.

Поскольку резистор всего один и одна батарейка, то ЭДС батарейки 1,5 В будет равна падению напряжения на резисторе.

Если мы возьмем два резистора одинакового номинала и подключим к батарейке, то 1,5 В распределятся поровну на резисторах, то есть по 0,75 В.

Если возьмем три резистора снова одинакового номинала, например по 1 кОм, то падение напряжения на них будет по 0,5 В.

Формулой это будет записано следующим образом:

Рассмотрим условно более сложный пример. Добавим в последнюю схему еще один источник питания E2, напряжением 4,5 В.

Обратите внимание, что оба источника соединены последовательно и согласно, то есть плюс одной батарейки соединяется с минусом другой батарейки или наоборот. При таком способе соединения гальванических элементов их электродвижущие силы складываются: E1 + E2 = 1,5 + 4,5 = 6 В, а падение напряжения на каждом сопротивлении составляет по 2 В. Формулой это описывается так:

И последний отличительный вариант, который мы рассмотрим в данной статье, предполагает последовательное встречное соединение гальванических элементов. При таком соединении источников питания из большей ЭДС отнимается значение меньшей ЭДС. Следовательно к резисторам R1…R3 будет приложена разница E1 – E2, то есть 4,5 – 1,5 = 3 В, — по одному вольту на каждый резистор.

Второй закон Кирхгофа работает не зависимо от количества источников питания и нагрузок, а также независимо от места их расположения в контуре схемы. Полезно будет собрать рассмотренные схемы и выполнить соответствующие измерения с помощью мультиметра.

Законы Кирхгофа действуют как для постоянного, так и для переменного тока.

Законы Ома и Кирхгофа в операторной форме

Уравнение состояния электрической цепи (рис. 3.31, а) с ненулевыми начальными условиями, в которой в момент t = 0+ резистор шунтируется ключом S:

где ис(0_) — начальное напряжение на зажимах конденсатора; i(t) = = Ш = iL(t) = ic(t).

Будем рассматривать функции e(t), и^0_) и /(/) как функции-ори-

гиналы, имеющие изображения Е(р), ——— и 1<р) = i(t)e

Тогда изображение напряжения на резисторе R равно UR(p) = = RI(p), а операторное сопротивление резистора (согласно закону Ома)

Изображение напряжения на зажимах индуктивной катушки L где w = e

Итак, для получения изображения производной функции f ) достаточно изображение оригинала умножить на оператор р и вычесть начальное значение функцииД/) при t= 0+, т.е.

где под/(0+) подразумевают предел функции, к которому она стремится, когда время t неограниченно убывает, оставаясь положительным.

При/(0+) = 0 дифференцированию оригинала (во временной области) соответствует операция умножения изображения на оператор р:

При iL(0+) = iL(0_) = О (ННУ) изображение напряжения на элементе L равно UL(p) = Lpl Откуда операторное индуктивное сопротивление индуктивной катушки

Изображение напряжения на зажимах конденсатора С

т.е. для получения изображения интеграла от функции времени (тока в нашем случае) в пределах от 0+ до t достаточно разделить ее изображение на оператор р:

Итак, изображение напряжения конденсатора с начальным зарядом

а без начального заряда (мс(0_) = 0)

Каждый электрик должен знать:  Маглев интересное о поездах на магнитном подвесе

Отсюда операторное емкостное сопротивление конденсатора

Операторная схема замещения. На основании выведенных соотношений (3.12)—(3.17) между изображениями напряжений и токов и выражений операторных сопротивлений пассивных элементов цепи составлена ее операторная схема замещения в области комплексного переменногор (см. рис. 3.31, б). Каждому компонентному уравнению пассивных элементов в изображениях соответствует операторная схема замещения элемента:

• резистору R — схема резистивного элемента с операторным сопротивлением ZR(p) = R (или с операторной проводимостью

• индуктивной катушке L с начальным током — операторная схема замещения, в которой начальный ток в катушке учитывается с помощью дополнительного источника напряжения с ЭДС EL = = LiL(0_), соединенного последовательно с индуктивным элементом с сопротивлением ZL = Lp без начального тока. Примечание. Источник напряжения с ЭДС Et = LiL( 0_) может

быть заменен источником тока с током JL(p) = —-, подключа-

емым параллельно с индуктивным элементом без начального тока;

• конденсатору С с начальным зарядом ^(0_) — операторная схема замещения, в которой начальный заряд q<0_) или напряжение

ис(0_) = на зажимах конденсатора учитывается с помощью

дополнительного источника напряжения с ЭДС Ес(р) = Uc ^

соединенного последовательно с емкостным элементом с сопротивлением Zc(p) = — без заряда. Направление ЭДС Ес(р) проти- Ср

воположно направлению тока 1с(р).

Примечание. Источник напряжения с ЭДС Ес(р) = ис(0_) может быть заменен источником тока с током J^ip) — Сис(0_), подключаемым параллельно с емкостным элементом без начального заряда. Направление тока Jc(p) противоположно току 1с<р)

• индуктивной катушке L без начального тока (/Д0_) = 0) — схема индуктивного элемента с операторным сопротивлением ZL(p) = = Lp;

• конденсатору С без начального заряда (ис(0_) = 0) — схема емкостного элемента с операторным сопротивлением Zc(p) = —.

Законы Ома в операторной форме. В операторной схеме замещения цепи с ненулевыми начальными условиями (см. рис. 3.31, б) операторный ток

Полученная формула (3.18) выражает закон Ома в операторной

форме, в которой изображение источника Е(р) = — при e(t) = Е • 1(0,

e(t) = ^sinoW • 1(0, Е(р) = ™ 0 и т.д.; Z(p) — операторное

сопротивление последовательной RLC-цепи (ветви):

В частном случае, при нулевых начальных условиях (при Li(0_) =

= 0 и = 0), закон Ома в операторной форме имеет вид

Примечание. В рассматриваемом примере (см. рис. 3.31, а) источник напряжения e(t) включен в цепь при t

Второй закон Кирхгофа в опе­раторной форме

Первый закон Кирхгофа

Алгебраическая сумма токов, сходящихся в любом узле электрической цепи равна нулю. При этом токи, текущие к узлу считаются положительными, а от узла — отрицательными. Другая формулировка: сумма токов, подходящих к узлу, равна сумме токов, отходящих от узла.

Первый закон Кирхгофа по сути является законом баланса токов в узлах цепи.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма падений напряжений на элементах, входящих в контур, равна алгебраической сумме ЭДС.

Второй закон Кирхгофа по сути является законом баланса напряжений в контурах электрических цепей.

Для составления уравнения по 2-му закону Кирхгофа выбирается произвольное направление обхода контура. Тогда, если направление тока в цепи совпадает с направлением обхода, то соответствующее слагаемое берется со знаком «+», а если не совпадает, то со знаком «-«. Аналогичное правило расстановки знаков справедливо и для ЭДС.

Уравнение по 2-му закону Кирхгофа может быть записано и для контура, имеющего разрыв цепи, однако при этом необходимо в уравнении учитывать напряжение между точками разрыва.

1. Теория: Законы Кирхгофа

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Рисунок 2. Узел электрической цепи.

Здесь ток I1 — ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I 3 в левую часть выражения (1), тем самым получим:

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

так как I1 и I 2 втекают в узел А , а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

Для внутреннего левого контура:

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

I = 2I1– 70;

И подставляем его значение во второе уравнение

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I — I1

I2=4,146 — 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I 2 вытекает из узла А .

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Добавить комментарий