Защита от молний

СОДЕРЖАНИЕ:

Защита от молнии. Как защититься от молнии

О том, как вести себя во время грозы, рассказывают специалисты Тюменской областной службы экстренного реагирования.

Самым опасным районом во время грозы является сельская местность: 90% всех несчастных случаев, связанных с ударом молнии, происходят именно здесь. Часто жертвами молнии становятся отдельно стоящие предметы. Отсюда первое правило — никогда не прячьтесь от молнии под одиноко стоящим деревом, под высокими металлическими конструкциями. Помните, молния никогда не попадает в кустарник, лучше спрячьтесь под ним. Если вы находитесь в сельской местности, закройте окна, двери, дымоходы и вентиляционные отверстия. Не растапливайте печь, поскольку высокотемпературные газы, выходящие из печной трубы, имеют низкое сопротивление. Не разговаривайте по телефону: молния иногда попадает в натянутые между столбами провода.

Во время ударов молнии не подходите близко к электропроводке, молниеотводу, водостокам с крыш, антенне, не стойте рядом с окном, по возможности выключите телевизор, радио и другие электробытовые приборы.

Вода и берега водоемов — также зона риска. Если купаетесь, срочно возвращайтесь на берег, если рыбачите в лодке — сматывайте удочки: «небесное электричество» бьет не в воду, а в возвышающиеся над ее поверхностью предметы. Не находитесь в водоеме или на его берегу. Отойдите от берега, спуститесь с возвышенного места в низину. Если вы на яхте или паруснике, плывите к ближайшему берегу. Во время грозы рекомендуется находиться как можно дальше от воды. Удар молнии в воду поражает все в радиусе 100 метров.

Не разбивайте палатку на открытом берегу водоема, чтобы не стать мишенью молнии. А самое безопасное место — сухие равнины, ложбины между холмами.

— ветер не даст вам представления о том, куда движется гроза, грозы, вопреки всякой логике, часто идут против ветра;

— расстояние от грозы до места вашей дислокации можно определить по времени между вспышкой молнии и раскатом грома (1 секунда — расстояние 300-400 метров, 2 секунды — 600-800 метров, 3 секунды — 1000 м);

— перед началом грозы обычно наблюдается либо отсутствие ветра, либо ветер меняет направление.

Определив, что гроза движется по направлению к вам, посмотрите, насколько ваше положение безопасно:

Мокрая одежда и тело повышают опасность поражения молнией;

Ваш лагерь, расположенный на выпуклых формах рельефа, имеет больше шансов стать объектом поражения, нежели лагерь, расположенный в низине;

Ищите укрытия в лесу среди невысоких деревьев, в горах — в 3-8 метрах от высокого «пальца», на открытой местности — в сухой ямке, канаве;

Песчаная и каменистая почва безопаснее глинистой;

Признаки повышенной опасности: шевеление волос, жужжание металлических предметов, разряды на острых концах снаряжения.

Укрываться возле одиноких деревьев;

Прислоняться к скалам и отвесным стенам;

Останавливаться на опушке леса;

Останавливаться возле водоемов;

Прятаться под скальным навесом;

Бегать и суетиться;

Передвигаться плотной группой;

Находиться в мокрой одежде;

Находиться возле костра;

Хранить металлические предметы в палатке;

Использовать электроприборы в доме.

Если во время грозы на стенах вашей комнаты наблюдаются оранжевые отсветы, и вам кажется, будто за окном развели костер, не верьте этому «кажется». Немедленно захлопните форточку (если еще не поздно) — к вам в гости просится шаровая молния. Шаровая молния — это шар диаметром от 10 до 35 сантиметров (хотя встречаются и километровые экземпляры). Зачастую имеет желтый цвет (не исключаются и другие цвета: если даже нечто перед вами имеет расцветку мухомора, никто не гарантирует, что это — не шаровая молния), температура его от 100 до 1000 градусов, а вес 5-7 граммов (даже у километрового).

Шаровая молния просто обожает проникать в дома. Предметы и препятствия на пути ее нисколько не пугают, ученым пока не известно, являются ли стекла надежной защитой от шаровой молнии. Она умеет проникать в различные щели (розетки, домофоны и т.д.), но вот вылетать из них она, скорее всего, не будет. Срок жизни этого явления науке также не известен (может от 30 секунд до нескольких дней). Смерть шаровой молнии сопровождается взрывом, распадением на несколько частей или постепенным угасанием.

Тактика поведения при столкновении с шаровой молнией:

Если в помещении шаровая молния, не хватайтесь за железные предметы (на всякий случай);

Не пробуйте убежать от нее;

Не пытайтесь выгнать ее веником, книгой и т.д.;

Стойте, не двигаясь, сохраняйте спокойствие (ничего страшного не должно при этом произойти);

Если рядом дверь, а шаровая молния на приличном расстоянии от вас, укройтесь за дверью.

Куда спрятаться от молнии.

1. Как вести себя на открытом воздухе?

Сторонитесь деревьев, заборов и металлических ограждений. Если Вы находитесь в лесу, то укройтесь на низкорослом участке леса. Не укрывайтесь вблизи высоких деревьев, особенно сосен, дубов и тополей. И не ложитесь на землю, подставляя электрическому току все свое тело. Сядьте на корточки, обхватив голени руками. Все предметы, в которых есть металлические детали (в том числе украшения), должны находиться на расстоянии не менее пяти метров. Если вы купаетесь, нужно немедленно выйти из воды.

Лето — это прекрасное время года. Оно позволяет нам понежиться под теплыми солнечными лучами, поплавать в море или другом водоеме, обогатить свой рацион витаминами за счет потребления большого количества ягод, фруктов и овощей. Но, с другой стороны, лето – это еще и сезон гроз. Знаете ли Вы, как вести себя во время грозы, как защититься от молнии? Именно об этом мы сегодня и поговорим.

Сотрудники МЧС, отвечая на вопрос, что делать во время грозы, дают следующие советы:

1. Избегать открытой местности. Молния всегда бьет в самую высокую точку, а человек посреди поля – это и есть высокая точка. Поэтому, если получилось так, что Вы во время грозы остались в поле, спрячьтесь в каком-либо углублении: ложбинке, канаве, яме, либо самом низком месте. Сядьте на корточки и пригните низко голову.

2. Также нужно избегать воды. Она хорошо проводит ток. Поэтому во время грозы не рекомендуется купаться и ловить рыбу.

3. Во время грозы опасно разговаривать по мобильному телефону. Его вообще рекомендуют выключать.

4. Желательно избавится от металлических предметов. Были случаи, когда молния ударяла в связку ключей, которые находились в кармане. То есть цепочки, часы, ключи, и даже зонт с металлическими элементами могут стать причиной удара.

А теперь давайте подробнее поговорим о том, как защититься от молнии в определенной местности.

Защита от молнии в поле

О поле мы уже упоминали, но, давайте немного дополним. При первых признаках приближающейся грозы с поля нужно уйти. Если до ее начала Вы не успели покинуть местность, не прячьтесь под отдельно стоящие деревья и не заходите в небольшие рощи. Вам нужно самому не стать виновником попадания разряда и удалиться от возможных зон риска на 100-200 м. Если гроза «подошла» совсем близко, рекомендуется лечь на землю и неподвижно лежать. И не спешите вставать сразу по окончании грозы, продержитесь так еще минут 20 после удара последней молнии.

Во время грозы в поле нельзя делать следующие действия: идти, гордо выпрямившись, прятаться под одиноко стоящие деревья, в стог сена, а также прикасаться к ним телом.

Как защититься от молнии в лесу?

Вероятность попадания молнии в определенное дерево леса зависит от его высоты. Поэтому держитесь подальше от высоких деревьев. Если Вас застала гроза в лесу, спрячьтесь под густыми кронами низкорослых деревьев. Причем, не у самого ствола, а на расстоянии, равном высоте этого дерева. Рекомендуется занять позу «эмбриона», то есть присесть, спину согнуть, голову опустить.

Нельзя во время грозы в лесу прятаться под высокими деревьями, деревьями, ранее пораженными молнией, сидеть в палатке на открытой местности, сидеть у горящего костра.

Как защититься от молнии у водоема?

Как говорилось выше, при приближении грозы водоем лучше покинуть, причем отойти подальше от береговой линии. Если во время начала грозы Вы находитесь на каком-то плавсредстве, немедленно пристаньте к берегу.

Как защититься от молнии в горах?

Для начала нужно спуститься с возвышенностей – холмов, хребтов, вершин, перевалов. Опасно находиться у воды.

Лучше всего остановиться под высоким отвесом. Однако приближаться к стене ближе, чем на 2 метра, не стоит.

Можно спрятаться и в естественных нишах-пещерах, но, не ближе, чем за 2 метра от стены.

Отложить все металлические предметы за 20-30 м от своего места нахождения.

В период грозы в горах нельзя прислоняться к скалам и отвесным стенам.

Как защититься от молнии в машине?

Машина хорошо защищает от ударов молнии находящихся внутри людей. Поэтому если Вас застала в машине гроза, закройте все окна, отключите телефон, навигатор, радиоприёмник. Не дотрагивайтесь до ручек дверей и металлических деталей.

Как защититься от молнии на мотоцикле и велосипеде?

Эти транспортные средства в отличие от машины Вас в грозу не спасут. Поэтому рекомендуется покинуть транспорт и отойти от него на расстояние 20-30 м. Спрятаться, в местах, которые описаны выше.

Как защититься от молнии, находясь в садовом либо дачном доме?

1. Закрыть все двери и окна.
2. Ни в коем случае не топить печь и закрыть дымоход.
3. Выключить электроприборы, отключить антенну.
4. Выключить мобильный телефон.
5. Не стоит находиться около окна.

Как защититься от молнии на улице?

1. Уйти с открытой местности.
2. Не находиться вблизи металлических сооружений и линий электропередач.
3. Не прикасайтесь к железу.
4. Снимите с себя все металлические изделия.
5. Не раскрывайте зонт.
6. Не останавливайтесь под высокими деревьями.
7. Не сидите у костра.
8. Не подходите близко к металлическим заборам.
9. Не купайтесь в водоеме.
10. Не катайтесь на велосипеде, мотоцикле.
11. Не разговаривайте по мобильному телефону.

В сегодняшней статье мы рассказали Вам о том, что можно, а чего нельзя делать во время грозы и как защититься от молнии. Если у Вас есть, что добавить, напишите в комментариях.

Молния — это искровой разряд статического электричества, аккумулированного в грозовых облаках. В отличие от разрядов, образующихся на производстве и в быту, электрические заряды, накапливаемые в облаках, несоизмеримо больше. Поэтому энергия искрового разряда — молния и возникающих при этом токов очень велика и представляет большую опасность для человека, животных, строений. Молния сопровождается звуковым импульсом — громом. Сочетание молнии и грома называют грозой.

Гроза — это исключительно красивое природное явление. Как правило, после грозы улучшается погода, воздух становится прозрачен, свеж и чист, насыщен ионами, образующимися при разрядах молнии.

Несмотря на это нужно помнить, что гроза в определенных условиях может представлять большую опасность для человека. Каждый человек должен знать природу грозового явления, правила поведения во время грозы и методы защиты от молнии.

Гроза — сложный атмосферный процесс и ее возникновение обусловлено образованием кучево-дождевых облаков. Сильная облачность является следствием значительной неустойчивости атмосферы. Для грозы характерны сильный ветер, часто интенсивный дождь (снег), иногда с градом. Перед грозой (за час, два) атмосферное давление начинает быстро падать, вплоть до внезапного усиления ветра, а затем начинает повышаться.

Грозы можно разделить на местные, фронтальные, ночные, в горах.

Наиболее часто человек сталкивается с местными, или тепловыми грозами. Водяной пар в восходящем потоке теплого воздуха на высоте конденсируется, при этом выделяется много тепла, и восходящие потоки воздуха нагреваются. По сравнению с окружающим восходящий воздух теплее, он увеличивается в объеме, пока не превратится в грозовое облако. В больших по размеру грозовых облаках присутствуют кристаллики льда и капельки воды. В результате их дробления и трения между собой и о воздух образуются положительные и отрицательные заряды, под действием которых возникает сильное электростатическое по»ле (напряженность электростатического поля может достигать 100 000 В/м).

И разница потенциалов между отдельными частями облака, облаками или облаком и землей достигает громадных величин.

При достижении критической электрической напряженности в воздухе возникает лавинообразная ионизация воздуха — искровой разряд молнии.

Фронтальная гроза возникает, когда массы холодного воздуха проникают в район, где преобладает теплая погода. Холодный воздух вытесняет теплый, при этом последний поднимается на высоту 5-7 км. Теплые слои воздуха вторгаются внутрь вихрей различной направленности, образуется шквал, сильное трение между слоями воздуха, что способствует накоплению электрических зарядов. Длина фронтальной грозы может достигать 100 км. В отличие от местных гроз после фронтальных обычно холодает.

Ночная гроза связана с охлаждением земли ночью и образованием вихревых токов восходящего воздуха.

Гроза в горах объясняется разницей в солнечной радиации, которой подвергаются южные и северные склоны гор. Ночные и горные грозы несильные и кратковременные.

Грозовая активность в различных районах нашей планеты различна. Мировые очаги гроз: остров Ява — 220 грозовых дней в году, Экваториальная Африка — 150, Южная Мексика — 142, Панама — 132, Центральная Бразилия — 106. Россия: Мурманск — 5, Архангельск — 10, Санкт-Петербург — 15, Москва — 20. Как правило, чем южнее (для северного полушария Земли) и севернее (для южного полушария Земли), тем выше грозовая активность. Грозы в Арктике и Антарктике очень редки. На Земле в год происходит 16 миллионов гроз. На каждый м поверхности Земли приходится 2-3 удара молнии в год. В землю чаще всего ударяют молнии из отрицательно заряженных облаков.

По виду молнии различаются на линейные, жемчужные и шаровые.

Жемчужные и шаровые молнии довольно редкое явление.

Распространенная линейная молния, с которой многократно встречается любой человек, имеет вид разветвляющейся линии. Величина силы тока в канале линейной молнии составляет в среднем 60 — 170 кА, зарегистрирована молния с током 290 кА. Средняя молния имеет энергию 250 кВт в час (900 Мдж).

Разряд развивается за несколько тысячных долей секунды; при столь высоких токах воздух в зоне канала молнии практически мгновенно разогревается до температуры 30000 — 33000°С. В результате резко повышается давление, воздух расширяется и возникает ударная волна, сопровождающаяся звуковым импульсом — громом.

Жемчужная молния — очень редкое и красивое явление. Появляется сразу после линейной молнии и исчезает постепенно. Чаще всего разряд жемчужной молнии следует по пути линейной. Молния имеет вид 12 м друг от друга и напоминающих жемчуг, нанизанный на нитку. Жемчужная молния может сопровождаться значительными звуковыми эффектами.

Шаровая молния также довольно редка. На тысячи обычных линейных молний приходится 2 -3 шаровых. Шаровая молния, как правило, появляется чаще к концу грозы, реже — после грозы. Может иметь форму шара, эллипсоида, груши, диска и даже цепи шаров. Цвет молнии — красный, желтый, оранжево-красный.

Иногда молния ослепительно белая с очень резкими очертаниями. Цвет определяется содержанием различных веществ в воздухе. Форма и цвет молнии могут меняться во время разряда. Измерить параметры шаровой молнии и смоделировать ее в лабораторных условиях не удалось. По всей видимости, многие наблюдаемые неопознанные летающие объекты (НЛО) по своей природе аналогичны или близки шаровой молнии.

Опасные факторы воздействия молнии

В связи с тем, что молния характеризуется большими величинами токов, напряжений и температур разряда, воздействие ее на человека, как правило, приводит к их смерти.

От удара молнии в мире в среднем ежегодно погибает около 3000 человек, причем известны случаи одновременного поражения нескольких человек.

Разряд молнии проходит по пути наименьшего электрического сопротивления:

Если расположить рядом две мачты — металлическую и более высокую деревянную, то молния, скорее всего, ударит в металлическую мачту, хотя она ниже, потому что электропроводность металла выше;

Молния также значительно чаще ударяет в глинистые и влажные участки, чем в сухие и песчаные, поскольку первые обладают большей электропроводностью;

В лесу молния действует тоже избирательно, попадая, прежде всего, в такие лиственные деревья как дуб, тополь, верба, ясень, так как в них содержится много крахмала. Хвойные деревья — ель, пихта, лиственница и такие лиственные деревья как липа, грецкий орех, бук содержат много масел, поэтому оказывают большое электрическое сопротивление, и в них молния ударяет реже.

Из 100 деревьев молнией поражается 27% тополей, 20% груш, 12% лип, 8% елей и только 0,5% кедровых.

кроме поражения людей и животных линейная молния довольно часто является причиной возникновения лесных пожаров, а также жилых и производственных зданий, особенно в сельской местности. В связи с этим необходимо принимать специальные защиты от поражения линейной молнией.

Если природа линейной молнии ясна, а, следовательно, и ее поведение предсказуемо, то природа шаровой молнии до сих пор не понятна. Опасность поражения человека шаровой молнией прежде всего связанна именно с отсутствием методов и правил защиты человека от нее.

В 1753 году русский физик Георг Вильгельм Рихман, коллега М.В. Ломоносова, был убит шаровой молнией во время грозы при исследовании искровых разрядов в атмосфере. Известны многие случаи гибели людей при встрече с шаровой молнией.

Драматический случай произошел с группой из пяти советских альпинистов 17 августа 1978 года на Кавказе на высоте около 4000 м, где они остановились в ясную, холодную ночь на ночлег. В палатку к альпинистам залетел светло-желтый шар величиной с теннисный мяч. Шар парил над спальными мешками, в которых находились альпинисты, и методично, по какому-то собственному плану, проник в спальные мешки. Каждый такой «визит» вызывал отчаянный нечеловеческий крик, люди чувствовали сильнейшую боль, как будто их жгли автогеном, и теряли сознание. Они не могли двигать ни руками, ни ногами. После того как шар «посетил» спальные мешки каждого альпиниста по несколько раз, он исчез. Все альпинисты получили множество тяжелых ран. Это были не ожоги, а именно рваные раны: мышцы были вырваны целыми кусками, до самых костей. Одного из альпинистов — Олега Коровина — шар убил. При этом шаровая молния не коснулась ни одного предмета в палатке, а только покалечила людей. Поведение шаровой молнии непредсказуемо. Она неожиданно появляется где угодно, в том числе в закрытых помещениях. Замечены случаи появления шаровой молнии из телефонной трубки, электрической бритвы, выключателя, розетки, репродуктора. Она достаточно часто проникает в здания через трубы, открытые окна и двери.

Размеры шаровой молнии бывают от нескольких сантиметров до нескольких метров. Обычно она легко парит или катится над землей, иногда подскакивает. Она реагирует на ветер, сквозняк, восходящие и нисходящие потоки воздуха. Однако отмечен случай, когда шаровая молния не реагировала на поток воздуха.

Шаровая молния может появиться, не нанеся вреда человеку или помещению, залететь в окно и исчезнуть из помещения через открытую дверь или дымовую трубу, пролетев мимо человека. Всякий контакт с ней приводит к тяжелым травмам, ожогам, а в большинстве случаев к смертельному исходу. Шаровая молния может взорваться. Возникающая при этом воздушная волна способна травмировать человека или привести к разрушениям в здании.

Известны случаи взрывов молний в печках, дымоходах, что приводило к разрушению последних. Собранные свидетельства о поведении шаровой молнии говорят, что в большинстве случаев взрывы не были опасны, тяжелые последствия возникали в 10 случаях из 100. Считается, что шаровая молния имеет температуру около 5000°С и может вызвать пожар.

Правила поведения во время грозы

Вспышку молнии мы видим практически мгновенно, та как свет распространяется со скоростью 300 000 км/с. Скорость распространения звука в воздухе равна примерно 344 м/с, то есть примерно за 3 секунды звук проходит 1 километр. Молния опасна тогда, когда за вспышкой тут же следует раскат грома, значит, грозовое облако находится над Вами, и опасность удара молнии наиболее вероятна.

Ваши действия перед грозой и во время нее должны быть следующими:

Выходить из дома, закрыть окна, двери и дымоходы, позаботиться, чтобы не было сквозняка, который может привлечь шаровую молнию. Во время грозы не топить печку, так как дым, выходящий из трубы имеет^ высокую электропроводность, и вероятность удара молнии в возвышающуюся над крышей трубу возрастает;

Радио и телевизоры отключать от сети, не пользоваться электроприборами и телефоном (особенно это важно для сельской местности);

Во время прогулки спрятаться в ближайшее здание. Особенно опасна гроза в поле. При поиске укрытия отдайте предпочтение металлической конструкции больших размеров или конструкции с металлической рамой, жилому дому или » другой постройке, защищенной молниеотводом;

Если нет возможности укрыться в здании, не надо прятаться в небольших сараях, под одинокими деревьями;

Не оставаться на возвышенностях и открытых незащищенных местах, вблизи металлических или сетчатых оград, крупных металлических объектов, влажных стен, заземления молниеотвода;

При отсутствии укрытия лечь на землю, при этом предпочтение следует отдать сухому песчаному грунту, удаленному от водоема;

Если гроза застала Вас в лесу, необходимо укрыться на участке с низкорослыми.деревьями. Нельзя укрываться под высокими деревьями, особенно соснами, дубами, тополями. Лучше находиться на расстоянии 30 м от отдельно высокого дерева. Обратите внимание — нет ли рядом деревьев, ранее пораженных грозой, расщепленных. Лучше держаться подальше от этого места. Обилие пораженных молнией деревьев свидетельствует, что грунт на данном участке имеет высокую электропроводность, и удар молнии в этот участок местности весьма вероятен;

Во время грозы нельзя находиться на воде и у воды — купаться, ловить рыбу. Необходимо подальше отойти от берега;

В горах отойдите от горных гребней, острых возвышающихся скал и вершин. При приближении в горах грозы нужно спуститься как можно ниже. Металлические предметы — альпинистские крючья, ледорубы, кастрюли — собрать в рюкзак и спустить на веревке на 20-30 м ниже по склону;

Во время грозы не занимайтесь спортом на открытом воздухе, не бегайте, так как считается, что пот и быстрое движение «притягивает» молнию;

Если вы застигнуты грозой на велосипеде или мотоцикле, прекратите движение, оставьте их и переждите грозу на расстоянии примерно 30 м от них;

Если гроза застала Вас в автомобиле, не нужно его покидать. Необходимо закрыть окна и опустить автомобильную антенну. Двигаться во время грозы на автомобиле не рекомендуется, поскольку гроза как правило сопровождается ливнем, ухудшающем видимость на дороге, а вспышка молнии может ослепить и вызвать испуг и, как следствие, аварии;

При встрече с шаровой молнией не проявляйте по отношению к ней никакой активности, по возможности сохраняйте спокойствие и не двигайтесь. Не нужно приближаться к ней, касаться ее чем-либо, т.к. может произойти взрыв. Не следует убегать от шаровой молнии, потому что это может повлечь ее за собой возникшим потоком воздуха.

Молниезащита

Эффективным средством защиты от молнии является молниеотводы.

Приоритет изобретения молниеотвода принадлежит американцу Бенджамину Франклину (1749 г.). Несколько позднее в 1758 г., независимо от него, молниеотвод изобрел М.В. Ломоносов.

Молниезашита путем установки молниеотводов основана на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения.

Молниеотвод состоит из трех основных частей: молниеприемника, воспринимающего удар молнии; токовода, соединяющего молниеприемник с заземлителем, через который ток молнии стекает в землю. По типу монниеприемников наиболее распространены стержневые и тросовые. Молниеотводы разделяются на одиночные, двойные и многократные.

Окрест молниеотвода образуется зона защиты, то есть пространство, в пределах которого обеспечивается защита строения или какого-либо другого объекта от прямого удара молнии. Степень защиты в указанных зонах составляет более 95%. Это означает, что из 100 ударов молнии в защищенный объект возможно менее 5 случаев попадания, остальные удары будут восприняты молниеприемником.

Зона защиты ограничивается образующими двух конусов, один из которых имеет высоту Ь, равную высоте молниеотвода, и радиус основания К. = 0,75 Ь, а другой — высоту 0.8 п и радиус основания 1,5 Ь (при радиусе основания второго конуса К = п эффективность защиты обеспечивается на 99%).

Молниеприемники стержневых молниеотводов изготавливают из стали любого профиля, как правило, круглого, сечением не менее 100 мм2 и длиной не менее 200 мм. Для защиты от коррозии ох окрашивают. Молниеприемники тросовых молниеотводов изготавливают из металлических тросов диаметром около 7 мм.

Тоководы должны выдерживать нагрев при протекании очень больших токов разряда молнии в течение короткого промежутка времени, поэтому их делают из металлов с небольшим сопротивлением. Сечение тоководов_на воздухе не должно быть менее 48 мм2, а в земле — 160 мм2.

Заземлители являются важнейшим элементом молниезащиты. Их назначение — обеспечивать достаточно малое сопротивление растеканию тока молнии в грунте. В качестве заземлителя можно использовать зарытые в землю на глубину 2 — 2,5 м металлические трубы, плиты, мотки проволоки и сетки, куски металлической арматуры.

Молниеотводы желательно устанавливать на возвышенностях, чтобы сократить путь молнии и увеличить размеры зоны защиты. Дымовые трубы, фронтоны, выступы на крыше, телевизионные антенны нужно заземлить с помощью тоководов. Металлические водосточные трубы и лестницы, ведущие на крышу, желательно соединить с тоководом или заземлить отдельно.

При выполнении молниезащиты нужно обязательно соблюдать следующие требования:

Сечение молниеприемника и тоководов должны быть достаточными (не менее 48 мм);

Тоководы не должны иметь резких изгибов и жесткого закрепления, ток как при разогреве протекающим током они расширяются и деформируются. Если тоководы проходят по крыше или стене из горючих материалов (рубероида, дерева) они располагаются на расстоянии около 15 мм от поверхности крыши или стены.

Заземление молниеотвода должно быть не более 20 см и располагаться не ближе 3 м от подземных коммуникаций, идущих в здание, например, водопроводных труб. Заземление желательно располагать в местах, малодоступных или редко посещаемых людьми и домашними животными, чтобы уменьшить вероятность поражения шаговым напряжением. При недостаточной проводимости грунта (сухой песчаный грунт) его можно подсолить, при этом его проводимость увеличится более чем в 10 раз.

Молния всегда будила фантазию человека и стремление познавать мир. Она принесла на землю огонь, приручив который, люди стали могущественнее. Мы пока не рассчитываем на покорение этого грозного природного явления, но хотели бы «мирного сосуществования». Ведь чем совершеннее создаваемая нами техника, тем опаснее для нее атмосферное электричество. Один из способов защиты — заранее, с помощью специального имитатора, оценивать уязвимость промышленных объектов для тока и электромагнитного поля молнии.

Любить грозу в начале мая легко поэтам и художникам. Энергетик, связист или космонавт от начала грозового сезона в восторг не придет: слишком большие неприятности он обещает. В среднем на каждый квадратный километр территории России ежегодно приходится около трех ударов молний. Их электрический ток доходит до 30 000 А, а у самых мощных разрядов может превысить 200 000 А. Температура в хорошо ионизированном плазменном канале даже умеренной молнии может достигать 30000 °С, что в несколько раз больше, чем в электрической дуге сварочного аппарата. И конечно, это не сулит ничего хорошего многим техническим объектам. Пожары и взрывы от прямого попадания молнии хорошо знакомы специалистам. А вот обыватели риск подобного события явно преувеличивают.

Наконечник флагштока останкинской телебашни. Видны следы оплавленияВ реальности «небесная электрозажигалка» не столь уж эффективна. Представьте: вы пытаетесь развести огонь во время урагана, когда из-за сильного ветра трудно зажечь даже сухую солому. Еще мощнее воздушный поток от канала молнии: ее разряд рождает ударную волну, громовой раскат которой срывает и гасит пламя. Парадокс, но слабая молния пожароопаснее, особенно, если по ее каналу в течение десятых долей секунды (целая вечность в мире искровых разрядов!) протекает ток около 100 А. Последний мало чем отличается от дугового, а электрическая дуга подожжет все, способное гореть.

Впрочем, для здания обычной высоты попадание молнии — явление не частое. Опыт и теория показывают: она «притягивается» к наземному сооружению с расстояния, близкого к трем его высотам. Десятиэтажная башня соберет около 0,08 молний ежегодно, т.е. в среднем 1 удар за 12,5 лет эксплуатации. Дачный домик с мансардой — примерно в 25 раз меньше: в среднем владельцу придется «ждать» около 300 лет.

Но не будем и преуменьшать опасность. Ведь если молния ударит хотя бы в один из 300-400 поселковых домов, местные жители вряд ли сочтут это событие ничтожным. А есть объекты гораздо большей протяженности — скажем, линии электропередачи (НЭП). Их длина вполне может превысить 100 км, высота — 30 м. Значит, справа и слева каждая из них соберет удары с полос шириной по 90 м. Общая площадь «стягивания» молний превысит 18 км2, их число — 50 за год. Разумеется, стальные опоры линии при этом не сгорят, провода не расплавятся. В наконечник флагштока Останкинской телебашни (Москва) молнии ударяют примерно 30 раз в год, однако ничего страшного не происходит. А чтобы понять, чем они опасны для ЛЭП, нужно познать природу электрических, а не термических воздействий.

ГЛАВНАЯ СИЛА МОЛНИИ

При ударе в опору электрической линии ток стекает в землю через сопротивление заземления, которое, как правило, составляет 10-30 Ом. При этом даже «средняя» молния, с током 30 000 А, создает напряжение 300-900 кВ, а мощная — в несколько раз больше. Так возникают грозовые перенапряжения. Если они достигают мегавольтного уровня, изоляция ЛЭП не выдерживает и пробивается. Происходит короткое замыкание. Линия отключается. Еще хуже, когда канал молнии прорывается непосредственно к проводам. Тогда перенапряжение на порядок выше, чем при поражении опоры. Борьба с этим явлением и сегодня остается трудной задачей электроэнергетиков. Причем по мере совершенствования техники ее сложность лишь нарастает.

Останкинская телебашня выступила в роли молниеотвода, пропустив удар молнии на 200 м ниже вершиныЧтобы удовлетворить стремительно растущие потребности человечества в энергии, современные электростанции должны объединяться в мощные системы. В России сейчас функционирует единая энергетическая система: все ее объекты работают взаимосвязанно. Поэтому случайный выход из строя даже одной ЛЭП или электростанции может привести к серьезным последствиям, похожим на происшедшее в Москве в мае 2005 г. В мире отмечено немало системных аварий по вине молний. Одна из них — в США в 1968 г. нанесла многомиллионный ущерб. Тогда грозовой разряд отключил одну ЛЭП, и энергосистема не справилась с возникшим дефицитом энергии.

Неудивительно, что защите ЛЭП от молний специалисты уделяют должное внимание. По всей длине воздушных линий напряжением 110 кВ и более подвешивают специальные металлические тросы, стремясь сверху уберечь провода от прямого попадания. Их изоляцию максимально усиливают, сопротивление заземления опор предельно снижают, а для дополнительного ограничения перенапряжений используют полупроводниковые устройства, подобные тем, что защищают входные цепи компьютеров или высококачественных телевизоров. Правда, их сходство — только в принципе действия, рабочее же напряжение для линейных ограничителей исчисляется миллионами вольт — оцените масштабы затрат на защиту от молнии!

Часто спрашивают, реально ли спроектировать абсолютно молниестойкую линию? Ответ однозначный — да. Но тут неизбежны два новых вопроса: кому это надо и сколько будет стоить? Ведь если нельзя повредить надежно защищенную ЛЭП, то можно, например, сформировать ложную команду на отключение линии или просто разрушить низковольтные цепи автоматики, которые в современном исполнении построены на микропроцессорной технике. Рабочее напряжение микросхем с каждым годом снижается. Сегодня оно исчисляется единицами вольт. Вот где простор для молнии! И нет нужды в прямом ударе, ибо она способна действовать дистанционно и сразу на больших площадях. Главным ее оружием становится электромагнитное поле. Выше говорилось о токе молнии, хотя для оценки электродвижущей силы магнитной индукции важен и ток, и скорость его роста. У молнии последняя может превышать 2 . 1011 А/с. В любом контуре площадью 1 м2 на расстоянии 100 м от канала молнии такой ток наведет напряжение примерно вдвое выше, чем в розетках жилого дома. Не нужно большой фантазии, чтобы представить судьбу микросхем, рассчитанных на напряжение порядка одного вольта.

Каждый электрик должен знать:  Как не попасть в проводку при сверлении стен и потолка

В мировой практике известно множество тяжелых аварий из-за разрушения цепей управления грозовым разрядом. В этот перечень попадают повреждения бортовой аппаратуры авиалайнеров и космических кораблей, ложные отключения сразу целых «пакетов» высоковольтных ЛЭП, выход из строя аппаратуры антенных систем мобильной связи. К сожалению, заметное место здесь занимают и «бьющие» по карману обычных граждан повреждения бытовой техники, все больше заполняющей наши дома.

Мы привыкли рассчитывать на защиту молниеотводами. Помните оду великого естествоиспытателя XVIII в., академика Михаила Ломоносова на их изобретение? Наш знаменитый соотечественник восторгался победой, говорил, что небесный огонь перестал быть опасным. Конечно, это приспособление на крыше жилого дома не даст молнии поджечь деревянный настил или другие горючие строительные материалы. В отношении же электромагнитных воздействий он бессилен. Совершенно безразлично, течет ли ток молнии в ее канале или по металлическому стержню молниеотвода, все равно он возбуждает магнитное поле и наводит за счет магнитной индукции во внутренних электрических цепях опасное напряжение. Для эффективной борьбы с этим молниеотвод обязан перехватывать канал разряда на отдаленных подступах к защищаемому объекту, т.е. стать очень высоким, потому что наводимое напряжение обратно пропорционально расстоянию до проводника с током.

Сегодня накоплен большой опыт использования таких конструкций разной высоты. Однако статистика не слишком утешительная. Зону защиты стержневого молниеотвода обычно представляют в виде конуса, осью которого он является, но с вершиной, расположенной несколько ниже, чем его верхний конец. Обычно 30-метровый «стержень» обеспечивает 99%-ную надежность защиты здания, если возвышается над ним примерно на 6 м. Добиться этого — не проблема. Но с увеличением высоты молниеотвода расстояние от его вершины до «прикрываемого» объекта, минимально необходимое для удовлетворительной защиты, стремительно нарастает. Для 200-метровой конструкции той же степени надежности этот параметр уже превышает 60 м, а для 500-метровой — 200 м.

В подобной роли выступает и упомянутая Останкинская телебашня: она не в состоянии защитить самое себя, пропускает удары молнии на расстоянии 200 м ниже вершины. Радиус зоны защиты на уровне земли для высоких молниеотводов также резко увеличивается: у 30-метрового он сопоставим с его высотой, у той же телебашни — 1/5 ее высоты.

Иными словами, нельзя надеяться, что молниеотводы традиционной конструкции сумеют перехватить молнию на дальних подступах к объекту, особенно если последний занимает большую площадь на поверхности земли. Значит, нужно считаться с реальной вероятностью грозового разряда в территорию электрических станций и подстанций, аэродромов, складов жидкого и газообразного топлива, протяженных антенных полей. Растекаясь в земле, ток молнии частично попадает в многочисленные подземные коммуникации современных технических объектов. Как правило, там находятся электрические цепи систем автоматики, управления и обработки информации — тех самых микроэлектронных устройств, о которых говорилось выше. Кстати, расчет токов в земле сложен даже в самой простейшей постановке. Трудности усугубляются из-за сильных изменений сопротивления большинства грунтов в зависимости от силы растекающихся в них токов килоамперного уровня, как раз свойственных разрядам атмосферного электричества. К расчету цепей с такими нелинейными сопротивлениями неприменим закон Ома.

К «нелинейности» грунта добавляется вероятность образования в нем протяженных искровых каналов. Ремонтные бригады кабельных линий связи хорошо знакомы с такой картиной. От высокого дерева на лесной опушке по земле тянется борозда, будто от сохи или старинного плуга, и обрывается точно над трассой подземного телефонного кабеля, который в этом месте поврежден — металлическая оболочка смята, изоляция жил разрушена. Так проявилось действие молнии. Она ударила в дерево, и ее ток, растекаясь по корням, создал в грунте сильное электрическое поле, сформировал в нем плазменный искровой канал. Фактически молния как бы продолжила свое развитие, только не по воздуху, а в земле. И так она может проходить десятки, а в особенно плохо проводящих ток грунтах (скальных или вечномерзлых породах) и сотни метров. Прорыв ее к объекту осуществляется не традиционным путем — сверху, а, минуя любые молниеотводы, снизу. Скользящие разряды вдоль поверхности грунта хорошо воспроизводятся в лаборатории. Все эти сложные и сильно нелинейные явления нуждаются в экспериментальном исследовании, моделировании.

Ток для рождения разряда может быть сформирован искусственным импульсным источником. Энергия около минуты накапливается в конденсаторной батарее, а потом за десяток микросекунд «выплескивается» в бассейн с грунтом. Подобные емкостные накопители есть во многих высоковольтных исследовательских центрах. Их габариты достигают десятков метров, масса — десятков тонн. Такие не доставишь на территорию электрической подстанции или другого промышленного объекта, чтобы в полном масштабе воспроизвести условия растекания токов молнии. Это удается разве что случайно, когда объект соседствует с высоковольтным стендом — например, в открытой установке Сибирского научно-исследовательского института энергетики импульсный генератор высоких напряжений размещен рядом с ЛЭП в 110 кВ. Но это, конечно, исключение.

ИМИТАТОР УДАРА МОЛНИИ

На деле же речь должна идти не об уникальном эксперименте, а о рядовой ситуации. В полномасштабной имитации тока молнии крайне нуждаются специалисты, поскольку только так можно получить достоверную картину распределения токов по подземным коммуникациям, измерить последствия воздействия электромагнитного поля на устройства микропроцессорной техники, определить характер распространения скользящих искровых каналов. Соответствующие испытания должны стать массовыми и производиться до ввода в эксплуатацию каждого принципиально нового ответственного технического объекта, как это давно делается в авиации, космонавтике. Сегодня нет иной альтернативы, кроме создания мощного, но малогабаритного и мобильного источника импульсных токов с параметрами тока молнии. Его макетный образец уже существует и успешно испытан на подстанции «Донино» (110 кВ) в сентябре 2005 г. Все оборудование разместилось в заводском прицепе от серийной «Волги».

Мобильный испытательный комплекс построен на основе генератора, который преобразует механическую энергию взрыва в электрическую. Этот процесс в основном хорошо известен: он имеет место в любой электрической машине, где механическая сила движет ротор, противодействуя силе его взаимодействия с магнитным полем статора. Принципиальное различие же состоит в исключительно высокой скорости выделения энергии при взрыве, быстро разгоняющего металлический поршень (лайнер) внутри катушки. Он за микросекунды вытесняет магнитное поле, обеспечивая возбуждение высокого напряжения в импульсном трансформаторе. После дополнительного усиления импульсным трансформатором напряжение формирует ток в испытуемом объекте. Идея этого устройства принадлежит нашему выдающемуся соотечественнику, «отцу» водородной бомбы академику А.Д. Сахарову.

Взрыв в специальной высокопрочной камере разрушает лишь катушку длиной 0,5 м и лайнер внутри нее. Остальные элементы генератора используют многократно. Схему можно настроить так, чтобы скорость роста и длительность формируемого импульса соответствовали аналогичным параметрам тока молнии. Причем его удается «вогнать» в объект большой длины, например, в провод между опорами ЛЭП, в контур заземления современной подстанции или в фюзеляж авиалайнера.

При испытаниях макетного образца генератора в камеру заложили всего 250 г взрывчатки. Этого достаточно для формирования импульса тока амплитудой до 20 000 А. Правда, для первого раза на столь радикальное воздействие не пошли — ток ограничили искусственно. При запуске установки раздался лишь легкий хлопок погашенного камерой взрыва. А проверенные затем записи цифровых осциллографов показали: импульс тока с заданными параметрами успешно был введен в молниеотвод подстанции. Датчики отметили скачок напряжения в различных точках контура заземления.

Ныне штатный комплекс в процессе подготовки. Он будет настроен на полномасштабную имитацию токов молнии и при этом разместится в кузове серийного грузовика. Взрывная камера генератора рассчитана на работу с 2 кг взрывчатки. Есть все основания считать, что комплекс окажется универсальным. С его помощью можно будет испытывать на устойчивость к воздействию тока и электромагнитного поля молнии не только электроэнергетические, но и другие крупногабаритные объекты новой техники: АЭС, телекоммуникационные устройства, ракетные комплексы и т.д.

Хотелось бы закончить статью на мажорной ноте, тем более, что для этого есть основания. Ввод штатного испытательного комплекса позволит объективно оценивать эффективность самых современных защитных средств. Тем не менее, какая-то неудовлетворенность все равно остается. Фактически человек снова идет на поводу у молнии и вынужден мириться с ее своеволием, теряя при этом немало денег. Применение средств молниезащиты приводит к увеличению габаритов и веса объекта, растут затраты дефицитных материалов. Вполне реальны парадоксальные ситуации, когда размеры защитных средств превышают таковые защищаемого конструктивного элемента. В инженерном фольклоре хранится ответ известного авиаконструктора на предложение спроектировать абсолютно надежный самолет: такую работу можно выполнить, если заказчик смирится с единственным недостатком проекта — самолет никогда не оторвется от земли. В молниезащите сегодня происходит нечто подобное. Вместо наступления специалисты держат круговую оборону. Чтобы вырваться из порочного круга, нужно понять механизм формирования траектории молнии и найти средства управления этим процессом за счет слабых внешних воздействий. Задача сложная, но далеко не безнадежная. Сегодня ясно, что молния, движущаяся от облака к земле, никогда не ударяет в наземный объект: от его вершины навстречу приближающейся молнии прорастает искровой канал, так называемый встречный лидер. В зависимости от высоты объекта он вытягивается на десятки метров, иногда на несколько сотен и встречает молнию. Конечно, это «свидание» происходит не всегда — молния может промахнуться.

Но вполне очевидно: чем раньше возникнет встречный лидер, тем дальше он продвинется к молнии и, значит, больше шансов на их встречу. Следовательно, нужно научиться «тормозить» искровые каналы от защищаемых объектов и, напротив, стимулировать от молниеотвода. Основание для оптимизма внушают те весьма слабые внешние электрические поля, в которых формируется молния. В грозовой обстановке поле у земли около 100-200 В/см — примерно такое же, как на поверхности электрического шнура утюга или электробритвы. Раз молния довольствуется такой малостью, значит столь же слабыми могут быть управляющие ею воздействия. Важно только понять, в какой момент и в каком виде они должны быть поданы. Впереди трудная, но интересная исследовательская работа.

Академик Владимир ФОРТОВ, Объединенный институт физики высоких температур РАН, доктор технических наук Эдуард БАЗЕЛЯН, Энергетический институт им. Г.М. Кржижановского.

Гроза – явление, которое одновременно и завораживает и пугает, ведь предугадать, куда ударит небесный заряд, невозможно. И хоть вероятность прямого попадания молнии в человека крайне мала, ежегодно насчитывается немало пострадавших от этой грозной стихии. Как бы там ни было, знание о том, как уберечься от молнии во время непогоды уж никак не помешает.

Правила безопасности во время грозы

1. Что делать во время грозы, находясь в квартире

Безопасней всего во время грозы человек может чувствовать себя только в закрытом помещении. Однако, и тут нет стопроцентной гарантии остаться невредимым, если не соблюдать меры предосторожности:

Во время непогоды не подходите к окнам и не выходите на балкон;

Не пользуйтесь стационарным телефоном – если дом плохо защищен от ударов молнии или эта защита нарушена, электрический заряд может пройти по проводам и ударить через телефонную трубку;

Воздержитесь от пользования душем и умывальником – в случае неисправного заземления, водопроводные трубы могут стать отличным проводником электричества после удара молнии. По этой же причине, лучше держаться подальше от труб отопления;

На всякий случай, выключите электроприборы из сети: как минимум – от скачков напряжения они могут выйти из строя, как максимум – короткое замыкание может привести к пожару.

2. Что делать, если гроза застала вас на улице

В городской местности во время раскатов грома можно чувствовать себя в относительной безопасности, так как здесь находится множество объектов, которые более привлекательны для молнии, нежели одинокий прохожий. Однако, бывали случаи когда разряд попадал в человека, вопреки тому, что вокруг было множество более подходящих целей. Поэтому, во время грозы лучше как можно быстрее найти убежище в доме или, как минимум, спрятаться в парадной. А пока вы находитесь на улице, следуйте таким рекомендациям:

Каким бы сильным не был ливень, не пользуйтесь зонтом – он может выступить в роли громоотвода;

Не прячьтесь под навесом городских остановок общественного транспорта – в большинстве своем они представляют собой металлическую конструкцию, а металл является хорошим проводником, что увеличивает шансы притянуть молнию;

3. Что будет, если молния попадет в транспорт

Если во время небесных вспышек вы находитесь внутри транспорта, будь то поезд, автобус или машина, можете не переживать за свою безопасность. Ущерб может ожидать само средство передвижения, а водителю и пассажирам бояться нечего. Главное, чтобы транспорт был герметично закрыт. В таких случаях физика на нашей стороне – по принципу клетки Фарадея разряд молнии потечет по поверхности корпуса и через колеса уйдет в землю.

4. Как уберечься от молнии в парке или лесу

Находясь среди деревьев, не стоит искать в них защиту во время грозы, лучше держаться от них подальше, особенно от высоких экземпляров. Имейте в виду, что молния, вопреки сложившемуся мифу может ударять в одно и тоже место несколько раз подряд, поэтому не нужно бежать к дереву, которое уже подверглось атаке с неба. Стоит также учесть, что электрический разряд, после удара молнии, может распространяться по земле до 30 метров вокруг.

Чтобы уберечься от молнии в лесу или парке, прячьтесь в кустах – в них практически никогда не попадает заряд. Прячась в растительности, пригнитесь или присядьте на корточки, но не касайтесь земли руками или «пятой точкой»;

Возьмите себе на заметку: лучшие проводники среди деревьев это тополь, дуб, ясень и верба – близость к ним не сулит ничего хорошего. А вот липа, орех, ель, пихта и бук представляют меньшую опасность – в них содержится большое количество масел, что увеличивает сопротивление тока. Это значит, что между дубом и орехом, молния скорее выберет в роли жертвы дуб.

5. Как спастись от молнии в открытом поле

Находиться в «чистом» поле во время грозы крайне опасно в силу того, что вокруг нет высоких мишеней, которые способны притянуть молнию. Поэтому ваша первостепенная задача должна состоять в том, чтобы не стать самым высоким объектом на данной территории.

Не приближайтесь к холмам, каменистым возвышенностям. От кустарников в данном случае тоже стоит держаться подальше;

Постарайтесь отыскать низину и прячьтесь там;

Опуститесь на корточки и сгруппируйтесь в позу младенца. Однако не стоит ложиться и опираться на землю руками – чем больше с ней точек соприкосновения, тем больше шанс поражения электрическим зарядом, который распространяется по земле после удара молнии.

6. Что делать, если гроза застала вблизи водоема

Услышав гром в момент купания в озере – скорее выбирайтесь на сушу. Находиться в воде во время грозы крайне опасно:

Во-первых, вода отличный проводник, а значит, охотно притягивает молнию;

Во-вторых, купаясь в водоеме, ваша голова над поверхностью водной глади будет самой высокой точкой, что делает ее мишенью номер один;

В-третьих, в силу сверх проводимости воды, разряд молнии может поразить все живое в радиусе 100 метров от точки удара.

Находясь в лодке во время грозовой стихии, как можно быстрее пристаньте к берегу. Если это не представляется возможным, следует подложить под себя резиновый сапоги, спасательный жилет или другие вещи, которые не проводят электричество. Пригнитесь как можно ниже и если есть брезент, укройтесь им так, чтобы дождевая вода стекала за борт, но края полиэтилена при этом не должны касаться воды.

7. Как определить расстояние до молнии

Благодаря разнице между скоростью света (вспышка) и скоростью звука (гром), вычислить, насколько далеко или близко от вас сверкает молния довольно просто – посчитайте, сколько пройдет секунд между вспышкой и раскатом грома, а затем количество секунд поделите на 3 и получите расстояние в километрах, которые вас разделяют. Если гром звучит уже через 3-4 секунды, значит – молния бьет примерно в километре от вас, а это сулит опасностью и значит, пора искать укрытие.

8. Что делать, если человека ударила молния

Далеко не всегда прямое попадание разряда молнии в человека сулит для него неминуемой смертью – по некоторым данным около 90% остаются в живых, хоть и получают серьезные повреждения тела. В основном страдает мозг, сердце и легкие – именно через эти органы проходит основной разряд. Поэтому, чтобы спасти пострадавшего, стоит незамедлительно перенести его в более безопасное место и проверить признаки жизни. Если дыхание и сердцебиение отсутствуют – приступайте к искусственному дыханию и массажу сердца. Кстати, бояться прикасаться к человеку, пораженному молнией не стоит – заряд уже прошел через него и током вас не ударит.

Эти советы помогут вам уберечься от молнии и более грамотно организовать свои действия, чтобы не пострадать во время грозы. Берегите себя.

По материалам сайта «Как надо»

____________________
Нашли ошибку или опечатку в тексте выше? Выделите слово или фразу с ошибкой и нажмите Shift + Enter или .

Большое спасибо за Вашу помощь! Мы исправим это в ближайшее время.

Молниезащита зданий и сооружений. Защита от молний внутренняя и внешняя

Время чтения: 12 минут

Грозовые разряды атмосферного электричества могут вызывать повреждения изоляции, аварии в электроустановках, несчастные случаи с людьми и разрушение зданий и сооружений.

Возникновение грозовых разрядов

При нагреве солнцем земной поверхности возникают восходящие потоки воздуха, насыщенные водяными парами. Более мелкие частицы воды заряжаются отрицательно, более крупные — положительно.

Под действием ветра и силы тяжести происходит разделение разноименно заряженных частиц. Частицы воды в облаках, поднявшихся на высоту более 5 км, замерзают и разрушаются. Положительно заряженные кристаллики располагаются в верхней части облака, на высоте 5—7 км, отрицательно заряженные — на высоте 2—5 км. В результате разделения зарядов в облаках образуются так называемые объемные заряды, и различные части грозового облака имеют разную величину и знак заряда. Заряды нижней части облака наводят на земле заряды противоположного знака.

Между облаками и землей, а также между разными частями облака или между разными облаками возникают поля высокой напряженности — несколько десятков тысяч вольт на сантиметр. При напряженности поля около 30 кВ/см происходит ионизация воздуха, начинается пробой — так называемый лидерный разряд (слабосветящийся канал диаметром 10—20 м), движущийся со средней скоростью до 200—300 км/сек.

Под действием поля заряды на земле — на участках с повышенной проводимостью (влажные места, электропроводящие слои и т. д.) или с высокими объектами (холмы, дымовые трубы, водонапорные башни, опоры, провода линий электропередач, деревья, отдельно стоящие на равнине здания и т. д.) — движутся навстречу лидеру.

Лидер направляется к тому объекту, по отношению к которому напряженность электрического поля наиболее высока, и тогда возникает мощный встречный разряд, распространяющийся со скоростью, соизмеримой со скоростью света (рис. 1). При этом за время меньше одной десятитысячной доли секунды через пораженное сооружение проходит ток, достигающий сотен тысяч ампер, под действием которого плазма разогревается до нескольких десятков тысяч градусов и начинает ярко светиться.

Световой эффект разряда воспринимается как молния, а взрывообразное расширение воздуха в канале разряда вызывает звуковой эффект — гром.

Рис. 1. Схема процесса электризации грозового облака и развития грозового разряда на наземный объект.

Как показали измерения, примерно 3/4 разрядов возникает из отрицательно заряженных частей облака, 1/4 разрядов — из положительно заряженных зон. Вслед за первым могут возникнуть еще несколько последовательных разрядов.

Грозовые разряды характеризуются следующими параметрами:

• амплитуда тока — наиболее часто наблюдается ток 10—30 кА, в 5—6% измерений ток достигал величины 100—200 кА;

• длина фронта волны — длительность нарастания тока молнии до его максимального значения (обычно 1,5—2 мкс).

Значительно реже наблюдают шаровую молнию, представляющую собой светящийся плазменный шар диаметром до полуметра медленно движущийся под влиянием потоков воздуха вдоль поверхности земли. Шаровая молния проникает в здания через дымовые трубы, окна, двери.

Если шаровая молния касается живого организма, бывают смертельные поражения, возникают сильные ожоги, а при соприкосновении с сооружениями происходит взрыв и механическое разрушение объектов. Природа шаровой молнии еще недостаточно изучена.

Защита от молний это достаточно важный пункт в электрической цепи дома. Если в многоквартирном доме этим занимается организация, обслуживающая электрическую сеть, то в частном жилом фонде зачастую приходится все брать в свои руки. Но прежде чем начать наш рассказ, мы достаточно в очень краткой форме постараемся рассмотреть, что такое молния и какая она бывает. Молния — это природный разряд электричества.

Условия возникновения молний.

1. Мощные вертикальные движения воздушных масс.

2. Достаточно влажный воздух.

3. Большой вертикальный градиент температуры.

Классификация молний.

По развивающему каналу.

1. Направленные в низ молнии.

2. Направленные в верх молнии.

По характеру заряда.

1. Отрицательные молнии (90%).

2. Положительные молнии (10%).

Молния состоит из одного или нескольких ударов.

1. Короткий удар молнии до 2мс.

2. Длинный удар молнии более 2мс.

Итак наше введение закончено, как вы уже успели заметить, что мы действительно в очень краткой форме постарались вам напомнить багаж школьных знаний. Ну, а теперь переходим непосредственно к нашему сегодняшнему рассказу.

Воздействие тока молнии на здания и сооружения

Прямой удар молнии вызывает расщепление опор, расплавление конструкций, воспламенение и взрыв, механическое разрушение, недопустимый нагрев металлических конструкций от протекающего по ним в землю тока молнии. По данным эксплуатации молния прожигает листовой металл толщиной 4 мм.

Электростатическая индукция проявляется в создании на изолированных от земли металлических конструкциях и проводниках высокого потенциала, приводящего к пробою на землю, который в свою очередь может вызвать поражение людей током, воспламенение и взрыв взрывоопасных смесей, а также нарушение изоляции в электроустановках.

Электромагнитная индукция проявляется в индуктировании при токе разряда на протяженных изолированных друг от друга и от земли металлических конструкциях и коммуникациях (балки, рельсы, трубопроводы и т. п.) высоких потенциалов, которые могут вызвать искру или дугу.

При грозовом разряде происходит также занос высоких потенциалов по внешним наземным конструкциям и коммуникациям.

Здания и сооружения, в зависимости от их назначения и интенсивности грозовой деятельности в районе их местонахождения, должны иметь защиту от поражения молнией или вызванных разрядом молнии вторичных воздействий.

Территория от Урала до Красноярска и южней Красноярска, от Красноярска до Хабаровска относится к. местностям со средней продолжительностью грозовой деятельности от 40 до 60 часов. В районе северней Красноярска, от Красноярска до Николаевска-на-Амуре, средняя продолжительность грозовой деятельности от 20 до 40 часов. Повышенная грозовая деятельность от 60 до 80 часов в год наблюдается в районах Горного Алтая (Бийск—Горно-Алтайск — Усть-Каменогорск). Молниезащита зданий и сооружений должна выполняться по проектам, разработанным специализированными организациями.

Молниезащита.

Молниезащита бывает внутренней (Защита от вторичных воздействия тока молнии)и внешней (Защита от прямых ударов молнии.). Это если посмотреть в глубь вопроса, как бы два охранных контура, которые работая в паре друг с другом, могут почти на все 100% обезопасить ваше жилище.

Защита от прямых ударов молнии.

Зона действия молниеотвода

Действие молниезащитных устройств заключается в том, что вблизи защищаемого объекта устанавливается возвышающийся над ним металлический молниеприемник, надежно соединенный с землей. При возникновении грозового разряда, лидер, устремляющийся к земле, приближается к наиболее высокой точке, имеющей повышенную проводимость (такой точкой служит вершина заземленного молниеприемника), и разряд происходит на молниеприемник, минуя защищаемый объект.

Зоной защиты одиночного стержневого молниеприемника высотой h является конус высотой 0,92 h с основанием в виде круга радиусом 1,5 h (рис. 2).

Все сооружения, вписывающиеся в конус, будут защищены от прямого удара молнии с надежностью не менее 95% (зона Б). Внутри конуса высотой 0,85 h и радиусом основания 1,1 h надежность защиты составляет 99,5%. (Зона А).

Рис. 2. Зоны защиты одиночного стержневого молниеотвода. А – зона защиты с надежностью 99,5%; Б – зона защиты с надежностью 95%; 1 – молниеотвод; 2 – защищаемый объект.

Если площадь объекта больше защищаемой зоны, нужно увеличить высоту молниеотвода или устанавливать несколько молниеотводов.

Внешняя защита.(Защита от прямых ударов молнии.)

В первую очередь это молниеотвод, которой всегда устанавливается на самой высокой точке дома, соединенный проводником с вашей системой заземления.

Задача внешней системы молниезащиты состоит в том, чтобы на долю секунды раньше непосредственного контакта уловить разряд молнии и отправить его по токоотводам на заземление.

Молниеприемник, который устанавливается на крыше, обычно бывает двух видов.

1. Высокий металлический штырь.

2. Трос, протянутый вдоль всего конька крыши.

Есть еще один вариант и состоит он в том, что на крышу вашего жилья укладывается металлическая сетка, сваренная из арматур сечением 8 — 10 кв.мм, и с шагом ячеек обычно составляющих 2- 6м.

Но в принципе, между всеми этими способами молниезащиты особой разницы не существует. Задача у всех одна — уловить разряд молнии.

Сечение молниеприемника должно быть не меньше 12 кв.мм, но лучше конечно, чтобы ваш молниеприемник имел запас по сечению. При установке штыря всегда надо помнить, что он должен возвышаться над самой высокой точкой кровли не меньше чем на 30 см, то же самое относится и к тросовому приемнику.

Здесь так же следует помнить еще один момент. Зона, которую защищает громоотвод, примерно равна его высоте. То есть при высоте над землей к примеру 8м он защитит от попадания молнии территорию круга с радиусом равным 8 метрам. И ниже, мы постарались привести вам в пример ряд схематичных рисунков громоотводов и зон, которые они могут защитить.

Провод, по которому энергия молнии пойдет к заземлителю, лучше брать стальной сечением не меньше 10кв.мм или медный с сечением не меньше 6кв.мм. Здесь, это тот случай когда чем толще, тем лучше. Проводник соединяется с приемником сваркой или при помощи болтового соединения. Проводник не должен проходить мимо металлических элементов ближе чем на 30см.

Внутренняя защита. Защита от вторичных воздействия тока молнии

Основной мерой борьбы с возникновением внутри зданий или сооружений высоких потенциалов вследствие электростатической индукции при атмосферных разрядах является заземление всех проводящих элементов здания.

Для устранения влияния электромагнитной индукции в протяженных металлических элементах (трубопроводы, металлоконструкции и т. п.) последние надежно соединяют металлическими перемычками.

Для устранения заноса высоких потенциалов через воздушные и подземные коммуникации вводы сетей электроснабжения, радиофикации, сигнализации и связи выполняют кабельными и устанавливают вентильные разрядники (например РВН-0,5) и искровые промежутки, срабатывающие при увеличении напряжения.

Данный вид защиты обеспечивают спец устройства, которые обычно добавляются в схему домового щитка и ВУ (вводного устройства). Суть данных спец устройств в следующем — предположим, что молния и не попадает в дом, но во время грозы довольно часто происходят скачки напряжения. Это объясняется тем, что электромагнитное поле при ударе молнии может создавать импульсные токи в проводке и всевозможных устройствах.

Разряд необязательно должен ударить именно в дом — это может произойти и на расстоянии. Но если же все-таки молния попадает в дом, то в лучшем случае молниеотвод сбросит напряжение в заземлитель, но, а в худшем — разряд ударит по электрической сети вашего дома.

Даже когда энергия молнии стечет по молниеотводу, ток, возникающий в проводке, может привести к порче чувствительной аппаратуры. Ну, а при прямом воздействии, лучше и не представлять, что может произойти. И здесь нам бы хотелось представить вашему вниманию достаточно интересную таблицу — способов распространения высоковольтных атмосферных разрядов.

Таблица 1. Высоковольтный атмосферный разряд. Способы распространения.

Чтобы всего этого не произошло существуют специальные устройства — ограничители.

А. Ограничитель категории В.

Б. Ограничитель категории В+С.

В. Ограничитель категории С.

Существует так же ограничитель категории D. Выглядит точно так же, как и представленные нами на данном изображении ограничители. Как вы можете видеть данные устройства по своему внешнему виду напоминают обычные автоматические выключатели, только без рычага отключения. Все, что вам надо знать про ограничители перенапрежения (ОПН) — это то, что они устанавливаются между фазой и заземлением или нулевым проводом и заземлением. Задача ограничителей заключается в нейтрализации импульса перенапряжения.

На практике в основном используются три вида ограничителей — В, С, D.

1. Класс В — данные ограничители устанавливаются на в ходе в щит. Они предназначены для защиты от сверхвысокого напряжения или иначе говоря прямого удара молнии.

2. Класс С — устройства устанавливаются по схеме после ОПН класса В и служат защитой от наведенных токов.

3. Класс D — устанавливается, когда в вашем жилище находятся особо чувствительные приборы.

Применять всегда следует все три вида, потому что у них разный порог чувствительности, и ставить по схеме один за другим. ОПН рассчитаны как для однофазных сетей, так и для трех фазных.

Несколько схем подключения ограничителей:

Схема 1. Подключения ОПН, которые располагаются между входным автоматом и проводником заземления, сеть трехфазная.

Схема 2. Подключение ОПН, которые располагаются между входным автоматом и проводником заземления, сеть однофазная.

Схема 3. Подключение ОПН при однофазной цепи.

Рисунок 5. Применение ОПН различного класса для защиты аппаратуры, находящейся в данный момент в доме.

Изображения некоторых ОПН или УЗИП (устройство защиты от импульсных перенапряжений) линейки фирмы Legrand, а так же схемы их подключения:

Примечание. Помните, что все схемы даны для примера. Все может видоизмениться при использовании другого вида оборудования.

И напоследок нам бы хотелось дать вам один, наверное уже надоевший совет. Не экономьте на защите вашего жилища. И покупайте всю аппаратуру у проверенных продавцов. И тогда ни какие молнии будут не страшны ни вам, ни вашему жилью.

Защита от молний технических средств ПА

Защита зданий от прямого удара молниивыполняется созданием молниеотводов, состоящих из штыря (молниеприемника), находящегося над зданием, заземлителя и соединяющего их проводника. Обычно используют несколько молниеприемников и систему заземлителей. Система молниеотвода образует низкоимпедансный путь для прохождения тока молнии на землю, минуя структуры здания. Молниеотвод должен находиться как можно дальше от здания, чтобы ослабить эффект взаимной индукции, и в то же время достаточно близко, чтобы защитить здание от прямого попадания молнии. Для зданий с большой площадью крыши молниеотводы устанавливают на крыше и соединяют между собой и с заземлителем стальными полосами.

Заземлитель молниеотвода — выполняют отдельно от защитного заземления здания, но электрически соединяют с ним с целью выравнивания потенциалов и устранения возможных искрений.

Ток молнии, проходя по земле, создает на ней падение напряжения, которое может вывести из строя драйверы сетевых интерфейсов, если они не имеют гальванической развязки и расположены в разных зданиях (с разными заземлителями).

В линиях электропередачи разряд молнии принимается на экранирующий провод, который отводит молнию в землю через заземлитель. Экранирующий провод протягивают над фазовыми проводами, однако на фазовых проводах из-за э-м индукции наводится импульс э.д.с. Этот импульс проходит на трансформаторную подстанцию, где ослабляется искровыми разрядниками. Остаточный импульс проходит в потребительскую линию (рис.16.1а) и через силовой трансформатор — в цепи заземления СА (рис.16.4).

На СА молнии воздействуют через э-м импульс, который через э-м индукцию может привести к пробою изоляции устройств гальванической развязки и пережечь провода малого поперечного сечения, а также вывести из строя микросхемы.

Молниеотводы защиты от прямого удара молнии, не могут существенно уменьшить напряженность электрического поля атмосферных зарядов и никак не защищают аппаратуру от мощного э-м импульса во время грозы.

Пути прохождения импульса молнии. Наибольшая величина э-м помехи (наводки) получается при ударе молнии в близко расположенный молниеотвод. Поскольку напряженность магнитного поля спадает обратно пропорционально расстоянию от источника поля, одним из способов решения проблемы может быть отдаление кабелей от молниеотвода. Используются также э-м экранирование, полупроводниковые и газоразрядные защитные элементы.

Каждый электрик должен знать:  Схема подключения розетки и выключателя в одной распределительной коробке

Для оценки напряжения и тока, наводимые молнией в кабелях ПА предположим, что ток молнии проходит по длинному вертикально расположенному молниеотводу, а здание не имеет экранирующих железобетонных конструкций. Тогда напряженность магнитного поля внутри здания на расстоянии R от молниеотвода будет описываться законом полного тока 2πRH = i. Рассмотрим проводящую рамку (контур) длиной I и шириной d, расположенную в плоскости молниеотвода. Если ширина рамки достаточно мала, то можно пренебречь неоднородностью поля внутри рамки, а напряженность поля вдоль ее длины считать однородной. Тогда э.д.с., наведенная в рамке, по закону Фарадея:

где μ = 4π 10 -7 Гн/м; μ= 1, S = >2 ) на расстоянии от молниеотвода R = 5м получим Vmах = 11 кВ.

Поскольку молнии с такими параметрами встречаются редко, для типового случая di(t)/dt = 20 кА/мкс получим Vmax = 800 В.

На рис. 16.13 приведен один из наихудших случаев возникновения большой э.д.с. в кабеле промсети. Неэкранированная витая пара промсети проходит параллельно молниеотводу и шине заземления, образуя контур площадью S на расстоянии R от молниеотвода. Кабель имеет гальваническую развязку с 2-х сторон. Молния наводит в контуре э.д.с., равную сумме напряжений на емкостях устройств гальванической развязки V1 + V2 = VK, величиной до 11 кВ при указанных исходных данных.

Известно, что форма тока в контуре совпадает с формой тока молнии (рис.16.7) и при максимальном токе молнии 200 кА максимальный ток в контуре составит 380 А. При диаметре провода 1мм омическое сопротивление контура составит 0.22 Ом и при э.д.с. в контуре 11 кВ ток к.з. был бы равен 50 кА при активном сопротивлении контура.

Если кабель экранирован и заземлен с 2-х сторон, то наведенный ток может расплавить провод заземления экрана. Если экран заземлен с одной стороны, то на 2-м его конце наводится напряжение относительно земли от 800В до 11 кВ.

Рис.16.14. Появление высоких напряжений на элементах гальванической развязки при ударе молнии

Такие напряжения и токи действительно возникают в зданиях, не имеющих в стенах металлической арматуры или других экранирующих поверхностей для защиты от магнитного поля молнии. Если здание выполнено из железобетона, то металлическая арматура в бетоне образует экранирующую сетку, которая, в зависимости от расстояния между прутьями и их толщины, а также наличия окон и дверных проемов, может ослабить магнитное поле в несколько раз.

Одним из способов уменьшения влияния разрядов молнии на кабели является отдаление молниеотвода от здания или кабелей от молниеотвода. В частности, если молния возникает на большом расстоянии от кабелей (например, между 2-мя облаками на высоте 300м), то в приведенной оценке ток и напряжение наводки будут примерно в 100 раз меньшими.

Несмотря на то что молниеотводы расположены вертикально, в металлических конструкциях зданий, в том числе в прутьях арматуры, наведенный ток проходит не только параллельно молниеотводу, но и перпендикулярно ему, создавая магнитное поле в контурах, расположенных не только вертикально, но и горизонтально.

Вторым следствием удара молнии в молниеотвод является повышение потенциала заземления молниеотвода и соединенного с ним заземления здания на несколько киловольт. Если при этом кабель соединяет интерфейсы систем передачи данных, расположенные в разных зданиях (рис.16.15), то напряжение между заземленными частями аппаратуры в разных зданиях может превысить напряжение пробоя изоляции элементов гальванической развязки интерфейсов V1 + V2 (рис.14.15). Например, при токе молнии 50 КА и сопротивлении заземления 0.2Ом, это напряжение достигнет 10 кВ, что достаточно для пробоя типовых модулей гальванической развязки.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Защита от молний

В средних широтах европейского континента сильные грозы бывают часто, и случаи, когда люди или сооружения страдают от попадания молний, не настолько редкие, как хотело бы. По статистике в Украине в год около 30 человек погибает от удара молнии. Предотвратить же трагические последствия попадания молний не только возможно, но и достаточно несложно.

Последствия попадания молнии

Из всего количества молний к земле идут только 25—30%. При этом во время накопления потенциала образуется так называемый разряд-лидер. Между облаком и землей он движется хаотично, как бы намечая траекторию будущей молнии. Любопытно, что молния состоит, как правило, из трех разрядов, но из-за большой скорости мы воспринимаем его как один. Основным поражающим фактором молнии являются кратковременные электрические импульсы колоссальной энергии. Длительность их составляет 1–10 микросекунд. При этом мощность заряда до нескольких сотен, а то и тысяч киловатт, а сила тока до 500–1000 ампер.

Если защита дома от молний не выполнена, то в случае попадания молнии могут случиться такие бедствия:

— физические разрушения строений и конструкций;

— поражение электрическим током;

— возникновение наведенного электрического потенциала. Это означает появление во внутренней сети питания электростатической и электромагнитной индукции. Чаще всего наведенная индукция возникает при попадании молнии в металлические части здания. Наведенная индукция сохраняется несколько минут и сама может стать поражающим фактором, например, привести к пожару, вызвать удары током, короткие замыкания, выход из строя бытовой техники.

Попадание молнии в человека, к сожалению, в большинстве случаев оканчивается летальным исходом. Тем же, кому повезет больше, в лучшем случае отделаются сильными ожогами.

От чего зависит вероятность попадания молнии?

Вероятность поражения молнией того или иного строения не всегда одинакова. Она зависит от:

— высоты постройки;
— местности, в которой она находится;
— климатического пояса;
— наличия поблизости высоких деревьев или поле высоких домов;
— влажности воздуха.

Согласно инструкции ПУЭ (Правила устройства электроустановок) оборудование постройки молниеотводом следует выполнить в обязательном порядке, в случае если годовое число гроз в данной местность не менее 20. Но есть районы, в которых оснащение молниезащитой не является обязательной.

Важно помнить, что молния вполне может попасть несколько раз в одно и то же место, причем не только в течении года, а даже в течении одной грозы. В предгрозовом ионизированном воздухе статический заряд часто накапливается на верхушке высотного сооружения, создается разность потенциалов. Поэтому такие объекты и «притягивают» молнию.

Любая мачта, например, радиоантена или мачта сотовой связи, способна притягивать в зону своего расположения значительное число молний. Поэтому соседство с такой вышкой совершенно нежелательно. Важно знать, что вероятность попадания молнии в конкретный объект поддается расчету. Для этого существуют специальные методики и программы. Вместе с тем, никакие документы и нормы не запрещают сделать молниеотвод своими руками.

Устройство молниезащиты дома

Защита дома от молний выполнялась людьми еще испокон веков. Так, например, в старину на Руси в грозу было принято бить в колокола, дабы отвести кару небесную. Реально работающий молниеотвод был изобретен около 200 лет назад, президентом Америки Бенджамином Франклином.

На сегодняшний день действия, направленные на защиту сооружений от молний, регламентируются нормативом ДСТУ Б В.2.5-38:2008. Он определяет требования к молниеотводам.

Любой молниеотвод состоит из трех основных частей:

— молниеприемника (принимает на себя удар молнии);
— токоотвода (проводит ток к заземлению);
— заземления (разряжает электрический потенциал на землю).

При этом молниеприемник может быть трех типов:

— стержневой;
— линейный;
— сетчатый.

1. Стержневой молниеприемник — это металлический стержень (трубка, уголок, прямоугольник) достаточной площади сечения от 1—2 см2 и более. Длинна его не менее 0,25 м, но, как правило, от 0,5 м до 2 м. Стержневой молниеприемник идеальный вариант для всех видов металлических крыш.

Молниеприемник надо устанавливать на такую высоту, чтобы в зону защиты (как бы условный конус) попадал полностью защищаемый объект. Для этого диаметр основания конуса должен быть не более тройного значения высоты. Для молниеотводов такого типа используют специально устанавливаемые мачты, верхушки высоких деревьев. Верхний конец молниеотвода выступает над кроной дерева не менее чем на 0,5 м. Дерево же должно находится от постройки не далее чем на 10 м. Молниеотвод может быть установлен на мачту, которая крепится на верхней точке крыши здания. Наименьшей надежностью обладает, условно говоря, поверхность зоны защиты. В глубине конуса она выше, при этом чем острее конус тем выше степень защиты.

Расчета высота молниетвода проще всего выполнять таким образом: высота приподнимания молниеотвода равна защитному расстоянию по горизонтали от него (3 м молниеотвод защищает 3 м, 7 м — 7м и т.д.). Вместе с тем, рассчитать радиус защиты громоотвода для дома можно с помощью такой формулы (h — расстояние от пика молниеотвода до самой высокой точки дома):
R=1,732•h.

Громоотвод устанавливают на жерди, толщина которой должна быть 10—15 см, пишет iBud.ua. Жердь крепится к крыше дома. Верхний конец молниеотвода делают такого же диаметра, как и остальные его части. Можно использовать проволоку большего диаметра (максимальная толщина — 14 мм). Для верхнего конца громоотвода используйте стальной уголок, полосы, трубы (рекомендуемое сечение 50—60 мм2). Из проволоки вверху лучше всего сделать закрепленную петлю, трубу заварить или сплющить.

Закрепить монлиеприемник, как отмечалось, можно на крыше дома, телевизионной мачте, флюгере или рядом растущем дереве. Если установка молинеотвода выполняется на дерево, то крепление проводиться с помощью синтетического материала. При этом дом должен попадать в защитный конус. Если молниеотвод устанавливается на дымовую трубу, то надо позаботиться о надежном креплении. Ветер может сорвать громоотвод с трубы.

2. Линейный молниеотвод — натянутый вдоль конька крыши трос сечением не менее 0,5 см. Используется такая защита от молний для домов с шиферной или деревянной крышей.

Трос протягивается вдоль конька крыши и закрепленный на деревянных стержнях. При этом каждый конец троса соединен с заземлением. Токоотводы укладывают с каждой стороны троса вдоль стен дома в защитные трубы и присоединяют к электродам заземления. Высота троса над коньком крыши должна быть не менее 0,5 м.

3. Сетчатый молниеотвод — это сетка из проволоки или арматуры с шагом ячейки 6–12 м (минимальный шаг ячейки — 3м, согласно ДСТУ Б В.2.5-38:2008 «Инженерное оборудование зданий и сооружений. Устройство молниезащиты зданий и сооружений»). Для сетки используется, как правило, проволока или трос диаметром 6 мм. Сетка также устанавливается на высоте от 0,5 м над кровлей. При этом соединяется она с несколькими заземлениями по периметру здания. Расстояние между точками заземления не должно превышать 12 м. Если на крыше дома есть выступающие архитектурные элементы, например, башни или трубы, то на них так же могут монтироваться молниеприемники. Они должны выступать над верхним краем на 0,5 м и надежно заземляться.

Токоотвод — это толстый провод сечением не менее 0,5 см.

Заземление — металлический стержень любого профиля и сечения, соединенный с токоотводом и уходящий в землю не менее чем на 50 см.

Во всех типах защиты дома от молнии применяют токоотводы и молниеприемники диаметром не менее 6 мм. В качестве заземления применяется электрод, который может быть как вертикальным, так и горизонтальным. Длина заземлителя 2—3 м, глубина закапывания не менее 1 м. Для соединения частей молниеотвода применяют сварные или же болтовые соединения. Качество последних периодически необходимо проверять.

Допускается заземлять молниеотвод на арматуру фундамента, если он не полностью укрыт слоем гидроизоляции, и если влажность грунта больше 3%. Электроды должны быть вкопаны так глубоко, чтобы достигать влажных слоев почвы. А удельное сопротивление почвы не должно быть слишком высоким, желательно, не более 200 Ом.

Защита электродов от коррозии реализуется путем применения оцинкованной стали или меди. Не допускается покрытие электродов токонепроводящей эмалью или битумом.

Часто приходится слышать мнение, что металлическая кровля, например, листовая медь или металлочерепица в достаточной степени защищает от удара молнии и не требует обустройства дополнительной защиты. К сожалению, это не совсем так:

1 — любой молниеприемник нужно заземлять, а при укладке металочерепицы — это, как правило, не делается;

2 — толщина металла в этого покрытия менее миллиметра, и от серьезной молнии такая защита не спасает. Молния большой мощности просто прожигает металл.

Новые технологии молниезащиты дома

Перечисленные конструкции молниеотводов являются, образно говоря, механическими, хотя и основанными на законах физики. Однако существуют более продвинутые технологии защиты дома от молнии, распространение которых сдерживается высокой стоимостью. Речь идет о так называемых ионизаторах. Суть действия устройства в том, чтобы создать противонаправленный разряд-лидер.

Первые приборы такого типа действовали на основании ионизированного излучения радиоактивного изотопа. Более поздние модификации стали чисто электронными и изотопы уже не используют.

При подаче на такой прибор напряжения возникает столб ионизированного воздуха, на который замыкается разряд молнии. Таким образом, это уже не молниеотвод, а своего рода ловушка, которая притягивает к себе молнии с достаточно большой территории. Однако и стоимость их более 1000 долларов, что в десятки раз дороже простого молниеотвода, который можно собрать своими руками, затратив лишь 2—3 сотни гривен.

В мире вся внутренняя электрическая сеть жилого объекта, включая защиту от молний и защиту от всевозможных внешних воздействий, закладываются на этапе проекта дома. То есть система молниезащиты представляет собой часть интегрированной сети объекта, а не отдельную структуру, не имеющую отношение к электропитанию.

В современных многоквартирных монолитных домах все участки цепи от источников электроснабжения заземляются на внутреннюю арматуру несущих стен, а через нее — на арматуру фундамента.

Профилактика и уход за молниезащитой

Чтобы молниеотвод выполнял свою функцию, его надо не только правильно собрать, но и периодически выполнять профилактические работы. Свойства молниеотвода зависят не только от конструкции, но и от условий эксплуатации, например, от свойств грунта в месте предполагаемого заземления. Чрезмерно сухой, песчаный или каменистый грунт плохо проводит электрический ток. В этом случае грунт стоит увлажнить, например, соляным раствором, либо просто добавить соль в состав грунта. Соль – хороший проводник, особенно при намокании во время дождя. Можно так же добавить в грунт древесный уголь, который тоже хорошо проводит ток. Важно помнить, что заземление не стоит делать, где попало. Электрод должен быть заглублен в землю не ближе 5 метров от дорожек, проходов и самого здания.

Необходимо следить, чтобы в местах собранных контактов не образовывалась ржавчина. Они были не испачканы маслом, краской или грязью. Места несварных соединений надо перемотать изолентой и покрыть слоем гидроизолирующего материала.

Профилактических осмотр молниеотводов производят ежегодно весной перед началом периода гроз. Раз в 2—3 года места соединений рекомендуется разобрать, проверить контакты, очистить их от окиси или ржавчины, и соединить по-новому. Желательно, не реже раза в три года проверять состояние находящегося в земле электрода. Если через коррозию его сечение заметно уменьшилось, электрод заземлителя следует заменить.

Молниеотводы (защита зданий от удара молнии)

  • Фото: Молниеотводы (защита зданий от удара молнии)

О природе грозы.

Возникновению грозы предшествует ряд причин. Накапливающиеся облака получают отрицательные электрические заряды в основном благодаря трению кристалликов льда, из которых состоят облака, других частиц (примесей) о восходящие потоки теплого воздуха. Растительность на земле выделяет в атмосферу достаточно, большое количество эфирных масел. Эти масла в процессе их разложения образуют ионы, которые способствуют накоплению электрических зарядов в облаках. Этим и объясняется то, что грозы обычно бывают в местностях с довольно обширной растительностью. В пустынях гроз почти не бывает. Там они могут иметь место только тогда, когда ветер приносит уже заряженные облака. В умеренных широтах грозы начинаются весной (с появлением растительности) и заканчиваются осенью, когда растительность увядает.

С точки зрения физики — образуется как бы огромный конденсатор, где облако формирует одну обкладку конденсатора, а поверхность земли — другую обкладку. Величина заряда такого конденсатора в среднем составляет 100 кв/м². Возникновение коронного (светящегося) разряда, в обычном понимании «удара молнии», возможно там, где плотность зарядов наибольшая. Это обычно образующееся электрическое поле у высоких остроконечных предметов на земле (вершина дерева, наиболее высокие точки здания). В момент, когда напряженность поля у таких предметов достигает 25—30 кв/см², происходит разряд конденсатора «облако—земля». Такой разряд приобретает форму огромной искры-молнии. Длина такой искры может быть от сотен метров до нескольких километров при температуре разряда до 10 000°.

Звуковое сопровождение молнии — гром — продолжается и после разряда по той причине, что канал, через который произошел разряд, при охлаждении резко сжимаетвоздух.

Грозовой разряд, кроме своей обычной линейной формы, может приобретать и форму шара. Этот шар является довольно устойчивым образованием. Он может существовать до нескольких десятков секунд. Причины образования шаровой молнии и ее природа до настоящего времени полностью не изучены. Но есть основания полагать, что это быстро вращающийся пустотелый сгусток зарядов. По своему весу шаровая молния легче воздуха, поэтому она свободно перемещается с потоками воздуха. А это значит, что шаровая молния может легко проникнуть в помещение вместе со сквозняком (открытые окна, двери, проходы печных труб, любые щели). В помещении шаровая молния свободно перемещается вместе с потоками воздуха и во многих случаях сама покидает помещение. Важно помнить, что категорически запрещается любое движение людей при этом, так как любое движение создает вихревые потоки воздуха, которые могут втянуть в себя шаровую молнию. К примеру — человек побежал от шаровой молнии. За его спиной образуется поток воздуха. Шаровая молния может быть втянута в этот поток и следовать за бегущим. Возможен трагический исход. Оставаясь неподвижным, вы многократно увеличиваете шанс не быть пораженным шаровой молнией.

Устройство молниеотвода не дает защиты от шаровой молнии. Единственная рекомендация в этом случае — плотно закрытые окна, двери, вентиляционные отверстия (печные проемы) на все время грозового периода.

1 – молниеприемник; 2 – деревянная мачта; 3 – токоотводящий провод; 4 – заземлитель; 5 – место пайки (сварки); 6 – фундамент; 7 – уровень почвы.

Линейные же удары молнии полностью нейтрализует молниеотвод. Изготовить его сможет каждый, если имеются необходимые материалы, инструмент и знание правил возведения такого молниеотвода. Сама конструкция представляет собой:

  • молниеприемник в виде металлического стержня, поднятого на заданную высоту,
  • токоотводящий провод;
  • заземлитель. Остановимся на этом подробнее.

Подготовим деревянную мачту высотой от 2 до 3 метров (желательно из твердых пород дерева). Определим место на крыше, где есть возможность прочно укрепить мачту в вертикальном положении. Решаем, что будет основой токоприемника. Это может быть металлический уголок, проволока диаметром 5—8 мм, отрезок трубы диаметром от 10 до 15 мм. Прикрепляем токоприемник к мачте так, как указано на рис. 1. К нижнему концу молниеотвода присоединяется токоотводящий провод. Присоединение должно быть абсолютно надежным, иначе вся конструкция превращается в бутафорию, создающую лишь иллюзию защиты здания от молнии. Лучше всего будет соединение электросваркой или пайкой.

Таким же образом надо соединять токоотводящий провод с заземлителем. Заземлитель представляет собой лист металла не менее 0,5×0,5 метра, вкопанный в землю на глубину 1-го метра. В крайнем случае роль заземлителя может выполнить массивный металлический предмет, площадь соприкосновения которого с землей будет приблизительно равна площади соприкосновения листа металла 0,5×0,5 метра. Заземлитель закапывают в землю на расстоянии не менее 0,5—0,8 метра от фундамента защищаемого здания и обязательно вдали от входов и выходов из здания.

Токоотводящий провод должен иметь диаметр не менее 5 мм, иметь надежную изоляцию и обладать хорошей проводимостью. Лучше всего для этих целей подходит медный провод.

Если дом имеет неметаллическую кровлю, то молниеотвод может иметь вид натянутой вдоль конька крыши стальной проволоки, как изображено на рис. 2. Проволока фиксируется на высоте не менее 250 мм деревянными стойками, прикрепленными к фронтонам.

1 – молниеотвод в виде натянутой стальной проволоки; 2 – конек крыши; 3 – токоотвод; 4 – уровень почвы; 5 – заземлитель; 6 – место пайки (сварки); 7 – фундамент.

Часто возникает вопрос, насколько опасны наружные антенны в период грозы? Сразу скажем, что случаи попадания молнии в антенну (наружную) чрезвычайно редки. Но если конструкция антенны предусматривает ее достаточно большую высоту или значительную горизонтальную протяженность, то вероятность удара молнии сразу возрастает. Но даже если и не происходит прямого удара молнии, то при непосредственной близости от таких антенн грозовых разрядов в антеннах индуктируются статические электрические заряды. Они и могут повредить приемник, разрушить другие принимающие устройства. Решение вопроса в этом случае — установка большего по высоте молниеотвода. От ударов молнии в антенну он защитит, но заряды в антенне все равно могут индуктироваться. Ответ один — на время грозы превратить такую антенну в молниеотвод. Как? С помощью переключателя, который замкнет антенну на провод заземления, который для этой цели подводится к проводу антенны. Конечно, клеммы переключателя должны находиться на достаточном расстоянии друг от друга, чтобы исключить проскакивайте искры, так как величина проходящего через клеммы заряда может быть достаточно большой. Лучше всего для этой цели подойдет рубильник. По окончании грозы антенна путем переключения рубильника снова выполняет свое прямое назначение (рис. 3).

1 – наружная антенна; 2 – грозопереключатель; 3 – приемник (телевизор); 4 – заземлитель.

Защита от молний

Недавно одному работнику аэропорта удалось сделать невероятный снимок – запечатлеть самолет в тот самый момент, когда в него ударила молния. Халльдор Гудмундссон увидел гигантский электрический искровой разряд молнии из окна своего офиса, который находится к северо-западу от международного аэропорта Кефлавик в Исландии. Он включил камеру на своем телефоне и начал снимать, надеясь поймать момент, когда мощный разряд еще раз пронзит небо. Внезапно в момент съемки на экране появился самолет, который только что оторвался от взлетной полосы аэропорта – и почти тут же в него ударила молния.

Это было необыкновенное зрелище, но, как ни в чем не бывало, самолет продолжал набирать высоту, шел сильный дождь. «Было очень интересно наблюдать, но в то же время и немного страшно,» говорит Гудмундссон, которому удалось заснять такой невероятный момент.

Этот рейс из столицы Исландии Рейкьявика в Париж 3 октября завершился благополучно, и авиакомпания заверила канал BBC, что самолет не получил никаких повреждений. Представитель авиакомпании указал на то, что молния довольно часто попадает в самолеты. Как, в таком случае, удается избежать пострадавших среди людей и поломок самолета, если сила удара молнии около 1 млрд. джоулей – это четверть тонны в тротиловом эквиваленте?

За последние 40 лет из-за удара молнии разбились только 3 самолета. Хотя мировая статистика говорит, что за 15 лет использования каждого авиалайнера, регулярно совершающего полеты, молния попадает в него не менее 15 раз. Впрочем, такая статистика учитывает попадание в авиамашину не только во время полета, но и во время руления по взлетной полосе или стоянки. Если такие ситуации и приводят к поломкам, чаще всего они ограничиваются порчей радио и электрооборудования, которые на каждом борту всегда дублируются.

Удар молнии по самолету старой конструкции, в составе которой не предусмотрено защиты от сильных электрических разрядов, может привести к пожару на борту, повреждению обшивки и даже к разрушению или падению самолета. В таких машинах возможен также выход из строя бортовых электронных систем и навигационного оборудования. Попадание молнии прямо в топливный бак самолетов старой конструкции может вообще закончится для них катастрофой.

Однако в современной гражданской авиации (по крайней мере принадлежащей развитым странам, в том числе и России) самолеты, не имеющие защиту от небесного электричества, уже не эксплуатируются.

Разряд молнии выбирает путь наименьшего сопротивления. Поэтому если на пути встречается самолет, он проходит по его металлической обшивке, не проникая внутрь и не задевая важные устройства. Обшивка защищает экипаж, пассажиров и бортовые системы, объясняет Крис Хаммонд, бывший пилот и член Британской ассоциации лётчиков авиатранспортных компаний.

«В обшивке самолета есть металлическая сетка,» говорит он, «это своего рода марля, защищающая от сильного электромагнитного излучения, возникающего при ударе молнии».

Кроме того, бортовая электроника и соединения с топливным баком, например, экранированы медными сетками для их защиты от внешних электрических разрядов. Безопасность тщательно проверяется перед тем, как самолет поступает в эксплуатацию, в процессе проверки также имитируют удары молнии, чтобы убедиться –обшивка и внутренние экраны эти мощные разряды выдержат.

Фотография Гудмундссона, отмечает Хаммонд, является наглядной иллюстрацией того, что все работает точно так, как надо. Видно, что молния бьет в нос самолета, а затем выходит через хвост и край крыла. Самолет — словно летающая клетка Фарадея, на его борту все защищено.

Тем не менее, удар молнии вероятнее всего будет замечен людьми на борту. Например, как рассказывают пассажиры двух рейсов, пролетая над западной частью Лондона в апреле, при попадании молнии в самолет они слышали громкие хлопки, похожие на выстрелы.

Несколько лет назад, самолеты были не так хорошо защищены от ударов молнии. Хаммонд вспоминает, как однажды много лет назад он пилотировал самолет и ожидал, когда ему разрешат посадку в Сан-Франциско. После одной особенно сильной вспышки молнии, вспоминает он, «все экраны погасли». К счастью, самолет в то время был оснащен аналоговыми приборами и ему удалось сохранить контроль над самолетом в воздухе. Постепенно бортовые компьютеры вернулись к жизни, и самолет смог благополучно приземлиться.

Давайте еще раз повторим основные конструкторские решения, защищающие летательный аппарат. Вот самые основные.

1. Разряд молнии выбирает путь наименьшего сопротивления. Поэтому если на пути встречается самолет, он проходит по его металлической обшивке, не проникая внутрь и не задевая важные устройства. Для этого листы обшивки должны быть плотно подогнаны друг к другу. В случае же использования композитных материалов, их покрывают слоем проводящей сетки из медной фольги. Если вы находитесь внутри металлического предмета, никакие молнии вам не страшны!

2. Для защиты от сильного электромагнитного излучения, возникающего при ударе молнии, бортовые системы экранируют медными сетками.

3. Чтобы исключить воспламенение паров топлива в баках при попадании молнии, по мере выработки горючего они заполняются инертным газом.

4. Наконец, для того чтобы снизить вероятность встречи с небесным электричеством, на концах крыльев устанавливаются электростатические разрядники, с которых статический заряд стекает в воздух. Благодаря этому корпус самолета всегда остается нейтрально заряженным и не привлекает «внимания» молнии. Если она и попадает в него, то, скорее всего, выйдет из корпуса именно с разрядника.

Секреты защиты от молнии дома или коттеджа

С детских лет мы знакомы с круговоротом воды в природе. На нашей планете с поверхности морей, океанов, рек постоянно происходит испарение влаги, которая собирается в облака, а затем формируются тучи, переносимые ветром.

При их движении происходит трение капелек воды и льдинок, образуется статическое электричество с накоплением очень высоких потенциалов. Таким способом запасается огромное количество энергии разной полярности, которая во время перемещения облаков теряет изоляцию и разряжается молнией.

В разных точках нашей планеты аналогичные процессы происходят постоянно, ежесекундно в землю из облаков вонзается порядка сотни молний. Они сопровождаются разрядом тока огромной величины, приносят людям большие бедствия.

История появления громоотвода. Разбушевавшаяся стихия и разрушающее действие молнии всегда волновали человечество, а чувство незащищенности вызывало первобытный страх перед неизбежностью происходящего.

И только в XVIII веке американский ученый физик Бенджамин Франклин, сконструировал первую защиту от удара молнии, которую в то время называли громоотводом.

Гениальность ученого подтверждается тем, что именно он разработал Конституцию США, включающую в себя гарантии свободы в Америке. С тех пор его изображение размещено на 100-долларовой купюре.

В основу изобретения Б. Франклина положен принцип встречи разряда на подходе к защищаемому дому и изменения ее направления в молниеприемник с отводом в землю мимо здания.

За два последующих столетия выполнено множество подобных защит разных конструкций, проведены серьезные исследования с испытаниями, но принципиальное решение осталось прежним:

— молниеприемник располагается выше защищаемого здания и встречает молнию; — токоотвод забирает электрический заряд у молниеприемника и передает его заземлителю; — заземлитель гасит полученную энергию в толще земного грунта.

Принципы выполнения защиты. Молнию можно представить как гигантскую искру, проскакивающую между заряженным облаком и поверхностью земли с противоположной полярностью.

Место пробоя искры всегда возникает там, где меньше величина электрического сопротивления изоляции воздуха или ближе расстояние от земли до облака. Поэтому чаще всего поражаются высотные здания, вековые деревья, отдельно стоящие строения.

При этом, молния предпочитает металлические конструкции, ведь электрическая проводимость тока лучше у металла, чем у дерева либо камня. Упрощенную систему молниезащиты вполне можно смонтировать самостоятельно для небольшого дома или коттеджа.

На первый взгляд в этом вопросе нет ничего сложного. Над крышей дома размещается металлический штырь диаметром порядка 12 мм и высотой около полутора метров. Допустимо применить трубу с заваренным верхним торцом.

К смонтированному молниеприемнику приваривается токоотвод из проволоки диаметром от 6 мм, который должен выдержать прохождение тока порядка 200 килоампер. Проволока спускается и крепится по крыше и стене дома, а затем приваривается к забитому в землю на два метра заземлителю.

Особенности проектов и изготовления. Созданная конструкция будет притягивать небесные разряды и при правильно выполненном монтаже отводить их в землю. Только вопрос упирается в то, как проверить надежность, работоспособность собранного устройства.

При любой ошибке молния будет не отводиться, а направляться в здание, производя разрушения. Поэтому специалистами проводятся и анализируются замеры электрических параметров, осуществляются опробования эксплуатационных характеристик прямыми либо косвенными способами по разработанным методикам.

Центром электромагнитной безопасности РФ указывается много рекомендаций для защиты отдельных зданий, учитывающих:

— конструкцию крыши и вид материала кровли; — способы прокладки токоприемников; — устройство заземления; — проверку монтажа и надежности.

Они конкретизируют схемы защит от молнии для зданий разных конструкций с учетом выбора заземлителей, правила установки и монтажа оборудования, методы проверки устройств даже с учетом теории вероятности.

Не всегда молния выбирает самое высокое место, к тому же она часто разделяется на несколько частей, ветвится. Поэтому оптимальным вариантом ее приемника считается толстая металлическая сетка над крышей, которая заземляется со всех сторон.

Типовые схемы молниеприемников. Крыши, покрытые металлическими листами, хорошо защищаются классической схемой, описанной выше.

На покрытые шифером и подобными материалами крыши, включая древесину, устанавливают молниеприемник из стального троса, натянутого вдоль верхней линии кровли.

Трос закрепляется в деревянных подпорках. Крепление токоотвода допускается под винт с пропайкой контактного соединения.

Для защиты крыш из черепицы используется металлическая сетка из троса или проволоки диаметром от 6 мм с размерами ячейки порядка 6 на 6 метра. Все стыки проволоки должны быть хорошо пропаяны.

Токоотвод присоединяется к сетке сваркой либо под винт с пропайкой электрического контакта.

Рекомендации по расположению токоотводов. Прокладку токоотвода рекомендовано проводить по той стене здания, которая противоположна входу в дом, а заземлитель размещать в стороне от фундамента на расстоянии от 3-х метров и более.

Особенности конструкций заземлителей. Заземление изготавливается из оцинкованной или омедненной стали, предпочтительнее круглого сечения. Используемые для этих целей стальные листы или профили типа уголка через определенное время благодаря коррозии быстро разрушаются и со временем отказываются работать.

В таком случае заземление перестанет функционировать, а молниепримник — будет, что послужит причиной несчастных случаев.

Тип заземления рассчитывается по специальным методикам, исходя из конструкции дома с элементами электрооборудования, состояния грунта и выполняется:

— контуром вокруг здания; — несколькими очагами из заземлителей; — глубоко помещенными в землю вертикальными заземлителями длиной до 20 метров; — совмещенными устройствами.

Любой метод изготовления не лишен недостатков и обладает определенными преимуществами, которые следует учесть на стадии проекта дома.

Защита электрооборудования дома. Современные проекты молниезащиты охватывают два контура: внутренний и внешний. Внешним контуром перехватывается и отводится в землю разряд, направленный в здание.

Внутренний контур ликвидирует опасный уровень импульсного перенапряжения в электросети от наведенного молнией электромагнитного потенциала, чем предохраняет от возгораний и неисправностей электрооборудования.

Он работает даже в случае, когда разряд попал в питающую электрическую сеть вдали от дома. Применяемые защитой ограничители напряжения в виде разрядников, варисторов и комбинированных устройств предохраняют электроприборы здания от разрушений путем кратковременного заземления электросети.

Каждый электрик должен знать:  Раздельное управление группами тиристоров реверсивного преобразователя

Перспективы развития защит. Описанные выше принципы выполнения защиты от молний относятся к пассивным методам. Но с прошлого века существуют, разработанные первоначально во Франции, активные методы.

У них использована несколько другая схема работы молниеприемника, который снабжен системой автоматики. Электронная схема постоянно отслеживает наличие грозового фронта и при его приближении к молниеприемнику вырабатывает в нем мощный поток ионов, создавая зону ионизации с противоположной полярностью.

А при достижении критической величины напряженности происходит встречный старт искрового разряда от молниеприемника к облаку, формируется заранее подготовленный путь для молнии, чем провоцируется ее разряд в землю.

Конструктивно электронный блок активной схемы установлен внутри приемника грозового разряда, надежно защищен от вывода из строя при работе. Такие схемы сейчас широко применяются во Франции, США и других странах мира.

Для их оценки внедрен стандарт Франции NFC 17-102. Их существенным недостатком считается высокая стоимость оборудования, которое в нашей стране пока применяется на больших производственных мощностях нефтегазовой промышленности и в отдельных крупных складских сооружениях.

Планируя проект загородного дома либо коттеджа, следует обязательно обеспечить его безопасность от поражения молнией, учесть научные разработки и рекомендации Российских нормативных документов.

Защита дома от молний

Содержание статьи

В средних широтах европейского континента сильные грозы бывают часто, и случаи, когда люди или сооружения страдают от попадания молний, не настолько редкие, как хотело бы. По статистике в Украине в год около 30 человек погибает от удара молнии. Предотвратить же трагические последствия попадания молний не только возможно, но и достаточно несложно. Тут поможет молниезащита дома.

Последствия попадания молнии

Из всего количества молний к земле идут только 25—30%. При этом во время накопления потенциала образуется так называемый разряд-лидер. Между облаком и землей он движется хаотично, как бы намечая траекторию будущей молнии. Любопытно, что молния состоит, как правило, из трех разрядов, но из-за большой скорости мы воспринимаем его как один. Основным поражающим фактором молнии являются кратковременные электрические импульсы колоссальной энергии. Длительность их составляет 1–10 микросекунд. При этом мощность заряда до нескольких сотен, а то и тысяч киловатт, а сила тока до 500–1000 ампер.

Если защита дома от молний не выполнена, то в случае попадания молнии могут случиться такие бедствия:

— физические разрушения строений и конструкций;

— поражение электрическим током;

— возникновение наведенного электрического потенциала. Это означает появление во внутренней сети питания электростатической и электромагнитной индукции. Чаще всего наведенная индукция возникает при попадании молнии в металлические части здания. Наведенная индукция сохраняется несколько минут и сама может стать поражающим фактором, например, привести к пожару, вызвать удары током, короткие замыкания, выход из строя бытовой техники.

Попадание молнии в человека, к сожалению, в большинстве случаев оканчивается летальным исходом. Тем же, кому повезет больше, в лучшем случае отделаются сильными ожогами.

От чего зависит вероятность попадания молнии?

Вероятность поражения молнией того или иного строения не всегда одинакова. Она зависит от:

— высоты постройки;
— местности, в которой она находится;
— климатического пояса;
— наличия поблизости высоких деревьев или поле высоких домов;
— влажности воздуха.

Согласно инструкции ПУЭ (Правила устройства электроустановок) оборудование постройки молниеотводом следует выполнить в обязательном порядке, в случае если годовое число гроз в данной местность не менее 20. Но есть районы, в которых оснащение молниезащитой не является обязательной.

Важно помнить, что молния вполне может попасть несколько раз в одно и то же место, причем не только в течении года, а даже в течении одной грозы. В предгрозовом ионизированном воздухе статический заряд часто накапливается на верхушке высотного сооружения, создается разность потенциалов. Поэтому такие объекты и «притягивают» молнию.

Любая мачта, например, радиоантена или мачта сотовой связи, способна притягивать в зону своего расположения значительное число молний. Поэтому соседство с такой вышкой совершенно нежелательно. Важно знать, что вероятность попадания молнии в конкретный объект поддается расчету. Для этого существуют специальные методики и программы. Вместе с тем, никакие документы и нормы не запрещают сделать молниеотвод своими руками.

Устройство молниезащиты дома

Защита дома от молний выполнялась людьми еще испокон веков. Так, например, в старину на Руси в грозу было принято бить в колокола, дабы отвести кару небесную. Реально работающая молниезащита дома была изобретена около 200 лет назад, президентом Америки Бенджамином Франклином.

На сегодняшний день действия, направленные на защиту сооружений от молний, регламентируются нормативом ДСТУ Б В.2.5-38:2008. Он определяет требования к молниеотводам.

Любая система молниезащиты дома состоит из трех основных частей:

1 — молниеприемника (принимает на себя удар молнии);
2 — токоотвода (проводит ток к заземлению);
3 — заземления (разряжает электрический потенциал на землю).

При этом молниеприемник может быть трех типов:

1 — стержневой;
2 — линейный;
3 — сетчатый.

1. Стержневой молниеприемник — это металлический стержень (трубка, уголок, прямоугольник) достаточной площади сечения от 1—2 см2 и более. Длинна его не менее 0,25 м, но, как правило, от 0,5 м до 2 м. Стержневой молниеприемник идеальный вариант для всех видов металлических крыш.

Молниеприемник надо устанавливать на такую высоту, чтобы в зону защиты (как бы условный конус) попадал полностью защищаемый объект. Для этого диаметр основания конуса должен быть не более тройного значения высоты. Для молниеотводов такого типа используют специально устанавливаемые мачты, верхушки высоких деревьев. Верхний конец молниеотвода выступает над кроной дерева не менее чем на 0,5 м. Дерево же должно находится от постройки не далее чем на 10 м. Молниеотвод может быть установлен на мачту, которая крепится на верхней точке крыши здания. Наименьшей надежностью обладает, условно говоря, поверхность зоны защиты. В глубине конуса она выше, при этом чем острее конус тем выше степень защиты.

Расчета высота молниетвода проще всего выполнять таким образом: высота приподнимания молниеотвода равна защитному расстоянию по горизонтали от него (3 м молниеотвод защищает 3 м, 7 м — 7м и т.д.). Вместе с тем, рассчитать радиус защиты громоотвода для дома можно с помощью такой формулы (h — расстояние от пика молниеотвода до самой высокой точки дома):

Громоотвод устанавливают на жерди, толщина которой должна быть 10—15 см, пишет iBud.ua. Жердь крепится к крыше дома. Верхний конец молниеотвода делают такого же диаметра, как и остальные его части. Можно использовать проволоку большего диаметра (максимальная толщина — 14 мм). Для верхнего конца громоотвода используйте стальной уголок, полосы, трубы (рекомендуемое сечение 50—60 мм2). Из проволоки вверху лучше всего сделать закрепленную петлю, трубу заварить или сплющить.

Закрепить монлиеприемник, как отмечалось, можно на крыше дома, телевизионной мачте, флюгере или рядом растущем дереве. Если установка молинеотвода выполняется на дерево, то крепление проводиться с помощью синтетического материала. При этом дом должен попадать в защитный конус. Если молниеотвод устанавливается на дымовую трубу, то надо позаботиться о надежном креплении. Ветер может сорвать громоотвод с трубы.

2. Линейный молниеотвод — натянутый вдоль конька крыши трос сечением не менее 0,5 см. Используется такая защита от молний для домов с шиферной или деревянной крышей.

Трос протягивается вдоль конька крыши и закрепленный на деревянных стержнях. При этом каждый конец троса соединен с заземлением. Токоотводы укладывают с каждой стороны троса вдоль стен дома в защитные трубы и присоединяют к электродам заземления. Высота троса над коньком крыши должна быть не менее 0,5 м.

3. Сетчатый молниеотвод — это сетка из проволоки или арматуры с шагом ячейки 6–12 м (минимальный шаг ячейки — 3м, согласно ДСТУ Б В.2.5-38:2008 «Инженерное оборудование зданий и сооружений. Устройство молниезащиты зданий и сооружений»). Для сетки используется, как правило, проволока или трос диаметром 6 мм. Сетка также устанавливается на высоте от 0,5 м над кровлей. При этом соединяется она с несколькими заземлениями по периметру здания. Расстояние между точками заземления не должно превышать 12 м. Если на крыше дома есть выступающие архитектурные элементы, например, башни или трубы, то на них так же могут монтироваться молниеприемники. Они должны выступать над верхним краем на 0,5 м и надежно заземляться.

Токоотвод — это толстый провод сечением не менее 0,5 см.

Заземление — металлический стержень любого профиля и сечения, соединенный с токоотводом и уходящий в землю не менее чем на 50 см.

Во всех типах защиты дома от молнии применяют токоотводы и молниеприемники диаметром не менее 6 мм. В качестве заземления применяется электрод, который может быть как вертикальным, так и горизонтальным. Длина заземлителя 2—3 м, глубина закапывания не менее 1 м. Для соединения частей молниеотвода применяют сварные или же болтовые соединения. Качество последних периодически необходимо проверять.

Допускается заземлять молниеотвод на арматуру фундамента, если он не полностью укрыт слоем гидроизоляции, и если влажность грунта больше 3%. Электроды должны быть вкопаны так глубоко, чтобы достигать влажных слоев почвы. А удельное сопротивление почвы не должно быть слишком высоким, желательно, не более 200 Ом.

Защита электродов от коррозии реализуется путем применения оцинкованной стали или меди. Не допускается покрытие электродов токонепроводящей эмалью или битумом.

Часто приходится слышать мнение, что металлическая кровля, например, листовая медь или металлочерепица в достаточной степени защищает от удара молнии и не требует обустройства дополнительной защиты. К сожалению, это не совсем так:

1 — любой молниеприемник нужно заземлять, а при укладке металочерепицы — это, как правило, не делается;

2 — толщина металла в этого покрытия менее миллиметра, и от серьезной молнии такая защита не спасает. Молния большой мощности просто прожигает металл.

Новые технологии молниезащиты дома

Перечисленные конструкции молниеотводов являются, образно говоря, механическими, хотя и основанными на законах физики. Однако существуют более продвинутые технологии защиты дома от молнии, распространение которых сдерживается высокой стоимостью. Речь идет о так называемых ионизаторах. Суть действия устройства в том, чтобы создать противонаправленный разряд-лидер.

Первые приборы такого типа действовали на основании ионизированного излучения радиоактивного изотопа. Более поздние модификации стали чисто электронными и изотопы уже не используют.

При подаче на такой прибор напряжения возникает столб ионизированного воздуха, на который замыкается разряд молнии. Таким образом, это уже не молниеотвод, а своего рода ловушка, которая притягивает к себе молнии с достаточно большой территории. Однако и стоимость их более 1000 долларов, что в десятки раз дороже простого молниеотвода, который можно собрать своими руками, затратив лишь 2—3 сотни гривен.

В мире вся внутренняя электрическая сеть жилого объекта, включая защиту от молний и защиту от всевозможных внешних воздействий, закладываются на этапе проекта дома. То есть система молниезащиты представляет собой часть интегрированной сети объекта, а не отдельную структуру, не имеющую отношение к электропитанию.

В современных многоквартирных монолитных домах все участки цепи от источников электроснабжения заземляются на внутреннюю арматуру несущих стен, а через нее — на арматуру фундамента.

Профилактика и уход за молниезащитой

Чтобы молниеотвод выполнял свою функцию, его надо не только правильно собрать, но и периодически выполнять профилактические работы. Свойства молниеотвода зависят не только от конструкции, но и от условий эксплуатации, например, от свойств грунта в месте предполагаемого заземления. Чрезмерно сухой, песчаный или каменистый грунт плохо проводит электрический ток. В этом случае грунт стоит увлажнить, например, соляным раствором, либо просто добавить соль в состав грунта. Соль – хороший проводник, особенно при намокании во время дождя. Можно так же добавить в грунт древесный уголь, который тоже хорошо проводит ток. Важно помнить, что заземление не стоит делать, где попало. Электрод должен быть заглублен в землю не ближе 5 метров от дорожек, проходов и самого здания.

Необходимо следить, чтобы в местах собранных контактов не образовывалась ржавчина. Они были не испачканы маслом, краской или грязью. Места несварных соединений надо перемотать изолентой и покрыть слоем гидроизолирующего материала.

Профилактических осмотр молниеотводов производят ежегодно весной перед началом периода гроз. Раз в 2—3 года места соединений рекомендуется разобрать, проверить контакты, очистить их от окиси или ржавчины, и соединить по-новому. Желательно, не реже раза в три года проверять состояние находящегося в земле электрода. Если через коррозию его сечение заметно уменьшилось, электрод заземлителя следует заменить.

Сейчас, когда в городах всё больше построек и автомобилей, особенно важно увеличивать и число «зелёных» зон – парков, скверов, газонов. Деревья, кустарники, цветы очищают воздух.

С перепадами напряжения, особенно в осенне-зимний период года, знакомы многие жители городов и деревень. Периодическое повышение или понижение напряжения в электросети, а также непредвиденное отк.

Подобно фирме Xerox, именем которой мы называем все без исключения копировальные аппараты, марка PINOTEX давно уже стала нарицательным понятием,объединяющим все деревозащитные средства. Но, как не.

Молния и системы защиты

Механизм образования молнии грозы.

Неустойчивые влажные и теплые воздушные массы приводят к образованию кучево-дождевых грозовых облаков. Облака этого типа очень обширны как по горизонтали (около 10 км в диаметре), так и по вертикали (до 15 км). Их форма (особенно верхняя и нижняя горизонтальные плоскости) часто напоминает наковальню. Значительные перепады температур в кучево-дождевом облаке (в его верхней части температура может опускаться до -65 °C) создает очень быстрые восходящие потоки воздуха, что приводит к электризации частиц воды. В типичном грозовом облаке верхняя часть, состоящая из кристаллов льда, как правило, заряжена положительно, в то время как нижняя часть, состоящая из капель воды, имеет отрицательный заряд. следовательно, нижняя часть облака становится причиной появления электрически противоположных зарядов (т.е. частицы над участком земли под облаком получают положительный заряд).

Таким образом, кучево-дождевые образования представляют собой своего рода огромный конденсатор, средний диаметр которого часто достигает 1–2 км. Атмосферное электрическое поле на земле (около 600 В/м в хорошую погоду) непосредственно перед разрядом на землю (ударом молнии) может достигать абсолютного значения от 15 до 20 кВ/м. До и во время удара молнии как внутри облака, так и между облаками можно наблюдать электрические разряды.

Молния

Исходя из направления, в котором развивается электрический разряд (вниз или вверх), и полярности разряда (отрицательный или положительный), можно выделить четыре класса разрядов молнии между облаком и землей. На практике удары молнии нисходящего и отрицательного типа происходят чаще остальных: считается, что на равнинах и в умеренных климатических зонах на их долю приходится 96 % всех разрядов «облако-земля».

Механизм удара молнии

Путем визуального наблюдения невозможно различить отдельные фазы удара молнии. Это можно сделать только с помощью высокоскоростных камер. Большинство молний проходят несколько стадий: нисходящий лидер возникает из точки в облаке и проходит около 50 м на очень высокой скорости (около 50 000 км/с). Затем из той же точки появляется второй лидер. Он следует по пути предыдущего на примерно такой же скорости и проходит за конечную точку первого лидера примерно на такое же расстояние, а затем в свою очередь исчезает. Этот процесс повторяется, пока вершина последнего лидера не достигнет точки в несколько десятков метров или даже всего в несколько метров над поверхностью земли. Затем от земли к облаку стартует обратный разряд (восходящий стример), по всей длине которого циркулирует электрический ток: когда нисходящий и восходящий лидеры встречаются, возникает основной разряд, за которым следует серия вторичных разрядов, проходящих по всей длине канала, ионизированного основным разрядом. В среднем ток отрицательного удара молнии составляет около 35 000 А.

Воздействие молнии

Воздействие молнии — это воздействие импульсного тока большой силы, который первоначально распространяется в газовой среде (атмосфере), а затем в твердой, более или менее проводящей среде (земля). Выделяются следующие виды воздействий:

— визуальные эффекты (вспышка): вызывается механизмом таунсендовской лавины;

— акустические эффекты: вызывается распространением ударной волны (повышение давления), возникающей в пути разряда, причем этот эффект ощущается на расстоянии до 10 км;

— тепловой эффект: тепло выделяется в результате эффекта Джоуля в ионизированном канале;

электродинамические эффекты: это механические силы, действующие на проводники, помещенные в магнитное поле, создаваемое током высокого напряжения. Они могут приводить к деформации

Технологии молниезащиты

— электрохимические эффекты: эти незначительные эффекты проявляются в виде электролитического разложения согласно закону Фарадея;

индукционные эффекты: в переменном электромагнитном поле в каждом проводнике возникает индуцированный ток; — воздействие на живые существа (человека или животное): протекание через тело переходного тока определенного среднеквадратичного значения может вызвать сердечный приступ, нарушение дыхания и ожоги.

Последствия ударов молнии можно разделить на два типа:

— повреждения объекта, связанные с прямым ударом, когда молния ударяет в здание или его часть. Это может нанести значительный ущерб, как правило, в результате возникновения пожара. От этого можно защититься с помощью систем внешней молниезащиты (молниеприемников);

— повреждения, вызываемые косвенно, когда при ударе молнии появляются импульсные перенапряжения в силовых кабелях или линиях электропередач. Отсюда вытекает необходимость использовать устройства защиты от импульсных перенапряжений (УЗИП) для защиты от импульсного перенапряжения и наведенных токов.

Защита от прямого удара молнии

Для защиты зданий от ударов молнии система молниезащиты строится так, чтобы защитить все здание и отвести электрический ток к земле по пути с минимальным сопротивлением. Всем этим требованиям отвечают четыре типа систем защиты.

Технологии молниезащиты

Особенности установки

система активной молниезащиты включает следующие компоненты:

— активный молниеприемник и удлиняющая мачта;

— два вертикальных токоотвода или, в случае с несколькими активными молниеприемниками, один отвод на каждый активный молниеприемник. При этом сами молниеприемники также соединяются между собой;

— соединительную коробку для каждого вертикального токоотвода для обеспечения возможности проверки сопротивления заземления;

— защитный экран для защиты вертикальных токоотводов на последних двух метрах над поверхностью земли;

— заземление для рассеивания токов молний в конце каждого вертикального токоотвода;

— соединение между заземлением молниезащиты и основным контуром заземления объекта с возможностью отсоединения друг от друга;

— меры защиты от поражения живых существ в следствие случайного прикосновения или шагового напряжения (например, предупредительные надписи).

Cистема молниезащиты со стержневым молниеприемником.

Возвышаясь над зданием, стержневые молниеприемники с большей вероятностью, чем элементы самого здания, вызывают старт восходящих стримеров, и тем самым повышается вероятность попадания молнии именно в них, а не в защищаемый объект.

Данный тип защиты рекомендуется использовать для радиостанций и антенных мачт, требующих относительно небольшой зоны защиты.

В состав системы молниезащиты со стержневым молниеприемником входят следующие компоненты: — стержневой молниеприемник и удлиняющая мачта;

— два вертикальных токоотвода;

— соединительная коробка на каждом вертикальном токоотводе для обеспечения возможности проверки сопротивления заземления токоотвода;

— защитный экран для защиты вертикальных токоотводов на последних двух метрах над поверхностью земли;

— эквипотенциальное соединение между каждым элементом заземления молниезащиты и основным контуром заземления объекта с возможностью отсоединения;

— меры защиты от поражения живых существ вследствие прикосновения и шагового напряжения (например, предупредительные таблички).

Система молниезащиты с молниеприемной сетью

Данная технология предусматривает разделение и рассеивание тока молнии через сеть токоотводов и заземлителей. Молниеприемная сеть объединяет множество вертикальных токоотводов, обеспечивая очень эффективную защиту зданий, где размещено оборудование, чувствительное к электромагнитным помехам. Это происходит потому, что высокий ток молнии распределяется по вертикальным токоотводам, в результате чего по каждому из них протекает небольшой ток, вызывающий незначительные помехи вследствие небольшой индукции. В состав системы молниезащиты с молниеприемной сетью входят следующие компоненты:

— сеть проводников с определенным шагом, уложенных на кровле;

Технологии молниезащиты

— меры защиты от поражения живых существ вследствие прикосновения и шагового напряжения (например, предупредительные таблички);

— эквипотенциальное соединение между каждым элементом заземления молниезащиты и основным контуром заземления объекта с возможностью отсоединения.

Горизонтальные (тросовые) молниеприемники система состоит из одного или нескольких токоотводов, натянутых над защищаемым сооружением. Зона защиты может быть определена с помощью электрогеометрической модели.

Оба конца токоотводов должны быть заземлены. Для установки натянутых токоотводов требуется тщательный предварительный расчет, который поможет определить тип опор, механическую прочность конструкции и изоляционные расстояния.

Данная технология используется для защиты опасных (взрыво- и пожароопасных) объектов в случаях, когда нет возможности смонтировать молниеприемники и токоотводы непосредственно на объект.

Защита от косвенного воздействия удара молнии Когда удар молнии приходится в кабели и линии электропередач, в них начинает распространяться скачок импульсного перенапряжения, который может достигнуть электрооборудования, которое они питают. Такое импульсное перенапряжение также может быть вызвано электромагнитной индукцией при непрямом ударе молнии (в близлежащие объекты).

Это может привести ко многим последствиям: преждевременному старению электронных компонентов, разрушению печатных плат, отказу оборудования, потере данных, зависанию программ, повреждению линий и т. д. Поэтому необходимо использовать устройства защиты от импульсных перенапряжений для защиты оборудования, подверженного влиянию ударов молний. Использование устройств защиты от импульсного перенапряжения настоятельно рекомендуется, когда здание оборудовано внешней молниезащитой. В некоторых странах УЗИП Типа 1 настоятельно рекомендуется или обязательно для установки. Надежная защита обеспечивается, когда УЗИП Типа 1 установлено в вводном щите, тогда как щиты распределения укомплектованы УЗИП Типа 2.

Эквипотенциальное соединение металлических элементов

Во время удара молнии или даже в результате косвенного воздействия некорректное эквипотенциальное соединение, за счет образования разности потенциалов, может создавать искру, представляющую опасность для человека и являющуюся потенциальной причиной возгорания на объекте. Поэтому хорошее состояние системы эквипотенциального соединения на объекте является неотъемлемой частью эффективной молниезащиты.

Необходимая электрическая изоляция между молниеприемником или токоотводом и металлическими конструкциями может быть достигнута путем соблюдения между этими частями расстояния S.

Защита склада от молний

Вопрос пожарной безопасности имеет важное значение для сохранности сооружений, в частности складов. Основное условие ее обеспечения – исключить контакт источника возгорания с горючей средой, т. е. организация системы мер по предотвращению пожара. В комплект этой системы в том числе входит устройство молниезащиты. В последнее десятилетие во всем мире резко увеличилось количество аномальных природных катаклизмов, например ливневые грозы, следствием которых стали небывалые наводнения в Чехии, Италии и Германии летом 2002 г. В России, по данным МЧС, в 40% случаев возгорание происходит по причине грозовых разрядов. Разряд молнии порой приводит не только к значительным материальным убыткам, но и гибели людей.

Здания и сооружения чаще всего подвергаются воздействию молнии из-за отсутствия специальных молниезащитных устройств, но если они есть, а случаи поражения все же имеются, то это, как правило, происходит вследствие недостатков в проектировании, монтаже и эксплуатации. Конструкции, выполненные на основе действующих требований и рекомендаций, надежно защищают объект, при этом дополнительные затраты на устройство молниезащиты по сравнению с общими затратами на сооружение объекта, как правило, весьма незначительны – не более 0,5%.

Молниезащита представляет собой комплекс мероприятий, направленных на предотвращение прямого удара молнии в объект, вторичных воздействий молнии и заноса высокого потенциала. Прямой удар молнии является наиболее опасным из всех ее проявлений с точки зрения поражения зданий и сооружений. Подавляющее число пожаров и разрушений вызвано именно этим воздействием. Защитное действие молниеотвода основано на свойстве молнии с большей вероятностью поражать более высокие и хорошо заземленные предметы по сравнению с расположенными рядом объектами меньшей высоты. Поэтому на молниеотвод, возвышающийся над защищаемым объектом, возлагается функция перехвата молнии и отвода ее тока в землю посредством системы заземления.

Количественно защитное действие молниеотвода определяется через вероятность прорыва – отношение числа ударов в защищенный объект (число прорывов) к общему числу ударов в молниеотвод и объект. Существует несколько способов оценки вероятности прорыва, основанных на разных фактических представлениях о процессах поражения молнией. В руководящих материалах по устройству молниезащиты (РД 34.21.122-87) использованы результаты расчетов по вероятностной методике, связывающей вероятность поражения молниеотводов и объекта с разбросом траекторий нисходящей молнии без учета вариаций ее токов. Согласно этой модели создать идеальную защиту от прямых ударов молнии, полностью исключающую прорывы на защищаемый объект, нельзя. На практике возможно так взаимно расположить объект и молниеотвод, что это обеспечит низкую вероятность прорыва (0,1 или 0,01), а значит, снизит число поражений объекта в 10 и 100 раз по сравнению с незащищенными объектами. Такой уровень защиты обеспечивает большинству современных объектов малое количество прорывов за весь срок их службы.

Возможность поражения строения молнией в значительной степени определяется интенсивностью грозовой деятельности в той местности, где он расположен, и зависит от его размеров и конфигурации, расположения среди окружающих объектов и ряда других условий. Интенсивность грозовой деятельности характеризуется средним количеством грозовых часов в год и может быть получена по данным местной метеорологической станции. Кроме того, существует карта средней за год продолжительности гроз в часах для всей территории СНГ, на которой приближенно отмечены границы крупных областей, где наблюдается одна и та же грозовая деятельность.

Диапазон ее изменения довольно широкий и зависит от климатических факторов и рельефа. Воздействия молнии подразделяются на две основные группы: первичные, инициированные прямым ударом молнии, и вторичные, вызываемые электромагнитной и электростатической индукцией и заносом высоких потенциалов в объект протяженными металлическими коммуникациями. Прямой удар молнии создает термические, механические и электрические воздействия. Термические воздействия связаны с резким выделением теплоты при прямом контакте канала молнии с содержимым пораженного объекта и при протекании через объект тока молнии.

Особую опасность поражения прямым ударом молнии представляют металлические и железобетонные резервуары для хранения нефтепродуктов, поэтому металлические элементы (оболочки) этих установок не следует использовать в качестве молниеприемников. Ток от прямого удара молнии может вызвать недопустимый по пожаробезопасности нагрев проводника, а при малом сечении даже расплавить или испарить его. Не рекомендуется применять в устройствах молниезащиты стальные и медные провода сечением менее 30 и 16 мм 2 соответственно.

Контакт некоторых негорючих материалов и материалов с высоким электрическим удельным сопротивлением (камень, кирпич, бетон, дерево) с каналом молнии вызывает резкое паро- и газообразование в них. Давление в образовавшемся канале резко растет, происходит взрыв или расщепление конструкции, например кирпичной кладки, деревянных опор и даже железобетонных устройств, где нет хорошего контакта между элементами арматуры. Это вынуждает защищать бетонные сооружения со слабым армированием или без него от прямого удара молнии. Нельзя применять предварительно напряженную арматуру в качестве токоотвода: импульсные токи силой даже 10. 20 кА вызывают разрушение железобетона.

Поражение людей происходит при непосредственном попадании в них молнии; прикосновении к элементам здания или оборудования, в которых протекает ток молнии или на которых появляется высокий потенциал; при воздействии шагового напряжения в результате растекания тока молнии через заземлитель или пораженный соседний объект через землю.

Использование тех или иных методов для защиты зданий от разряда молнии производится в строгом соответствии с их классификацией в части устройства молниезащиты. В Инструкции по устройству молниезащиты зданий и сооружений РД 34.21.122-87 объекты разделены на три категории, различающиеся по тяжести возможных последствий поражения молнией.

В I категорию включены здания и сооружения, которые согласно Правилам устройства электроустановок (ПУЭ) относятся к зонам классов В-I и B-II, т. е. производственные помещения, где в нормальных технологических режимах может находиться и образовываться взрывоопасная концентрация газов, паров, пыли, волокон. Любое поражение молнией, вызывая взрыв, создает повышенную опасность разрушений и жертв не только этого объекта, но и других, близко расположенных. К этой категории относятся сливно-наливные эстакады для приема и отпуска горючих жидкостей с температурой вспышки паров до 45°С включительно.

Во II категорию входят здания и сооружения, которые согласно ПУЭ относятся к зонам классов B-Ia, B-Iб, В-IIа. Это объекты, в которых взрывоопасная концентрация образуется при авариях и нарушении нормального технологического режима, а также наружные установки, содержащие взрывоопасные жидкости и газы. Для этих объектов удар молнии создает опасность взрыва только при совпадении с технологической аварией или срабатыванием аварийных клапанов на наружных установках. К этой категории относятся: продуктово-насосные станции; вакуумные насосные по перекачке горючих жидкостей с температурой вспышки паров до 45°С включительно; продуктоприемники горючих жидкостей с температурой вспышки до 45°С включительно, а также технологические трубопроводы в помещениях и траншеях для тех же жидкостей; складские помещения для вышеуказанных жидкостей в таре (бочках, бидонах и др.); складские помещения для хранения баллонов со сжатыми (сжиженными) газами – метаном, пропаном, бутаном, ацетиленом; помещения, где хранятся баллоны с аммиаком; помещения компрессорного и аппаратного отделений в зданиях холодильников, работающих на аммиаке, а также вестибюли на этажах, при наличии аммиачных аппаратов и коллекторов; помещения для стоянки автотранспорта в гаражах и смотровые ямы в них; помещения, где стоят двигатели внутреннего сгорания; помещения зарядных станций щелочных и кислотных аккумуляторов.

В III категорию включены здания и сооружения, для которых прямой удар молнии представляет опасность в отношении пожара, механических повреждений, поражения людей: это здания и сооружения, отнесенные ПУЭ к зонам классов II-I, II-II, II-IIа, II-III; наружные установки и открытые склады, создающие согласно ПУЭ зоны класса II-III; здания и сооружения III, IIIа, IV и V степени огнестойкости, в которых по ПУЭ отсутствуют помещения, относящиеся к взрыво- и пожароопасным; здания из металлических конструкций, со сгораемым утеплителем степени огнестойкости IVа. Сюда же входят: наземные и заглубленные резервуары для хранения горючих жидкостей с температурой вспышки выше 45°С; продуктово-насосные станции; вакуумные насосные, сливно-наливные эстакады для перекачки, приема и отпуска указанных жидкостей, а также складские помещения для хранения этих жидкостей в таре (бочках, бидонах и др.). К этой же категории относятся: помещения для хранения натурального, синтетического каучука и изделий из них, хлопка-волокна, промышленных материалов и товаров (изделий из волокнистых веществ; бумаги в рулонах, кожи, шерсти и др.); складские помещения горючих натуральных, синтетических смол, химикатов; складские помещения продовольственных товаров, включая камеры холодильников, складские помещения негорючих материалов в горючей мягкой или твердой таре; складские помещения магния, титановой губки, ртути; помещения лабораторий, в том числе для анализа нефтепродуктов и спирта при условии оборудования помещений приточно-вытяжной вентиляцией.

Помимо зданий и сооружений молниезащите подлежат открытые территории промышленных предприятий и складов, так как на них могут находиться люди.

Молния представляет собой разряд атмосферного электричества между грозовым облаком и землей или каким-либо наземным объектом. До появления разряда в облаке происходит накопление и разделение электрических зарядов. Разряд молнии начинается с развития лидера – слабо светящегося канала с силой тока в несколько сотен ампер. По направлению движения лидера от облака вниз или от наземного сооружения вверх молнии подразделяют на нисходящие и восходящие.

Сведения о нисходящих молниях много лет накапливались в разных районах земного шара. Сведения о случаях возникновения восходящих молний появились лишь в последние десятилетия, когда начались систематические наблюдения за фактами прямого попадания молний в очень высокие сооружения – телевизионные башни, дымовые трубы и т. п. Лидер нисходящей молнии возникает под действием процессов в грозовом облаке, его появление не зависит от наличия на поверхности земли каких-либо сооружений. Главный разряд, возникающий при соприкосновении лидера с землей или наземным объектом, связан с нейтрализацией отрицательных зарядов лидера положительными зарядами земли. Он напоминает короткое замыкание и сопровождается ярким свечением и нарастанием тока до пиковых значений в сотни килоампер.

Этот процесс протекает весьма быстро, за 50. 100 мкс, и сопровождается разогревом канала до десятков тысяч градусов по Кельвину, а его ударное расширение воспринимается слухом как удар грома. Вокруг канала образуется ионизированная область, которая исчезает после окончания главного разряда через 0,03. 0,05 с. Сила тока послесвечения достигает сотен и даже тысяч ампер. Через некоторое время может произойти повторный разряд, но значительно меньшей силы. Вообще, почти половина случаев разрядов облака имеет 3. 4 импульса. Общая длительность многократного разряда облака на землю достигает 0,2. 0,3 с (наблюдались случаи длительностью до 2 с). Заряд, переносимый в течение всей вспышки молнии, может составлять 10. 30 Кл.

Восходящие лидеры возбуждаются на высоких заземленных сооружениях, у вершин которых электрическое поле во время грозы резко усиливается. На равнинной местности такие молнии поражают объекты высотой более 150 м, а в горных районах – сооружения меньшей высоты, потому и наблюдаются чаще.

Добавить комментарий