Зачем нужна проверка классов точности трансформаторов тока и напряжения

СОДЕРЖАНИЕ:

Зачем нужна проверка классов точности трансформаторов тока и напряжения

Измерительные трансформаторы: назначение, режимы работы, классы точности.

Измерительные трансформаторы напряжения и тока бывают предназначены:

1) для преобразования больших первичных токов (напряжений) до значений, удобных для подключения стандартных

2) отделение цепей высокого потенциала от цепей низкого потенциала. Вторичные обмотки всегда заземляются для безопасности персонала.

Трансформаторы напряжения. Это трансформатор, предназначенный для преобразования напряжения до значения, удобного для измерения. Применение трансформаторов напряжения обеспечивает безопасность для людей, соприкасающихся с измерительными приборами и реле, поскольку цепи высшего и низшего напряжения разделены, позволяет унифицировать конструкции измерительных приборов, обмоток реле для номинального напряжения 100В, что упрощает производство и снижает стоимость. В соответствии со значением допустимой погрешности при определённых условиях работы трансформаторы напряжения разделены на четыре класса точности.

Наименование класса соответствует наибольшей допустимой погрешности в напряжении, выраженной в процентах. Классы точности: 0,2; 0,5; 1; 3.

Трансформаторы тока. Это трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Применение трансформаторов тока обеспечивает безопасность при работе с измерительными приборами и реле, поскольку цепи высшего и низшего напряжений разделены; позволяет унифицировать конструкции измерительных приборов для номинального вторичного тока 5А (реже 1 или 2,5А), что упрощает их производство и снижает стоимость.

Стандартная шкала номинальных первичных токов содержит значения токов от 1 до 40000А. Трансформаторы тока по своему назначению делятся на трансформаторы тока для измерений и трансформаторы тока для релейной защиты. Измерительные трансформаторы тока разделены на шесть классов точности в соответствии с предельными погрешностями при определённых условиях работы. Классы точности: 0,2; 0,5; 1; 3; 5; 10.

а) должны быть рассчитаны на U электроустановки;

б) должен выбираться по номинальному току электросети;

в) выбирается по

г) по термической и электродинамической стой-ти.

Трансформаторы тока, предназначенные для лабораторных измерений, должны отвечать классу точности 0,2; трансформаторы, предназначенные для присоединения счётчиков – классу 0,5; для присоединения щитовых приборов могут быть использованы трансформаторы классов 1 и 3.

Трансформаторы 1 делятся:

б) оптические (применяются на сверхвысоких напряжениях). Эл/магнитные бывают однозвенные и многозвенные.

Измерительный трансформатор тока: принцип действия и классы точности

Основной задачей трансформатора тока является преобразование тока до такой величины, при которой будет удобно проводить измерения. С его помощью осуществляется питание токовых цепей приборов учёта и контроля, а также РЗА. Он позволяет отделить низковольтные измерительные приборы, которые подключены к вторичной обмотке, от большого напряжения. Это позволяет обезопасить их обслуживание работающим персоналом.

Измерительный ТТ

При помощи данного агрегата можно подсоединять всевозможные устройства вдали от тех областей, в которых присутствует большое напряжение, а также осуществлять контроль и измерение величины тока. К вторичным обмоткам трансформатора можно подключать различные измерительные приборы: токовые реле и обмотки приборов, амперметры. При подсоединении нескольких таких измерительных устройств к ТТ, их нужно подключать параллельно, для того чтобы могла образоваться одна неразрывная цепь.

Для проверки соответствия всех параметров необходимо производить испытание трансформаторов тока, которое позволит предотвратить внезапный отказ оборудования. Что необходимо делать, рассмотрим далее.

Порядок проведения работ при измерениях

  • Отключить трансформатор и принять все необходимые меры, чтобы не поступало напряжение к месту работы;
  • проверить, есть ли напряжение на всех токоведущих частях;
  • на приборах, которые отвечают за подачу напряжения, прикрепить табличку: «Не включать! Работают люди!»;отсоединить все шины, идущие до трансформатора, и заземлить;
  • все необходимые измерения осуществляются согласно установленным программам и методике.

Класс точности

В зависимости от величины погрешности классы точности измерительных трансформаторов тока бывают следующих типов: 0,2; 0,5; 1; 3 и 10. Данная величина обозначает, что ток в первичной обмотке соответствует номинальному значению, а нагрузка вторичной не выходит за пределы того показателя, который определён нормативными документами. Опираясь на класс точности, используют на практике соответствующие приборы.

Измерительный трансформатор тока, принцип действия

Основные узлы данного устройства – это его обмотки и магнитопровод. В контролируемую сеть, при помощи последовательного соединения прикрепляется первичная обмотка. Она должна обладать маленьким значением сопротивления. Это позволит предотвратить снижение на ней напряжения. К вторичной же обмотке подсоединяются измерительные приборы. Такая особенность режима работы трансформатора схожа с режимом «КЗ».

Ток (I1), проходящий в первичной обмотке, создаёт в магнитопроводе переменный магнитный поток (Ф1), который образует ток во вторичной обмотке (I2), формирующий поток (Ф2). Эти потоки направлены навстречу друг к другу. Все это приводит к тому, что магнитный поток в магнитопроводе будет снижаться. Разностью данных потоков является результирующий Ф0, благодаря которому и происходит передача энергии от первичной обмотки к вторичной (во время преобразования тока).

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения испытания изоляции силовых трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать испытание изоляции силовых трансформаторов или задать вопрос, звоните по телефону: +7 (495) 181-50-34 .

Невский трансформаторный завод «Волхов»

Технический портал компании

Категории

Класс точности трансформатора тока

Класс точности вторичной обмотки является основной метрологической характеристикой и определяется двумя погрешностями – токовой, измеряемой в процентах (%) и угловой, измеряемой в минутах (мин).

Токовая погрешность

Токовая погрешность – это погрешность, которую вносит трансформатор при измерении тока, возникающая в следствии того, что действительный коэффициент трансформации не равен номинальному.

Номинальная токовая погрешность представляет собой разность вторичных токов – действительного и номинального, отнесенную к номинальному вторичному току и выраженную в процентах.

Угловая погрешность

Угловая погрешность – это угол между вектором первичного тока и повернутым на 180° вектором вторичного тока. Угловая погрешность считается положительной, когда вектор вторичного тока, повернутый на 180°, опережает вектор первичного тока.

Выбор класса точности

В зависимости от назначения каждая вторичная обмотка ТТ должна иметь класс точности, определенный ГОСТ 7746-2020. Класс точности вторичных обмоток для измерений и учета, как правило, выбирается из ряда: 0,2; 0,2S; 0,5; 0,5S, возможны и другие значения: 1 или 3.

Обмотки для коммерческого учета должны иметь класс точности 0,2S или 0,5S. Погрешность этих классов точности нормируется в более широком диапазоне первичных токов (1–120%), а пределы допускаемых погрешностей меньше.

Классы точности вторичных обмоток для защиты – 5Р; 10Р.

Пределы допускаемых погрешностей вторичных обмоток трансформаторов тока согласно ГОСТ 7746-2020 приведены ниже:

Измерительные трансформаторы тока — назначение, устройство, виды конструкций

Мощные электротехнические установки могут работать с напряжением несколько сот киловольт, при этом величина тока в них может достигать более десятка килоампер. Естественно, что для измерения величин такого порядка не представляется возможным использовать обычные приборы. Даже если бы таковые удалось создать, они получились бы довольно громоздкими и дорогими.

Помимо этого, при непосредственном подключении к высоковольтной сети переменного тока повышается риск поражения электротоком при обслуживании приборов. Избавиться от перечисленных проблем позволило применение измерительных трансформаторов тока (далее ИТТ), благодаря которым удалось расширить возможности измерительных устройств и обеспечить гальваническую развязку.

Назначение и устройство ИТТ

Функции данного типа трансформаторов заключаются в снижении первичного тока до приемлемого уровня, что делает возможным подключение унифицированных измерительных устройств (например, амперметров или электронных электросчетчиков), защитных систем и т.д. Помимо этого, трансформатор тока обеспечивают гальваническую развязку между высоким и низким напряжением, обеспечивая тем самым безопасность обслуживающего персонала. Это краткое описание позволяет понять, зачем нужны данные устройства. Упрощенная конструкция ИТТ представлена ниже.

Конструкция измерительного трансформатора тока

Обозначения:

  1. Первичная обмотка с определенным количеством витков (W1).
  2. Замкнутый сердечник, для изготовления которого используется электротехническая сталь.
  3. Вторичная обмотка (W2 — число витков).

Как видно из рисунка, катушка 1 с выводами L1 и L2 подключена последовательно в цепь, где производится измерение тока I1. К катушке 2 подключается приборы, позволяющие установить значение тока I2, релейная защита, система автоматики и т.д.

Основная область применения ТТ — учет расхода электроэнергии и организация систем защиты для различных электроустановок.

В измерительном трансформаторе тока обязательно наличие изоляции как между катушками, витками провода в них и магнитопроводом. Помимо этого по нормам ПУЭ и требованиям техники безопасности, необходимо заземлять вторичные цепи, что обеспечивает защиту в случае КЗ между катушками.

Получить более подробную информацию о принципе действия ТТ и их классификации, можно на нашем сайте.

Каждый электрик должен знать:  Нужно ли менять старую алюминиевую проводку на медную

Перечень основных параметров

Технические характеристики трансформатора тока описываются следующими параметрами:

  • Номинальным напряжением, как правило, в паспорте к прибору оно указано в киловольтах. Эта величина может быть от 0,66 до 1150 кВ. получит полную информацию о шкале напряжений можно в справочной литературе.
  • Номинальным током первичной катушки (I1), также указывается в паспорте. В зависимости от исполнения, данный параметр может быть в диапазоне от 1,0 до 40000,0 А.
  • Током на вторичной катушке (I2), его значение может быть 1,0 А (для ИТТ с I1 не более 4000,0 А) или 5,0 А. Под заказ могут изготавливаться устройства с I2 равным 2,0 А или 2,50 А.
  • Коэффициентом трансформации (КТ), он показывает отношение тока между первичной и вторичной катушками, что можно представить в виде формулы: КТ = I1/I2. Коэффициент, определяемый по данной формуле, принято называть действительным. Но для расчетов еще используется номинальный КТ, в этом случае формула будет иметь вид: IНОМ1/IНОМ2, то есть в данном случае оперируем не действительными, а номинальными значениями тока на первой и второй катушке.

Ниже, в качестве примера, приведена паспортная таблица модели ТТ-В.

Перечень основных параметров измерительного трансформатора тока ТТ-В

Виды конструкций измерительных трансформаторов

В зависимости от исполнения, данные устройства делятся на следующие виды:

  1. Катушечные, пример такого ТТ представлен ниже. Катушечный ИТТ

Обозначения:

  • A – Клеммная колодка вторичной обмотки.
  • В – Защитный корпус.
  • С – Контакты первичной обмотки.
  • D – Обмотка (петлевая или восьмерочная) .
  1. Стержневые, их также называют одновитковыми. В зависимости от исполнения они могут быть:
  • Встроенными, они устанавливаются на изоляторы вводы силовых трансформаторов, как показано на рисунке 4. Рисунок 4. Пример установки встроенного ТТ

Обозначения:

  • А – встроенный ТТ.
  • В – изолятор силового ввода трансформатора подстанции.
  • С – место установки ТТ (представлен в разрезе) на изоляторе. То есть, в данном случае высоковольтный ввод играет роль первичной обмотки.
  1. Шинными, это наиболее распространенная конструкция. Ее принцип строения напоминает предыдущий тип, стой лишь разницей, что в данном исполнении в качестве первичной обмотки используется токопроводящая шина или жила, которая заводится в окно ИТТ. Шинные ТТ производства Schne >

    Такой вариант конструкции существенно упрощает монтаж/демонтаж.

    Расшифровка маркировки

    Обозначение отечественных моделей интерпретируется следующим образом:

    • Первая литера в названии модели указывает на вид трансформатора, в нашем случае это будет буква «Т», указывая на принадлежность к ТТ.
    • Вторая литера указывает на особенность конструктивного исполнения, например, буква «Ш», говорит о том, что данное устройство шинное. Если указана литера «О», то это опорный ТТ.
    • Третьей литерой шифруется исполнение изоляции.
    • Цифрами указывается класс напряжения (в кВ).
    • Литера, для обозначения климатического исполнения согласно ГОСТ 15150 69
    • КТ, с указанием номинального тока первичной и вторичной обмотки.

    Приведем пример расшифровки маркировки трансформатора тока.

    Шильдик на ТТ с указанием его марки

    Как видим, на рисунке изображена маркировка ТЛШ 10УЗ 5000/5А, это указывает на то, что перед нами трансформатор тока (первая литера Т) с литой изоляцией (Л) и шинной конструкцией (Ш). Данное устройство может использоваться в сети с напряжением до 10 кВ. Что касается исполнения, то литера «У», говорит о том, что аппарат создан для эксплуатации в умеренной климатической зоне. КТ 1000/5 А, указывает на величину номинального тока на первой и второй обмотке.

    Схемы подключения

    Обмотки трехфазных ТТ могут быть подключены «треугольником» или «звездой» (см. рис. 8). Первый вариант применяется в тех случаях, когда необходимо получить большую силу тока в цепи второй обмотки или требуется сдвинуть по фазе ток во вторичной катушке, относительно первичной. Второй способ подключения применяется, если необходимо отслеживать силу тока в каждой фазе.

    Рисунок 8. Схема подключения трехобмоточного ТТ «звездой» и «треугольником»

    При наличии изолированной нейтрали, может использоваться схема для измерения разности токов между двумя фазами (см. А на рис. 9) или подключение «неполной звездой» (B).

    Рисунок 9. Схема подключения ТТ на разность двух фаз (А) и неполной звездой (В)

    Когда необходимо запитать защиту от КЗ на землю, применяется схема, позволяющая суммировать токи всех фаз (см. А на рис 10.). Если к выходу такой цепи подключить реле тока, то оно не будет реагировать на КЗ между фазами, но обязательно сработает, если происходит пробой на землю.

    Рис 10. Подключения: А – для суммы токов всех фаз, В и С — последовательное и параллельное включение двухобмоточных ТТ

    В завершении приведем еще два примера соединения вторичных обмоток ТТ для снятия показаний с одной фазы:

    Вторичные катушки включаются последовательно (В на рис. 10), благодаря этому возникает возможность измерения суммарной мощности.

    Вторичные обмотки соединяются параллельно, что дает возможность понизить КТ, поскольку происходит суммирование тока в этих катушках, в то время как в линии этот показатель остается без изменений.

    Выбор

    При выборе трансформатора тока в первую очередь необходимо учитывать номинальное напряжение прибора было не ниже, чем в сети, где он будет установлен. Например, для трехфазной сети с напряжением 380 В можно использовать ТТ с классом напряжения 0,66 кВ, соответственно для установок более 1000 В, устанавливать такие устройства нельзя.

    Помимо этого IНОМ ТТ должен быть равен или превышать максимальный ток установки, где будет эксплуатироваться прибор.

    Кратко изложим и другие правила, позволяющие не ошибиться с выбором ТТ:

    • Сечение кабеля, которым будет подключаться ТТ к цепи вторичной нагрузки, не должно приводить к потерям сверх допустимой нормы (например, для класса точности 0,5 потери не должны превышать 0,25%).
    • Для систем коммерческого учета должны использоваться устройства с высоким классом точности и низким порогом погрешности.
    • Допускается установка токовых трансформаторов с завышенным КТ, при условии, что при максимальной нагрузке ток будет до 40% от номинального.

    Посмотреть нормы и правила, по которым рассчитываются измерительные трансформаторы тока (в том числе и высоковольтные) можно в ПУЭ ( п.1.5.1.). Пример расчета показан на картинке ниже.

    Пример расчета трансформатора тока

    Что касается выбора производителя, то мы рекомендуем использовать брендовую продукцию, достоинства которой подтверждены временем, например ABB, Schneider Electric b и т.д. В этом случае можно быть уверенным, что указанные в паспорте технические данные, а методика испытаний соответствовала нормам.

    Обслуживание

    Необходимо обратить внимание, что при соблюдении режима и условий эксплуатации, правильно подобранных номиналах и регулярном обслуживании ТТ будет служить 30 лет и более. Для этого необходимо:

    • Обращать внимание на различные виды неисправностей, заметим, что большинство из них можно обнаружить при визуальном осмотре.
    • Производить контроль нагрузки в первичных цепях и не допускать перегрузку выше установленной нормы.
    • Необходимо отслеживать состояние контактов первичной цепи (если таковые имеются), на них должны отсутствовать внешние признаки повреждений.
    • Не менее важен контроль состояния внешней изоляции, почти в половине случаев ее стойкость нарушается из-за скопления грязи или влаги, которые закорачивают контакты на землю.
    • У масляных ТТ осуществляют проверку уровня масла, его чистоту, наличие подтеков и т.д. Обслуживание таких установок практически не сильно отличается от других силовых установок, например, емкостных трансформаторов НДЕ, разница заключается в небольших технических деталях.
    • Поверка ТТ должна проводиться согласно действующих нормативов (ГОСТ 8.217 2003).
    • При обнаружении неисправности производится замена прибора. Поврежденный ТТ отправляют в ремонт, который производится специализированными службами.

    Классы точности тт

    Д ля промышленных установок изготавливаются ТТ следующих классов точности:

    Каждый класс точности характеризуется определённой погрешностью по току (fi) и по углу (δ), установленной государственным стандартом.

    Для РЗ изготавливаются ТТ классов 10 Р с полной относительной погрешностью ε ≤ 10% и 5 Р (повышенной точности) с ε ≤ 5%.

    1.7 Выбор (проверка) трансформатора тока

    Все ТТ выбираются по номинальному напряжению U1 ном и номинальному току I1 ном. Значение I1 ном выбранного ТТ должно быть больше максимального рабочего тока нормального эксплуатационного режима работы защищаемого элемента. Так при максимальном рабочем токе в контролируемой цепи защищаемого элемента равном, например, 600 А следует выбрать ТТ с номинальным коэффициентом трансформации КI= 1000/5. Следует иметь в виду, что применение трансформатора тока с большим КII (2000/5, 3000/5) приведёт к уменьшению кратности первичного тока КЗ и, следовательно, к уменьшению погрешности ε. Однако с другой стороны чрезмерное увеличение КI приводит к уменьшению вторичного тока, что в свою очередь требует применения более чувствительного токового реле. Известно, что более чувствительные токовые реле (с меньшим током срабатывания) имеют большее полное сопротивление, следовательно, применение реле с большим сопротивлением приведёт к возрастанию погрешности ε. Таким образом, при выборе ТТ по значению I1 ном необходимо исходить из максимальных величин реального первичного тока нормального режима работы защищаемого элемента, а также учитывать характер и значение сопротивления нагрузки ТТ и схему соединения обмоток ТТ и реле.

    Выбранные для устройства РЗ трансформаторы тока проверяются на электродинамическую и термическую стойкость. При этом учитываются амплитудное значение ударного тока и время протекания тока короткого замыкания через первичную обмотку ТТ.

    Ранее отмечалось, что на определённом этапе расчёта РЗ производится проверка выбранных трансформаторов тока на величину их полной погрешности ε по предельным кривым 10%-ой кратности. При этом исходными данными являются:

    — типы выбранных ТТ и их номинальные токи;

    Необходимо для определения полного сопротивления вторичной цепи Zн, расч.

    — кривые 10%-ой кратности выбранных ТТ;

    — характеристика реле, подключаемых ко вторичной

    обмотке ТТ, и их полное сопротивление;

    — длина, сечение и материал соединительных проводов

    и число контактных переходов во вторичной цепи;

    — схема соединения обмоток ТТ и реле в рассчиты-

    — особенности защищаемого элемента, а также расчетный максимальный первичный ток короткого замыкания.

    Порядок использования кривых 10%-ой кратности рассмотрим на конкретном примере. Пусть имеем ТТ с номинальными токами I1 ном=300А, I2 ном = 5 А. Пусть расчётный максимальный ток короткого замыкания оказался равным 3500 А, т.е. I1 расч. max = 3500 А, а расчетная нагрузка

    На рисунке 1.17 приведены кривые предельной 10%-ой кратности выбранного ТТ.

    1.Определим кратность первичного тока короткого замыкания

    Испытания и проверка трансформаторов тока

    Каждый из нас является потребителем электроэнергии, однако оплачивать мы хотим только за ее фактическое потребление, с другой стороны поставщик электроэнергии желает получать денежные средства за поставляемую электроэнергию. Получается, что два заинтересованных лица желают одного, чтобы приборы учёта работали корректно и качественно. Одним из таких электроизмерительных приборов является трансформатор тока, который в свою очередь необходимо периодически испытывать и проверять. Эти электроизмерения проводят специалисты электролаборатории. В комплекс работ входят:

    1. Вольт-амперная характеристика.
    2. Коэффициент трансформации.
    3. Проверка соответствия маркировки выводов.
    4. Измерение сопротивления изоляции.
    5. Высоковольтные испытания изоляции.

    Необходимость этой работы заключается в том, что трансформаторы тока являются важным звеном в схеме электроснабжения, где они присутствуют. При помощи трансформаторов тока происходит учет потребления электрической энергии, и некорректная ее передача на прибор учёта ведет к потерям денежных средств той или иной стороны. Может возникнуть вопрос: «А если трансформатор тока грешит в сторону потребителя, так это же хорошо?». Не стоит обольщаться, ибо при обнаружении данной погрешности, компания, поставляющая электроэнергию, имеет право наложить штраф, либо пересчитать все по среднему значению, и их не будет волновать, было ли действительно энергопотребление в том количестве, в котором они насчитали.

    Так же одним из основных назначений трансформаторов тока является преобразование с последующей передачей величины тока. А искаженные показания могут привести к их поломке вследствие перегрузки по току и как следствие – воздействием на технологические процессы, в котором они участвуют. Не стоит забывать и о защитной функции трансформаторов тока, иначе говоря, контроль токов короткого замыкания и качественную работу существующих схем защиты.

    Теперь непосредственно об электроизмерениях.

    1. Вольт-амперная характеристика:
    Данный вид электролабораторного измерения необходим для того, чтобы определить исправность вторичной обмотки, то есть отсутствие межвитковых замыканий и представляет собой зависимость напряжения вторичной обмотки от намагничивающего тока первичной. Обычное прозванивание в данном случае не поможет. Более того, показания этой снятой характеристики у всех трех трансформаторов тока должны быть схожи между собой и с заводскими паспортными данными. Для выполнения этой работы наиболее оптимально подходит испытательный прибор Ретом-11.

    В процессе работы составляется таблица для занесения полученных данных

    и на их основе рисуют график

    2. Коэффициент трансформации.
    Этим измерением можно определить, соответствует ли класс точности тому значению, которое указано на бирке трансформатора тока. А оно в свою очередь показывает, насколько точно трансформатор преобразует проходящий через него ток.

    3. Проверка соответствия маркировки выводов.
    Необходимость этого электроизмерения заключается в том, чтобы проверить соответствие заводской маркировки на трансформаторах тока и соответствия подключения.

    4. Измерение сопротивления изоляции.
    Проверяются первичные обмотки на напряжение 2500 В, а вторичные на напряжение 500 — 1000 В. Показания, полученные при измерении первичных обмоток не нормируются. На основании РД 34.45-51.300-97, сопротивление вторичных обмоток должно соответствовать нормам, указанным в таблице.

    5. Высоковольтные испытания изоляции.
    Так как трансформаторы тока устанавливаются непосредственно в линию нагрузки, то они становится элементом цепи, где может произойти повреждение изоляции. Поэтому их необходимо проверять посредством высокого испытательного напряжения. Но следует помнить, что слой изоляции трансформаторов тока составляет полимер, а это значит, что к нему требуется прикладывать испытательное напряжение ниже, чем испытательное напряжение для линии, в которую он врезан.

    Испытательные напряжения промышленной частоты электрооборудования классов напряжения до 35 кВ с нормальной и облегченной изоляцией.

    То есть, при высоковольтном испытании, линии трансформаторов тока необходимо исключить на время измерения, либо проверять всю линию меньшим напряжением. Данное условие согласовывается с ответственным за эксплуатацию электрооборудования и вносится в протокол испытаний.

    Читайте также:

    • Можно ли заменить электроизмерения простым расчётом?

    2 Комментария(-ев) на ”Испытания и проверка трансформаторов тока”

    Как выглядит форма протокола измерения сопротивления изоляции для трансформаторов тока? Какие измерения проводить для данного протокола?

    Здравствуйте, Валентин!
    Ваш вопрос перенаправлен на Электротехнический Форум «ЭлектроАС». Вы можете зарегистрироваться на форуме и более подробно обсудить «Как выглядит форма протокола измерения сопротивления изоляции?» с участниками форума.

    Программа проверки ТТ на 10%-ю погрешность по паспортным данным ТТ

    Представляю вашему вниманию программу проверки трансформаторов тока (ТТ) на 10%-ю погрешность по паспортным данным ТТ для применения с блоками БМРЗ-50 (наличие дешунтирования цепей токового электромагнита отключения) от компании «Механотроника».

    Данная программа выполнена в программе Microsoft Excel в виде электронной таблицы.

    В программе, проверка ТТ на 10%-ю погрешность выполняется по кривым предельной кратности (далее КПК).

    Обращаю Ваше внимание, что данная программа проверяет ТТ на 10%-ю погрешность только для подключенных к терминалу защит по схеме «неполная звезда». Если же у Вас ТТ соединены по схеме «полная звезда» использовать ее – не рекомендуется!

    Для того, чтобы проверить ТТ по условию ε ≤ 10 % (ε — полная погрешность) необходимо построить график полного сопротивления нагрузки и КПК в одной прямоугольной системе координат, имеющей логарифмический масштаб.

    Для этого в программе нужно ввести требуемые значения в ячейки раздела «исходные данные».

    После ввода исходных данных, программа автоматически выполнить расчет и если все в порядке, появится следующая надпись «Погрешность ТТ не будет превышать допустимое значение 10%» или «Погрешность ТТ будет превышать допустимое значение 10%».

    Результаты расчетов имеют вот такой вид:

    Что бы понять как правильно использовать данную программу, рассмотрим на примере расчет проверки ТТ на 10%-ю погрешность.

    Требуется выполнить проверку трансформаторов тока (ТТ) на 10%-ю погрешность по паспортным данным ТТ.

    Исходные данные для проверки ТТ типа ТПЛ-10 с классом точности 10Р по условию ε ≤ 10 % приведены в таблице 1.

    Таблица 1 – Исходные данные

    1. Определяем номинальное значение сопротивления нагрузки ТТ:

    2. Рассчитаем полное сопротивление нагрузки

    2.1 При расчете полного сопротивления следует учитывать схему соединения ТТ и вторичной нагрузки ТТ.

    2.2 Как я уже говорил ранее в статье, ТТ подключаются к блоку по схеме «неполная звезда». Расчет полного сопротивления нагрузки ТТ, подключенных по схеме «неполная звезда», ведется по формулам, представленным в таблице 2 [Л1, с.97 и Л2, с.51]. Из полученных значений выбирается наибольшее значение (zн.факт.расч).

    Таблица 2 — Формулы для определения нагрузки трансформаторов тока для ТТ подключаемых к блоку по схеме «неполная звезда»

    3. Определяем первичный расчетный ток, исходя из тока срабатывания ТО и МТЗ. Для токовой отсечки и максимальной токовой защиты с независимой характеристикой расчетный ток вычислить по формуле:

    • 1,1 – коэффициент, учитывающий 10%-ную погрешность ТТ при срабатывании защиты;
    • Iс.з. = 2000 А – ток срабатывания защиты;

    4. Определяем значение предельной кратности:

    где: I1ном. = 200 А – номинальный первичный ток ТТ;

    5. Определяем сопротивление аналогового входа тока zвх. по графику зависимости сопротивления аналоговых входов от кратности тока при номинальном вторичном токе ТТ 5 А (см.рисунок 5), zвх. = 0,04 Ом.

    Для точной работы защиты (ε ≤ 10 %) необходимо одновременное выполнение следующих условий:

    • сопротивление нагрузки (zн) при предельной кратности не превосходит допустимое сопротивление нагрузки (zн.доп) при предельной кратности;
    • график полного сопротивления нагрузки должен не пересекать КПК при кратности меньше предельной.

    5. Построим график полного сопротивления нагрузки в диапазоне от кратности К = 0,3 до значения предельной кратности К = 11 по формуле Н3 [Л1, с.98]:

    • Кн = 10 – номинальное значение кратности тока (принимается из паспорта ТТ);
    • z2 = 0,22 Ом – полное сопротивление вторичной обмотки ТТ постоянному току (принимается из паспорта на ТТ, данное значение я взял из паспорта на ТПЛ-10 изготовленного в 1983 году);
    • zн = 0,6 Ом – номинальное сопротивление нагрузки;
    • К – кратность тока.

    К сожалению большинство производителей ТТ уже не указывает значение z2. Исходя из этого, выполнить условие проверки, когда график полного сопротивления нагрузки не должен пересекать КПК при кратности меньше предельной – НЕ ВОЗМОЖНО!

    Но как показывает практика, данное условие практически всегда выполняется и достаточно выполнить условие по сопротивлению нагрузки.

    Результаты расчетов заносим в таблицу 3

    Таблица 3 – Допустимое сопротивление нагрузки

    Характеристика Значение
    «неполная звезда»
    K 0,3 0,6 1 3 6 10 11
    Zн.доп.,Ом 27,11 13,44 7,98 2,51 1,15 0,6 0,53

    6. Выполним расчет для построения графика полного сопротивления нагрузки ТТ.

    6.1 Определяем сопротивление провода от ТТ до блока релейной защиты:

    6.2 Определяем наибольшее полное сопротивление. Для данного примера наибольшее полное сопротивление будет при двухфазном коротком замыкании.

    Чтобы построить график полного сопротивления нагрузки ТТ определяем несколько значений zвх (см. рисунок 5) исходя из кратности тока К в диапазоне от 0,34 — 11. Результаты расчетов заносим в таблицу 4.

    На рисунке приведен график полного сопротивления нагрузки и КПК ТТ

    Поскольку сопротивление нагрузки не превосходит допустимое сопротивление нагрузки (zн.доп > zн) и график полного сопротивления нагрузки не пересекает КПК при кратности меньше предельной, то можно считать, что погрешность ТТ не будет превышать допустимое значение 10 %.

    Трансформатор тока выбран – правильно!

    1. ДИВГ.648228.041 РЭ – Руководство по эксплуатации. Блок микропроцессорный релейной защиты БМРЗ.
    2. Расчеты релейной защиты и автоматики распределительных сетей. М.А.Шабад. 2003 г.

    Поделиться в социальных сетях

    Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

    Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

    Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

    Обучающая программа по релейной защите и автоматике предназначена для обучения и тестирования.

    Доброго времени суток! Сегодня я хотел бы вас познакомить с БЕСПЛАТНЫМ программным комплексом SIMARIS от.

    Представляю вашему вниманию бесплатную программу DOC2 от компании «АББ». DOC2 — это программа.

    Данная статья посвящена программе по расчету сопротивлений для двух и трехобмоточных трансформаторов с.

    Данная программа позволяет оперативно определить емкость конденсатора по цифровой маркировке.

    Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
    Политика конфиденциальности.

    ТРЕБОВАНИЯ К ТОЧНОСТИ ТРАНСФОРМАТОРОВ ТОКА, ПИТАЮЩИХ РЗ

    Трансформаторы тока, питающие РЗ, должны работать с определенной точностью в пределах значений токов КЗ, на которые РЗ должна реагировать. Эти токи, как правило, превышают номинальные токи ТТ I1 ном,и, следовательно, точная работа ТТ должна обеспечиваться при первичных токах I1 >I1 ном.

    На основании опыта эксплуатации и теоретического анализа принято, что для обеспечения правильной работы большинства устройств РЗ погрешность в значении вторичного тока ТТ не должна превышать 10%, а по углу δ 7° [25].

    Эти требования обеспечиваются, если полная погрешность ТТ ε ≤ 10%, или, иначе говоря, если ток намагничивания не превосходит 10% тока I1. Исходными величинами для оценки погрешности являются наибольший расчетный ток I1 расч max, при котором для рассматриваемой защиты требуется точная работа ТТ, и сопротивление нагрузки Zн. Нагрузка состоит из сопротивлений реле ZP = RP + jXP,соединительных проводов Rпи переходных контактов Rп.к, которые для упрощения суммируются арифметически: Zн = ZP + Rп+ Rп.к.

    Предельные значения I1 max и соответствующие им допустимые Zн из условия 10%-ной погрешности должны давать заводы, изготавливающие ТТ. Предельные значения I1 max обычно даются в виде кратности этого тока по отношению к номинальному первичному току ТТ: К1 тах = I1 max/I1 ном.

    Кроме РЗ ТТ питают измерительные приборы. Точность работы ТТ, питающих измерительные приборы, характеризуется классом точности, а РЗ – предельной кратностью первичного тока I10 = I1 max/I1 ном и допустимой нагрузкой Zн.доп, при которых гарантируется, что полная погрешность ТТ е не превысит 10%. Погрешности класса точности устанавливают, исходя из условий точной работы измерительных приборов в диапазоне токов нормальных режимов, а погрешность при предельной кратности тока К10и нагрузке Zн.доп в соответствии с требованиями, предъявляемыми РЗ.

    Классы точности. Для промышленных установок изготавливаются ТТ классов точности 0,5; 1; 3; 5; 10 и Р. Каждый класс точности характеризуется определенной погрешностью по току ΔI и углу δ, установленной ГОСТ 7746-68. Эти погрешности приведены в табл.3.1, они обеспечиваются только при первичных токах в пределах от 0,1 до 1,2 номинального, т.е. в диапазоне токов нагрузки, контролируемых измерительными приборами.

    Для РЗ изготавливаются ТТ класса 10Р с ε ≤ 10% при токе номинальной предельной кратности (К10)и ТТ 5Р повышенной точности с гарантированной погрешностью ε = 5% при тех же кратностях первичного тока.

    Трансформаторы тока класса Р предназначены для РЗ, и поэтому их погрешности при номинальных токах не нормируются. Работа ТТ с погрешностью, соответствующей классу, обеспечивается при нагрузке вторичной обмотки, не выходящей за пределы номинальной.

    Номинальной нагрузкой ТТ называется максимальная нагрузка, при которой погрешность ТТ равна значению, установленному для данного класса (табл.3.1). Номинальную нагрузку принято выражать в виде полной мощности Sном, В • А, при номинальном вторичном токе 5 или 1 А и cos φ = 0,8, или в виде сопротивления нагрузки Zн.ном, Ом, при котором мощность ТТ равна номинальной Sн.ном. Номинальная мощность Shom =U2I2ном, при этом напряжение U2 = I2номZном. Тогда

    В зависимости от конструкции и класса точности ТТ значение номинальной нагрузки находится в пределах от 2,5 до 100 В • А. При токе I1 > 1,2 IномТТ погрешности ТТ выходят за пределы, установленные для данного класса. Следует отметить, что класс точности не может служить основанием для выбора ТТ, питающих РЗ, так как предусматриваемые им погрешности имеют место при номинальных токах, в диапазоне которых РЗ не работает. Для РЗ, исходя из указанных выше требований к погрешностям ТТ, заводы, изготавливающие ТТ, должны согласно ГОСТ 7746-68 давать в своих информационных материалах кривые предельной кратности К10для ТТ класса Р. Эти кривые представляют собой зависимость предельной максимальной кратности первичного тока К10=I1max/IномТТ от сопротивления нагрузки Zн с cos φ. = 0,8, при которых полная погрешность ε = 10%. Характер подобной зависимости приведен на рис.3.5, а. Пользуясь такой кривой, можно, задаваясь определенным значением Zн, определять допустимую кратность первичного тока К10, при которой ε (Iнам) не превосходит 10% найденного К10, или, задаваясь значением К10, определять допустимое значение Zн, при котором ε ≤ 10%.

    При предельной кратности К10 и нагрузке Zн, соответствующей любой точке кривой К10 = f(Zн), ТТ работают на перегибе характеристики намагничивания в точке H (рис.3.4 и 3.6), т.е. вблизи начала насыщения магнитопровода. Соответствующий этой точке ток Iнаc и является указанным выше предельным максимальным током.

    На рис.3.5, б приведена характеристика предельной кратности ТТ типа ТФЗМ 110 OБ-IV-5-88 вторичной обмотки класса точности 10Р для разных К10[27].

    Аналогичные характеристики заводы, производящие ТТ, представляют и для других классов обмоток. Эти характеристики при необходимости могут использоваться для оценки нагрузки на ТТ и значений токов, при которых погрешность ТТ не превышает 10%.

    называемые магнитными ТТ (МТТ). Вторичная обмотка МТТ располагается вдали от токоведущих частей на стальном сердечнике и не требует специальной изоляции от высокого напряжения. Первичный ток, протекая по проводу защищаемого объекта, создает магнитное поле. Часть силовых линий этого поля замыкается по сердечнику МТТ, индуцируя ЭДС Е2. Размеры и стоимость такого устройства значительно меньше, чем у обычных ТТ, но его мощность невелика (примерно 0,5 Вт).

    Для уменьшения влияния помех в ОРГРЭС разработаны магнитные ТТ с дифференциальными датчиками типа ТВМ. Подобные ТТ представляют собой стальной сердечник П-образной формы с двумя одинаковыми, соединенными встречно-последовательно обмотками 1 и 2, надетыми на полюсы сердечника (рис.3.24, б).

    Проекция провода фазы А, для контроля за которым предназначен изображенный на рис.3.24, б датчик, находится в центре сердечника. Магнитный поток ФА,пропорциональный току IА,проходит по полюсам сердечника в противоположных направлениях. При этом, поскольку обмотки ТВМ соединены встречно, ЭДС обеих обмоток суммируются арифметически: ЭДС ЕАравна удвоенной ЭДС каждой обмотки.

    Магнитные потоки, создаваемые токами других фаз (например, Ф‘Ви Ф»В,пропорциональные току IB),проходят по полюсам ТВМ в одном направлении, и индуцируемые ими ЭДС в обмотках вычитаются. Благодаря этому уменьшаются помехи, создаваемые в ТВМ токами соседних фаз. Трансформаторы ТВМ устанавливаются на разъединителях или отделителях высокого напряжения и крепятся с помощью фиксаторов из немагнитного материала.

    В связи с внедрением микроэлектронных и микропроцессорных РЗ, имеющих очень малое потребление цепей тока и напряжения, разрабатываются ТТ и ТН, в которых информация о значениях тока и напряжения передается с помощью волоконно-оптических каналов. Существует несколько способов выполнения таких измерительных трансформаторов. Один из них основан на установке на потенциале ЛЭП маломощных датчиков тока и напряжения и системы преобразования информации о токах и напряжениях в цифровую форму. Эта информация передается по оптическому каналу, имеющему хорошие изолирующие свойства, на оптико-электронные приемники, расположенные на потенциале земли, где осуществляется обратное преобразование световых импульсов в напряжения, пропорциональные току и напряжению ЛЭП. Такие ТТ и ТН пока не получили широкого распространения, так как в энергосистемах продолжается использование электромеханических устройств РЗ, потребление которых велико, и мощности оптико-электронных ТТ и ТН оказывается недостаточно.

Добавить комментарий