Закон Ома в операторной форме

СОДЕРЖАНИЕ:

Выполнить курсовой расчет по электротехнике

Закон Ома в операторной форме

Пусть имеем некоторую ветвь (см. рис. 1), выделенную из некоторой

сложной цепи. Замыкание ключа во внешней цепи приводит к переходному процессу, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые.

Для мгновенных значений переменных можно записать:

Тогда на основании приведенных выше соотношений получим:

где — операторное сопротивление рассматриваемого участка цепи.

Следует обратить внимание, что операторное сопротивление соответствует комплексному сопротивлению ветви в цепи синусоидального тока при замене оператора р на .

Уравнение (2) есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме. В соответствии с ним для ветви на рис. 1 можно нарисовать операторную схему замещения, представленную на рис. 2.

Формула закона Ома

В данной статье расскажем про закон Ома, формулы для полной цепи (замкнутой), участка цепи, неоднородного участка цепи, в дифференциальной и интегральной форме, переменного тока, а также для магнитной цепи. Вы узнаете какие материалы соответствуют и не соответствуют закону Ома, а также где он встречается.
Закон Ома: постоянный ток , протекающий через проводник, прямо пропорционален напряжению , приложенному к его концам и обратно пропорционален сопротивлению .

Закон Ома был сформулирован немецким физиком и математиком Георгом Омом в 1825-26 годах на основе опыта. Это экспериментальный закон, а не универсальный — он применим к некоторым материалам и условиям.

Закон Ома является частным случаем более позднего и более общего — второго закона Кирхгофа

Ниже будет представлено видео, в котором объясняется закон Ома на пальцах.

Формула закона Ома для участка цепи

Интенсивность постоянного тока, протекающего через проводник, пропорциональна напряжению, приложенному к его концам. В интернете часто называют данную формулу первым законом Ома:

I — сила (интенсивность) тока

Электрическое сопротивление:

Коэффициент пропорциональности R называется электрическим сопротивлением или сопротивлением.

Отношение напряжения к току для данного проводника является постоянным:

Единица электрического сопротивления составляет 1 Ом (1 Ω):

Резистор имеет сопротивление 1, если приложенное напряжение 1 вольт и сила тока составляет 1 ампер.

Зависимость электрического сопротивления от размера направляющей:

Сопротивление проводящей секции с постоянным поперечным сечением R прямо пропорционально длине этого сегмента li, обратно пропорциональному площади поперечного сечения S:

R — электрическое сопротивление

ρ — удельное сопротивление

I — длина направляющей

S — площадь поперечного сечения

Эта зависимость была подтверждена экспериментально британским физиком Хамфри Ди в 1822 году до разработки закона Ома.

Закон Ома для замкнутой (полной) цепи

Закон Ома для полной цепи — это значение силы (интенсивности) тока в настоящей цепи, который зависит от сопротивления нагрузки и от источника тока (E), также его называют вторым законом Ома.

Электрическая лампочка является потребителем источника тока, подключив их вместе, они создают полную электро-цепь. На картинке выше, вы можете увидеть полную электрическую цепь, состоящую из аккумулятора и лампы накаливания.

Электричество, проходит через лампу накаливания и через сам аккумулятор. Следовательно, ток проходя через лампу, в дальнейшем пройдет и через аккумулятор, то есть сопротивление лампочки складывается со сопротивлением аккумулятора.

Сопротивление нагрузки (лампочка), называют внешним сопротивлением, а сопротивление источника тока (аккумулятора) — внутренним сопротивление. Сопротивление аккумулятора обозначается латинской буквой r.

Когда электричество течет вокруг цепи, внутреннее сопротивление самой ячейки сопротивляется потоку тока, и поэтому тепловая энергия теряется в самой ячейке.

  • E = электродвижущая сила в вольтах, V
  • I = ток в амперах, A
  • R = сопротивление нагрузки в цепи в Омах, Ω
  • r = внутреннее сопротивление ячейки в Омах, Ω

Мы можем изменить это уравнение;

В этом уравнении появляется ( V ), что является конечной разностью потенциалов, измеренной в вольтах (V). Это разность потенциалов на клеммах ячейки при протекании тока в цепи, она всегда меньше э.д.с. ячейки.

Закон Ома для неоднородного участка цепи

Если на участке цепи действуют только потенциальные силы (Рисунок 1а), то закон Ома записывается в известном виде . Если же в кругу проявляется еще и действие сторонних сил (Рисунок 2б), то закон Ома примет вид , откуда . Это и есть закон Ома для любого участка цепи.

Закон Ома можно распространить и на весь круг. Соединив точки 2 и 1 (Рисунок 3в), преобразуем разность потенциалов в ноль, и учитывая сопротивление источника тока, закон Ома примет вид . Это и есть выражение закона Ома для полной цепи.

Последнее выражение можно представить в различных формах. Как известно, напряжение на внешнем участке зависит от нагрузки, то есть или , или .

В этих выражениях Ir — это падение напряжения внутри источника тока, а также видно, что напряжение U меньше ε на величину Ir . Причем, чем больше внешнее сопротивление по сравнению с внутренним, тем больше U приближается к ε.

Рассмотрим два особых случая, в отношении внешнего сопротивления цепи.

1) R = 0 — такое явление называют коротким замыканием. Тогда, из закона Ома имеем — , то есть ток в цепи возрастает до максимума, а внешний спад напряжения U 0. При этом в источнике выделяется большая мощность, что может привести к его неисправности.

2) R = ∞ , то есть электрическая цепь разорвана, тогда , а . Итак, в этом случае, ЭДС численно равна напряжению на клеммах разомкнутого источника тока.

Закон Ома в дифференциальной форме

Закон Ома можно представить в таком виде, чтобы он не был связан с размерами проводника. Выделим участок проводника Δ l , на концах которой приложено потенциалы φ 1 и φ 2. Когда средняя площадь сечения проводника Δ S , а плотность тока j , то сила тока

Если Δ l → 0, то взяв предел отношения, . Итак, окончательно получим , или в векторной форме — это выражение закона Ома в дифференциальной форме. Этот закон выражает силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон ома для переменного тока

Это уравнение представляет собой запись закона Ома для цепей переменного тока относительно их амплитудных значений. Понятно, что оно будет справедливым и для эффективных значений силы и тока: .

Для цепей переменного тока возможен случай, когда , а это значит, что U L = U C . Поскольку эти напряжения находятся в противофазе, то они компенсируют друг друга. Такие условия называют резонансом напряжений. Резонанс можно достичь или при ω = const , изменяя С и L , или же при постоянных С и L подбирают ω, которая называется резонансным. Как видно — .

Каждый электрик должен знать:  Кабель под землей особенности и инструкция

Особенности резонанса напряжений следующие:

  • полное сопротивление цепи минимальное, Z=R ;
  • амплитуда тока — максимальная ;
  • амплитуда значений приложенного напряжения равна амплитуде на активном сопротивлении;
  • напряжение и ток находятся в одинаковых фазах (φ = 0);
  • мощность источника передается только активному сопротивлению, следовательно полезная мощность — максимальная.

Резонанс токов получают при параллельном соединении индуктивности и емкости на рисунке слева. По первому закону Кирхгофа результирующий ток в какой-то момент времени I = IL+IC. Несмотря на то, что суммы ІL и IC могут быть достаточно большими, ток в главном круге станет равным нулю, а значит сопротивление цепи станет максимальным.
Зависимость силы тока от частоты при различных активных сопротивлениях показана на рисунке справа.

Закон Ома в интегральной форме

С дифференциального закона Ома можно непосредственно получить интегральный закон. Для этого умножим скалярно левую и правую части выражения на элементарную длину проводника (перемещение носителя тока), образовав соотношение

В (1) j*S n = И есть величина силы тока. Проинтегрируем (1) по участку круга L с точки 1 до точки 2

есть сопротивление проводника, а — удельное сопротивление. Интеграл в правой части (2) является напряжение U на концах участка

Окончательно из (2) — (4) имеем выражение для закона Ома в интегральной форме

который он установил экспериментально.

Интерпретация закона Ома

Интенсивность тока, являющаяся действием приложенного напряжения, ведет себя пропорционально его напряжению. Например: если приложенное напряжение увеличивается в два раза, оно также удваивает силу тока (интенсивность тока).

Помните, что закон Ома удовлетворяется только частью материалов — в основном металлами и керамическими материалами.

Когда закон Ома встречается и какие материалы соответствуют и не соответствуют закону Ома

Закон Ома является экспериментальным законом, выполненным для некоторых материалов (например, металлов) для фиксированных условий тока, в частности температуры проводника.

Материалы, относящиеся к закону Ома, называются омическими направляющими или линейными проводниками. Примерами проводников, которые соответствуют закону Ома, являются металлы (например, медь, золото, железо), некоторые керамические изделия и электролиты.

Материалы, не относящиеся к закону Ома, в которых сопротивление является функцией интенсивности протекающего через них тока, называются нелинейными проводниками. Примерами руководств, не относящихся к закону Ома, являются полупроводники и газы.

Закон Ома не выполняется, когда изменяются параметры проводника, особенно температура.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Операторный метод анализа переходных колебаний в электрических цепях

Основные свойства преобразования Лапласа. Законы Кирхгофа и Ома в операторной форме. Соотношения в элементах электрических цепей. Операторные схемы замещения элементов при ненулевых начальных условиях. Нахождение реакций при ненулевых начальных условиях.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 25.04.2009
Размер файла 126,1 K

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

Основные свойства преобразования Лапласа. Нахождение изображений функции времени. Теорема смещения. Свойство линейности. Законы Кирхгофа и Ома в операторной форме. Операторные схемы замещения реактивных элементов при ненулевых начальных условиях.

лекция [130,7 K], добавлен 23.03.2009

Использование электрических и магнитных явлений. Применение преобразования Лапласа и его свойств к расчету переходных процессов. Переход от изображения к оригиналу. Формулы разложения. Законы цепей в операторной форме. Операторные схемы замещения.

реферат [111,9 K], добавлен 28.11.2010

Решение линейных дифференциальных уравнений, характеризующих переходные процессы в линейных цепях. Прямое преобразование Лапласа. Сущность теоремы разложения. Законы Ома и Кирхгофа в операторной форме. Схема замещения емкости. Метод контурных токов.

презентация [441,7 K], добавлен 28.10.2013

Обратное преобразование Лапласа и теорема разложения Хевисайда. Операторные схемы замещения элементов: резистивного, индуктивного и емкостного. Законы Кирхгофа для изображений. Построение операторной схемы для цепи с учетом независимых начальных условий.

презентация [187,3 K], добавлен 20.02.2014

Характеристика переходных процессов в электрических цепях. Классический и операторный метод расчета. Определение начальных и конечных условий в цепях с ненулевыми начальными условиями. Расчет графиков переходного процесса. Обобщенные характеристики цепи.

курсовая работа [713,8 K], добавлен 21.03.2011

Анализ электрической цепи при переходе от одного стационарного состояния к другому. Возникновение переходных колебаний в электрических цепях. Законы коммутации и начальные условия. Классический метод анализа переходных колебаний в электрических цепях.

реферат [62,1 K], добавлен 23.03.2009

Прямое преобразование Лапласа. Замена линейных дифференциальных уравнений алгебраическими уравнениями. Законы Ома и Кирхгофа в операторной форме. Метод переменных состояния. Особенности и порядок расчета переходных процессов операторным методом.

презентация [269,1 K], добавлен 28.10.2013

Порядок определения независимых начальных условий. Отображение операторной схемы, которая рассчитывается любым методом в операторной форме. Методика и этапы вычисления напряжений и токов переходного процесса в функции времени по теореме разложения.

презентация [233,1 K], добавлен 28.10.2013

Основные законы электрических цепей. Освоение методов анализа электрических цепей постоянного тока. Исследование распределения токов и напряжений в разветвленных электрических цепях постоянного тока. Расчет цепи методом эквивалентных преобразований.

лабораторная работа [212,5 K], добавлен 05.12.2014

Основные элементы электрической цепи, источник ЭДС и источник тока. Линейные цепи постоянного тока, применение законов Кирхгофа. Основные соотношения в синусоидальных цепях: сопротивление, емкость, индуктивность. Понятие о многофазных электрических цепях.

курс лекций [1,2 M], добавлен 24.10.2012

Закон Ома в операторной форме

Рассмотрим схему (рис. 2.1). Эта схема представляет собой часть сложной цепи, в которой происходит коммутация.

Напряжение участка цепи складывается из суммы падений напряжения:

Или

Умножим правую и левую части полученного уравнения на и возьмем интеграл от нуля до бесконечности. В результате получится уравнение в операторной форме:

Выразим ток из этого выражения

Это есть закон Ома в операторной форме. В этом выражении начальные условия представлены в виде дополнительных источников. Если начальные условия нулевые и ввести обозначение

то получим более простое выражение закона Ома в операторной форме:

Здесь Z(p) – полное операторное сопротивление, pL , 1/pC – операторное индуктивное и емкостное сопротивления соответственно.

Такие же выражения можно получить, если изобразить схему (рис. 2.1) с добавлением дополнительных источников, учитывающих начальные условия, и ввести обозначения в операторной форме (рис. 2.2). В результате получается операторная схема, эквивалентная классической.

Следует также отметить, что операторные сопротивления можно получить из выражений, записанных в комплексной форме для синусоидального тока, путем замены оператора на оператор р.

Не нашли, что искали? Воспользуйтесь поиском:

Территория электротехнической информации WEBSOR

Законы Кирхгофа в операторной форме

Основы > Теоретические основы электротехники

Законы Кирхгофа в операторной форме

Рассмотрим rLC-цепь (рис. 15.1), которая была подключена к источнику ЭДС и в момент t = 0 переключается к источнику ЭДС e(t).
Дифференциальное уравнение цепи после коммутации

где напряжение и ток при выбранных положительных направлениях (рис. 15.1) связаны соотношениями

Напряжение , а также ток i (0), как и при расчете переходного процесса классическим методом, должны быть определены расчетом режима цепи до. коммутации, т. е. при действии источника ЭДС .
Перейдем в (15.15) от оригиналов к изображениям. С учетом (15.5), изображения постоянной величины (15.8) и (15.7) получим алгебраическое уравнение

Каждый электрик должен знать:  Как провести свет в сарай из частного дома

где .
Из (15.16) определим ток:

Заметим, что в соответствии со сказанным выше нужно было бы писать . Но так как ток в индуктивности и напряжение на емкости не изменяются скачком при t = 0, будем писать короче: .
Выражение, стоящее в знаменателе, назовем полным сопротивлением rLC-цепи в операторной форме или операторным сопротивлением :

Сопротивление в операторной форме уже встречалось в разделе и теперь получено вполне строго. Напомним, что сопротивление rLC-цепи в операторной форме построено так же, как и комплексное сопротивление, если в последнем заменить через р. Величина, обратная операторному сопротивлению, называется операторной проводимостью:

Операторная ЭДС цепи, стоящая в числителе (15.17), состоит не только из операторного изображения ЭДС источника, т. е. Е(р), но и еще из двух слагаемых, которые определяются начальными условиями, т. е. током в индуктивности и напряжением на емкости . Иными словами, наличие двух дополнительных ЭДС , которые можно назвать внутренними или расчетными ЭДС, указывает на то, что в магнитном поле катушки и в электрическом поле конденсатора в момент коммутации была запасена энергия. Положительное направление ЭДС Li(0) совпадает с положительным направлением тока ветви, а направление ЭДС противоположно направлению тока. При этом, как и ранее, положительные направления тока и напряжения на конденсаторе считаются совпадающими. Например, при синусоидальной ЭДС , изображение которой , для тока получим изображение

т. е. рациональную дробь (15.9), у которой корни уравнения определяют установившуюся составляющую тока (синусоидальный ток), а корни уравнения , т.е. согласно (15.18) Z(p) = 0-характеристического уравнения последовательного контура, и определяют свободную составляющую тока.
Особенно просто выглядит выражение (15.17) при нулевых начальных условиях, т. е. при :

оно аналогично закону Ома в комплексной форме.
Для любого узла разветвленной цепи

поэтому, обозначив изображения токов , на основании (15.1) получим первый закон Кирхгофа в операторной форме :

причем некоторые из токов могут быть изображением токов источников тока.
Для любого замкнутого контура, состоящего из n ветвей,

Переходя к изображениям, получаем второй закон Кирхгофа в операторной форме :

что можно переписать и так:

В последних выражениях — начальные значения токов в катушках индуктивности и напряжений на конденсаторах в соответствующих ветвях.
Особенно просто запишется второй закон Кирхгофа при нулевых начальных условиях, т. е. при :

он полностью аналогичен второму закону Кирхгофа в комплексной форме.
Итак, закон Ома, первый и второй законы Кирхгофа в операторной форме аналогичны по форме записи тем же законам в комплексной форме. Нужно только иметь в виду, во-первых, что в каждой k -й ветви при ненулевых начальных условиях, т. е. при , действуют не только внешняя ЭДС , но еще и внутренние ЭДС , и, во-вторых, что в качестве сопротивления ветви берется ее операторное сопротивление.
Изображение каждого из токов системы уравнений (15.22), так же как и тока в цепи на рис. 15.1, получается в виде (15.9) — отношения двух полиномов с действительными коэффициентами. При этом предполагается, что рассматриваются, как и ранее, линейные цепи с сосредоточенными параметрами, в которых действуют источники ЭДС (и тока), изображения которых записываются в виде отношения полиномов (например, постоянные, синусоидальные и экспоненциальные ЭДС, единичный скачок и единичный импульс).
Если изображение равно сумме нескольких рациональных дробей ( 15.9), то теорема разложения применяется отдельно к каждой из дробей.
Отношение изображений искомой величины к заданной называется передаточной или схемной функцией в операторной форме К (р), причем и составляется так же, как для цепей переменного тока .
Так как корни характеристического уравнения цепи зависят только от ее топологии и параметров, то их можно найти, сделав предположение, что в цепи действует только один источник ЭДС. Наиболее простое изображение имеет единичный импульс . При действии такой ЭДС изображение тока в ветви с источником

где — входное операторное сопротивление цепи относительно выводов источника. Входное операторное сопротивление составляется так же, как входное комплексное сопротивление, т. е. . Из (15.23) следует, что уравнение — это характеристическое уравнение цепи, на что было указано в разделе.
Аналогично можно показать, что, приравняв нулю входную проводимость цепи относительно двух ее любых узлов , также получаем характеристическое уравнение.

Закон Ома в операторной форме

Закон Ома в комплексной форме получаем из формулы для комплексного сопротивления:

По первому закону Кирхгофа, алгебраическая сумма мгновенных значений токов, сходящихся в любом узле схемы, равна нулю:

Равенство не нарушится, если вместо токов подставить соответствующие комплексы. Это и будет выражение для первого закона Кирхгофа в комплексной форме:

где — количество ветвей, подходящих к узлу.

По второму закону Кирхгофа, в любом (замкнутом) контуре справедливо равенство алгебраических сумм мгновенных значений напряжений на сопротивлениях контура и ЭДС:

Заменив напряжения и ЭДС на соответствующие комплексы, получим выражение для второго закона Кирхгофа в комплексной форме:

ЗАКОНЫ ОМА И КИРХГОФА В ОПЕРАТОРНОЙ ФОРМЕ

Выделим в некоторой сложной цепи ветвь ab (рис.1.18)

Замыкание ключа во внешней цепи приводит к возникновению переходного процесса, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые.

Для мгновенных значений можно записать:

Тогда на основании приведенных выше соотношений для операторных изображений получим:

Обозначим — операторное сопротивление рассматриваемого участка цепи. Отметим, что операторное сопротивление соответствует комплексному сопротивлению в цепи синусоидального тока при замене оператора р на .

Полученное уравнение есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме.

В соответствии с ним для ветви на рис.1.18 можно изобразить операторную схему замещения(рис.1.19).

Величины Li(0) (направлена по току) и (направлена против тока) называются внутренними (добавочными) ЭДС.

Величина внутренней ЭДС Li(0) обусловлена запасом энергии в магнитном поле катушки индуктивности при протекании по ней тока i(0) ≠ 0 непосредственно до коммутации. Величина внутренней ЭДС обусловлена запасом энергии в электрическом поле конденсатора при наличии на нем напряжения uC (0) ≠ 0 непосредственно до коммутации.

В частном случае, когда в ветви ab нет ЭДС e и к моменту коммутации i(0) = 0 и uC (0) = 0 (нулевые начальные условия), закон Ома в операторной форме принимает более простой вид:

Сформулируем законы Кирхгофа в операторной форме:

Первый закон: алгебраическая сумма операторных изображений токов, сходящихся в узле, равна нулю

Второй закон: алгебраическая сумма операторных изображений напряжений на пассивных элементах в контуре равна алгебраической сумме операторных изображений ЭДС, действующих в этом контуре

Ненулевые начальные условия учитываются введением в уравнения внутренних ЭДС. С их учетом второй закон Кирхгофа принимает вид

Все основанные на законах Кирхгофа приемы и методы составления уравнений (методы контурных токов, узловых напряжений, эквивалентного генератора, наложения и т.п.) можно применять и при составлении уравнений для изображений

Дата добавления: 2020-09-01 ; просмотров: 950 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Закон Ома в операторной форме

Читайте также:

  1. B) Наличное бытие закона
  2. I. Случайные величины с дискретным законом распределения (т.е. у случайных величин конечное или счетное число значений)
  3. II закон Кирхгофа
  4. II. Законодательные акты Украины
  5. II. Законодательство об охране труда
  6. II.3. Закон как категория публичного права
  7. III. Государственный надзор и контроль за соблюдением законодательства об охране труда
  8. IX. У припущенні про розподіл ознаки по закону Пуассона обчислити теоретичні частоти, перевірити погодженість теоретичних і фактичних частот на основі критерію Ястремського.
  9. IX.3.Закономерности развития науки.
  10. А 55. ЗАКОНОМІРНОСТІ ДІЇ КОЛОГИЧЕСКИХ ФАКТОРІВ НА ЖИВІ ОРГАНІЗМИ
  11. А) Закон диалектического синтеза
  12. А) совокупность предусмотренных законодательством видов и ставок налога, принципов, форм и методов их установления.
Каждый электрик должен знать:  Модернизируем ЛАТР

Пусть имеем некоторую ветвь (см. рис. 1), выделенную из некоторой

сложной цепи. Замыкание ключа во внешней цепи приводит к переходному процессу, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые.

Для мгновенных значений переменных можно записать:

Тогда на основании приведенных выше соотношений получим:

где — операторное сопротивление рассматриваемого участка цепи.

Следует обратить внимание, что операторное сопротивление соответствует комплексному сопротивлению ветви в цепи синусоидального тока при замене оператора р на .

Уравнение (2) есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме. В соответствии с ним для ветви на рис. 1 можно нарисовать операторную схему замещения,представленную на рис. 2.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)

Законы Кирхгофа в операторной форме

Первый закон Кирхгофа. Для узла электрической цепи можно составить уравнение по первому закону Кирхгофа для мгновенных значений токов:

Преобразуя это уравнение по Лапласу, получим:

Уравнение (6.33) выражает первый закон Кирхгофа в операторной форме.

Второй закон Кирхгофа. Для любого контура электрической схемы можно составить уравнение по второму закону Кирхгофа для мгновенных значений напряжений и ЭДС:

где ek(t) источник ЭДС в к-й ветви, а «*(0 напряжение на этой ветви.

Преобразуя уравнение по Лапласу, получим:

С учетом ненулевых начальных условий для ветви, содержащей элементы R, L, С, и учитывая их операторные уравнения (6.29), (6.30),

Отметим, что это уравнение называют законом Ома в операторной форме с ненулевыми начальными условиями.

Используя (6.36), запишем операторное уравнение (6.35) в виде:

Уравнение (6.37) называется вторым законом Кирхгофа в операторной форме.

При составлении уравнений Кирхгофа в операторной форме сохраняются все правила составления уравнений Кирхгофа для мгновенных значений токов, напряжений, ЭДС. Заметим, что структура записи операторного сопротивления ветви Z(p) и комплексное сопротивление этой же ветви Z = R + jo)L + l/jb>C аналогичны, если допустить, что jоз = Р- Отсюда следует, что выражение для операторного сопротивления Z(p) можно получить из комплексного сопротивления путем замены в нему’ы на оператор р.

Закон Ома для «чайников»: понятие, формула, объяснение

Говорят: «не знаешь закон Ома – сиди дома». Так давайте же узнаем (вспомним), что это за закон, и смело пойдем гулять.

Основные понятия закона Ома

Как понять закон Ома? Нужно просто разобраться в том, что есть что в его определении. И начать следует с определения силы тока, напряжения и сопротивления.

Сила тока I

Пусть в каком-то проводнике течет ток. То есть, происходит направленное движение заряженных частиц – допустим, это электроны. Каждый электрон обладает элементарным электрическим зарядом (e= -1,60217662 × 10 -19 Кулона). В таком случае через некоторую поверхность за определенный промежуток времени пройдет конкретный электрический заряд, равный сумме всех зарядов протекших электронов.

Отношение заряда к времени и называется силой тока. Чем больший заряд проходит через проводник за определенное время, тем больше сила тока. Сила тока измеряется в Амперах.

Напряжение U, или разность потенциалов

Это как раз та штука, которая заставляет электроны двигаться. Электрический потенциал характеризует способность поля совершать работу по переносу заряда из одной точки в другую. Так, между двумя точками проводника существует разность потенциалов, и электрическое поле совершает работу по переносу заряда.

Физическая величина, равная работе эффективного электрического поля при переносе электрического заряда, и называется напряжением. Измеряется в Вольтах. Один Вольт – это напряжение, которое при перемещении заряда в 1 Кл совершает работу, равную 1 Джоуль.

Сопротивление R

Ток, как известно, течет в проводнике. Пусть это будет какой-нибудь провод. Двигаясь по проводу под действием поля, электроны сталкиваются с атомами провода, проводник греется, атомы в кристаллической решетке начинают колебаться, создавая электронам еще больше проблем для передвижения. Именно это явление и называется сопротивлением. Оно зависит от температуры, материала, сечения проводника и измеряется в Омах.

Памятник Георгу Симону Ому

Формулировка и объяснение закона Ома

Закон немецкого учителя Георга Ома очень прост. Он гласит:

Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

Георг Ом вывел этот закон экспериментально (эмпирически) в 1826 году. Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Данная формулировка закона Ома – самая простая и подходит для участка цепи. Говоря «участок цепи» мы подразумеваем, что это однородный участок, на котором нет источников тока с ЭДС. Говоря проще, этот участок содержит какое-то сопротивление, но на нем нет батарейки, обеспечивающей сам ток.

Если рассматривать закон Ома для полной цепи, формулировка его будет немного иной.

Пусть у нас есть цепь, в ней есть источник тока, создающий напряжение, и какое-то сопротивление.

Закон запишется в следующем виде:

Объяснение закона Ома для полой цепи принципиально не отличается от объяснения для участка цепи. Как видим, сопротивление складывается из собственно сопротивления и внутреннего сопротивления источника тока, а вместо напряжения в формуле фигурирует электродвижущая сила источника.

Кстати, о том, что такое что такое ЭДС, читайте в нашей отдельной статье.

Как понять закон Ома?

Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

Сила тока прямо пропорциональна напряжению.

Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

Сила тока обратно пропорциональна сопротивлению.

Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

Ток в проводнике

В данной статье мы постарались дать простое объяснение закона Ома. Знание этих на первый взгляд простых вещей может сослужить Вам неплохую службу на экзамене. Конечно, мы привели его простейшую формулировку закона Ома и не будем сейчас лезть в дебри высшей физики, разбираясь с активным и реактивным сопротивлениями и прочими тонкостями.

Если у Вас возникнет такая необходимость, Вам с удовольствием помогут сотрудники нашего студенческого сервиса. А напоследок предлагаем Вам посмотреть интересное видео про закон Ома. Это действительно познавательно!

Добавить комментарий